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Preface

The very first model of concurrent and distributed systems was introduced by
C.A. Petri in his seminal Ph.D. thesis in 1964. Petri nets has remained a central
model for concurrent systems for 40 years, and they are often used as a yardstick
for other models of concurrency. As a matter of fact, many other models have
been developed since then, and this research area is flourishing today.
The goal of the 4th Advanced Course on Petri Nets held in Eichstätt, Germany
in September 2003 was to present applications and the theory of Petri Nets in
the context of a whole range of other models. We believe that in this way the
participants of the course received a broad and in-depth picture of research in
concurrent and distributed systems.
It is also the goal of this volume to convey this picture. The volume is based on
lectures given at the Advanced Course, but in order to provide a balanced pre-
sentation of the field, some of the lectures are not included, and some material
not presented in Eichstätt is covered here. In particular, a series of introductory
lectures was not included in this volume, as the material they covered is well es-
tablished by now, and well presented elsewhere (e.g., in W. Reisig and G. Rozen-
berg, eds., “Lectures on Petri Nets,” LNCS 1491, 1492, Springer-Verlag, 1997 –
these two volumes are based on the 3rd Advanced Course on Petri Nets).
We believe that this volume will be useful as both a reference and a study book
for the reader who is interested in obtaining an up-to-date overview of research
in concurrent and distributed systems. It will be also useful for the reader who
is specifically interested in Petri nets. Although the material presented in this
volume is based on the Eichstätt course, the papers included here were written
after the course, and therefore they have taken into account numerous comments
made by the participants and fellow lecturers during the course. Because of this,
and because, to start with, the lecturers were asked to present their material in
a tutorial fashion, this volume is very suitable as an auxiliary reading for courses
on concurrency and/or Petri nets, and especially useful as the underlying book
for a seminar covering this research area.
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Business Process Management Demystified:
A Tutorial on Models, Systems and Standards

for Workflow Management

Wil M.P. van der Aalst

Department of Technology Management
Eindhoven University of Technology

P.O.Box 513, NL-5600 MB Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

Abstract. Over the last decade there has been a shift from “data-aware” informa-
tion systems to “process-aware” information systems. To support business pro-
cesses an enterprise information system needs to be aware of these processes
and their organizational context. Business Process Management (BPM) includes
methods, techniques, and tools to support the design, enactment, management,
and analysis of such operational business processes. BPM can be considered as an
extension of classical Workflow Management (WFM) systems and approaches.
This tutorial introduces models, systems, and standards for the design, analysis,
and enactment of workflow processes. Petri nets are used for the modeling and
analysis of workflows. Using Petri nets as a formal basis, contemporary systems,
languages, and standards for BPM and WFM are discussed. Although it is clear
that Petri nets can serve as a solid foundation for BPM/WFM technology, in re-
ality systems, languages, and standards are developed in an ad-hoc fashion. To
illustrate this XPDL, the “Lingua Franca” proposed by the Workflow Manage-
ment Coalition (WfMC), is analyzed using a set of 20 basic workflow patterns.
This analysis exposes some of the typical semantic problems restricting the ap-
plication of BPM/WFM technology.

Keywords: Business process management, Workflow management, Workflow
management systems, Workflow patterns, XML Process Definition Language
(XPDL), Workflow verification.

1 Introduction

This section provides some context for the topics addressed in this tutorial. First, we
identify some trends and put them in a historical perspective. Then, we focus on the
BPM life-cycle and discuss the basic functionality of a WFM system. Finally, we out-
line the remainder of this tutorial.

1.1 Historical Perspective

To show the relevance of Business Process Management (BPM) systems, it is interest-
ing to put them in a historical perspective. Consider Figure 1, which shows some of the

J. Desel, W. Reisig, and G. Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 1–65, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



2 Wil M.P. van der Aalst

ongoing trends in information systems. This figure shows that today’s information sys-
tems consist of a number of layers. The center is formed by the operating system, i.e.,
the software that makes the hardware work. The second layer consists of generic ap-
plications that can be used in a wide range of enterprises. Moreover, these applications
are typically used within multiple departments within the same enterprise. Examples
of such generic applications are a database management system, a text editor, and a
spreadsheet program. The third layer consists of domain specific applications. These
applications are only used within specific types of enterprises and departments. Exam-
ples are decision support systems for vehicle routing, call center software, and human
resource management software. The fourth layer consists of tailor-made applications.
These applications are developed for specific organizations.

operating
system

Trends in information systems:
1. From programming to assembling.
2. From data orientation to process
orientation.
3. From design to redesign
and organic growth.

generic
applications

domain specific
applications

tailor-made
applications

Fig. 1. Trends relevant for business process management.

In the sixties the second and third layer were missing. Information systems were
built on top of a small operating system with limited functionality. Since no generic nor
domain specific software was available, these systems mainly consisted of tailor-made
applications. Since then, the second and third layer have developed and the ongoing
trend is that the four circles are increasing in size, i.e., they are moving to the out-
side while absorbing new functionality. Today’s operating systems offer much more
functionality. Database management systems that reside in the second layer offer func-
tionality which used to be in tailor-made applications. As a result of this trend, the
emphasis shifted from programming to assembling of complex software systems. The
challenge no longer is the coding of individual modules but orchestrating and gluing
together pieces of software from each of the four layers.

Another trend is the shift from data to processes. The seventies and eighties were
dominated by data-driven approaches. The focus of information technology was on
storing and retrieving information and as a result data modeling was the starting point
for building an information system. The modeling of business processes was often ne-
glected and processes had to adapt to information technology. Management trends such
as business process reengineering illustrate the increased emphasis on processes. As a
result, system engineers are resorting to a more process driven approach.
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The last trend we would like to mention is the shift from carefully planned designs
to redesign and organic growth. Due to the omnipresence of the Internet and its stan-
dards, information systems change on-the-fly. As a result, fewer systems are built from
scratch. In many cases existing applications are partly used in the new system. Although
component-based software development still has it problems, the goal is clear and it is
easy to see that software development has become more dynamic.

The trends shown in Figure 1 provide a historical context for BPM. BPM systems
are either separate applications residing in the second layer or are integrated compo-
nents in the domain specific applications, i.e., the third layer. Notable examples of BPM
systems residing in the second layer are WorkFlow Management (WFM) systems [12,
38, 48, 55, 57, 58, 61] such as Staffware, MQSeries, and COSA, and case handling sys-
tems such as FLOWer. Note that leading Enterprise Resource Planning (ERP) systems
populating the third layer also offer a WFM module. The workflow engines of SAP,
Baan, PeopleSoft, Oracle, and JD Edwards can be considered as integrated BPM sys-
tems. The idea to isolate the management of business processes in a separate compo-
nent is consistent with the three trends identified. BPM systems can be used to avoid
hard-coding the work processes into tailor-made applications and thus support the shift
from programming to assembling. Moreover, process orientation, redesign, and organic
growth are supported. For example, today’s WFM systems can be used to integrate
existing applications and support process change by merely changing the workflow di-
agram. Given these observations, the practical relevance of BPM is evident. Although
BPM functionality is omnipresent and often hidden in larger enterprise information
systems, for clarity we will often restrict the discussion to clear cut “process-aware”
information systems such as WFM systems (cf. Section 1.3).

To put the topic of this tutorial in a historical perspective it is worthwhile to con-
sider the early work on office information systems. In the seventies, people like Skip
Ellis [32], Anatol Holt [45], and Michael Zisman [78] already worked on so-called
office information systems, which were driven by explicit process models. It is inter-
esting to see that the three pioneers in this area independently used Petri-net variants
to model office procedures. During the seventies and eighties there was great optimism
about the applicability of office information systems. Unfortunately, few applications
succeeded. As a result of these experiences, both the application of this technology and
research almost stopped for a decade. Consequently, hardly any advances were made in
the eighties. In the nineties, there again was a huge interest in these systems. The num-
ber of WFM systems developed in the past decade and the many papers on workflow
technology illustrate the revival of office information systems. Today WFM systems are
readily available [12, 38, 48, 55, 57, 58, 61]. However, their application is still limited to
specific industries such as banking and insurance. As was indicated by Skip Ellis it is
important to learn from these ups and downs [33]. The failures in the eighties can be
explained by both technical and conceptual problems. In the eighties, networks were
slow or not present at all, there were no suitable graphical interfaces, and proper devel-
opment software was missing. However, there were also more fundamental problems:
a unified way of modeling processes was missing and the systems were too rigid to be
used by people in the workplace. Most of the technical problems have been resolved
by now. However, the more conceptual problems remain. Good standards for business
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process modeling are still missing and even today’s WFM systems enforce unnecessary
constrains on the process logic (e.g., processes are made more sequential).

1.2 BPM Life-Cycle

As indicated before, Business Process Management (BPM) includes methods, tech-
niques, and tools to support the design, enactment, management, and analysis of oper-
ational business processes. It can be considered as an extension of classical Workflow
Management (WFM) systems and approaches. Before discussing the differences be-
tween WFM and BPM, let us consider the BPM life-cycle.

The BPM life-cycle has four phases:

– Process design
Any BPM effort requires the modeling of an existing (“as-is”) or desired (“to-be”)
process, i.e., a process design. During this phase process models including vari-
ous perspectives (control-flow, data-flow, organizational, sociotechnical, and oper-
ational aspects) are constructed. The only way to create a “process-aware” enter-
prise information system is to add knowledge about the operational processes at
hand.

– System configuration
Based on a process design, the process-aware enterprise information system is real-
ized. In the traditional setting the realization would require a time-consuming and
complex software development process. Using software from the second and third
layer shown in Figure 1, the traditional software development process is replaced
by a configuration or assembly process. Therefore, we use the term system config-
uration for the phase in-between process design and enactment.

– Process enactment
The process enactment phase is the phase where the process-aware enterprise in-
formation system realized in the system configuration phase is actually used.

– Diagnosis
Process-aware enterprise information system have to change over time to improve
performance, exploit new technologies, support new processes, and adapt to an
ever changing environment. Therefore, the diagnosis phase is linking the process
enactment phase to the a new design phase.

Like in software life-cycle models, the four phases are overlapping (cf. Waterfall model)
and the whole process is iterative (cf. Spiral model).

As is illustrated in Figure 2, the BPM life-cycle can be used to identify different
levels of maturity when it comes to developing process-aware enterprise information
systems. In the early nineties and before, most information systems only automated in-
dividual activities and where unaware of the underlying process. For the systems that
were process-aware, the process logic was hard-coded in the system and not supported
in a generic manner. Despite the early work on office automation, the first commercial
WFM systems became only practically relevant around 1993 (see Figure 2(a)). The fo-
cus of these systems was on “getting the system to work” and support for enactment and
design was limited. In the mid-nineties this situation changed and by 1998 many WFM
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process
design

system
configuration

process
enactment

diagnosis

(a) 1993

process
design

system
configuration

process
enactment

diagnosis

(b) 1998

process
design

system
configuration

process
enactment

diagnosis

(c) 2003

process
design

system
configuration

process
enactment

diagnosis

(d) 2008

Fig. 2. The BPM life-cycle is used to indicate the maturity of BPM technology over time.

systems had become readily available (see Figure 2(b)). In these systems there was ba-
sic support for enactment and design. In the last five years these systems have been
further extended allowing for more support during the design and enactment phases
(see Figure 2(c)). For example, a case-handling system like FLOWer [22] allows for
much more flexibility during the enactment phase than the traditional WFM systems.
Today‘s systems provide hardly any support for the diagnosis phase. Although most
BPM software logs all kinds of events (e.g., WFM systems like Staffware log the com-
pletion of activities and ERP systems like SAP log transactions), this information is not
used to identify problems or opportunities for improvement. In the next five years this
situation will probably change when process mining [17, 19] techniques become readily
available (see Figure 2(d)).

The BPM life-cycle shown in Figure 2 can also be used to define the difference
between WFM and BPM. WFM focusses on the lower half of the BPM life-cycle (i.e.,
“getting the system to work”) while BPM also includes to upper half of the life-cycle.
Therefore, BPM also focusses on diagnosis, flexibility, human-centric processes, goal-
driven process design, etc. Gartner expects that Business Process Analysis (BPA), i.e.,
software to support the diagnosis phase, will become increasingly important [39]. It
is expected that the BPA market will continue to grow. Note that BPA covers aspects
neglected by traditional WFM products (e.g., diagnosis, simulation, etc.). Business Ac-
tivity Monitoring (BAM) is one of the emerging areas in BPA. The goal of BAM tools
is to use data logged by the information system to diagnose the operational processes.
An example is the ARIS Process Performance Manager (PPM) of IDS Scheer [47].
ARIS PPM extracts information from audit trails (i.e., information logged during the
execution of cases) and displays this information in a graphical way (e.g., flow times,
bottlenecks, utilization, etc.). BAM also includes process mining, i.e., extracting pro-
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cess models from logs [17]. BAM creates a number of scientific and practical challenges
(e.g., which processes can be discovered and how much data is needed to provide useful
information).

1.3 Workflow Management (Systems)

The focus of this tutorial will be on WFM rather than BPM. The reason is that WFM
serves as a basis for BPM and in contrast to BPM it is a mature area with well-defined
concepts and widely used software products.

The Workflow Management Coalition (WfMC) defines workflow as: “The automa-
tion of a business process, in whole or part, during which documents, information or
tasks are passed from one participant to another for action, according to a set of proce-
dural rules.” [55]. A Workflow Management System (WFMS) is defined as: “A system
that defines, creates and manages the execution of workflows through the use of soft-
ware, running on one or more workflow engines, which is able to interpret the process
definition, interact with workflow participants and, where required, invoke the use of IT
tools and applications.” [55]. Note that both definitions emphasize the focus on enact-
ment, i.e., the use of software to support the execution of operational processes.

When considering these definitions in more detail it is evident that WFM is highly
relevant for any organization. However, at the same time few organizations use a “real”
WFM system. To explain this we identify four categories of WFM support:

– Pure WFM systems
At this point in time many WFM systems are available and used in practise. Ex-
amples of systems include Staffware Process Suite, FileNET BPM Suite, i-Flow,
FLOWer, WebSphere MQ Workflow (formerly known as MQSeries Workflow),
TIBCO InConcert, etc.

– WFM components embedded in other systems
Many software packages embed a generic workflow component whose function-
ality is comparable to the pure WFM systems. For example, most ERP systems
provide a workflow component. SAP WebFlow is the workflow component of SAP
offering all the functionality typically present in traditional stand-alone WFM prod-
ucts.

– Custom-made WFM solutions
Many organizations, e.g., banks and insurance companies, have chosen not to use a
commercially available WFM solution but build an organization-specific solution.
These solutions typically only support a subset of the functionality offered by the
first two categories. Nevertheless, these systems support the definition and execu-
tion of different workflows.

– Hard-coded WFM solutions
The last category refers to the situation were the processes are hard-coded in the
applications, i.e., there is no generic workflow support but applications are coupled
in such a way that a specific process is supported. The only way to change a process
is to change the applications themselves, i.e., unlike the first three categories there
is no component that is process-aware. Note that in these hard-coded system an
explicit orchestration layer is missing.
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At this point in time the majority of business processes are still supported by solutions
residing in the third and fourth category. However, the percentage of processes sup-
ported by the first two categories is increasing. Moreover, software developers building
solutions for the third and fourth category are using the concepts and insights pro-
vided by the first two categories. In this context it is interesting to refer to recent de-
velopments in the web services domain [68]. The functionality of web service com-
position languages (also referred to as “web service orchestration”) like BPEL4WS,
BPML, WSCI, WSWSFL, XLANG, etc. is very similar to traditional workflow lan-
guages [6, 77].

1.4 Outline and Intended Audience

The goal of this tutorial is to introduce the reader to the theoretical foundations of
BPM/WFM using a Petri-net based approach. However, at the same time contemporary
systems and languages are presented to provide a balanced view on the application
domain.

Section 2 shows the application of Petri nets to workflow modeling. For this pur-
pose, the class of WorkFlow nets (WF-nets) is introduced, but also some “syntactical
sugaring” is given to facilitate the design of workflows. Section 3 discusses the analysis
of workflow models expressed in terms of Petri nets. The focus will be on the verifi-
cation of WF-nets using classical analysis techniques. Section 4 discusses the typical
architecture of a WFM system and discusses contemporary systems. The goal of this
section is to show that the step from design to enactment, i.e., the configuration phase
(cf. Figure 2), is far from trivial. In Section 5, 20 workflow patterns are used to evaluate
the XML Process Definition Language (XPDL), the standard proposed by the Work-
flow Management Coalition (WfMC). This evaluation illustrates the typical problems
workflow designers and implementers are faced with when applying contemporary lan-
guages and standards. Section 6 provides an overview of related work. Clearly, only
a small subset of the many books and papers on BPM/WFM can be presented, but
pointers are given to find relevant material. Finally, Section 7 concludes the tutorial by
discussing the role of Petri nets in the BPM/WFM domain.

Note that parts of this tutorial are based on earlier work (cf. [2–6, 12, 15]). For more
material the interested reader is referred to [12] and two WWW-sites: one presenting
course material (slides, animations, etc.) http://www.workflowcourse.com
and one on workflow patterns http://www.workflowpatterns.com.

This tutorial is intended for people having a basic understanding of Petri nets and
interested in the application of Petri nets to problems in the BPM/WFM domain. Sec-
tions 2 and 3 are focusing more on the Petri-net side of things while sections 4 and 5
are focusing more on the application domain.

2 Workflow Modeling

In this section, we show how to model workflows in terms of Petri nets. First, we intro-
duce the basic workflow concepts and discuss the various perspectives. Then, we define
some basic Petri net notation followed by an introduction to a subclass of Petri nets
tailored towards workflow modeling. We conclude this section with an exercise.
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2.1 Workflow Concepts and Perspectives

Workflow processes are case-driven, i.e., tasks are executed for specific cases. Approv-
ing loans, processing insurance claims, billing, processing tax declarations, handling
traffic violations and mortgaging, are typical case-driven processes which are often
supported by a WFM system. These case-driven processes, also called workflows, are
marked by three dimensions: (1) the control-flow dimension, (2) the resource dimen-
sion, and (3) the case dimension (see Figure 3). The control-flow dimension is con-
cerned with the partial ordering of tasks, i.e., the workflow process. The tasks which
need to be executed are identified and the routing of cases along these tasks is de-
termined. Conditional, sequential, parallel and iterative routing are typical structures
specified in the control-flow dimension. Tasks are executed by resources. Resources are
human (e.g., employee) and/or non-human (e.g., device, software, hardware). In the re-
source dimension these resources are classified by identifying roles (resource classes
based on functional characteristics) and organizational units (groups, teams or depart-
ments). Both the control-flow dimension and the resource dimension are generic, i.e.,
they are not tailored towards a specific case. The third dimension of a workflow is con-
cerned with individual cases which are executed according to the process definition
(first dimension) by the proper resources (second dimension).

case dimension

control-flow dimension

resource dimension

task

case
work item

activity

resource

Fig. 3. The three dimensions of workflow.

The primary task of a WFM system is to enact case-driven business processes by
joining several perspectives. The following perspectives are relevant for workflow mod-
eling and workflow execution: (1) control flow (or process) perspective, (2) resource (or
organization) perspective, (3) data (or information) perspective, (4) task (or function)
perspective, (5) operation (or application) perspective. These perspectives are similar to
the perspectives given in [48] and the control flow and resource perspectives correspond
to the first two dimensions shown in Figure 3. The third dimension reflects the fact that
workflows are case-driven and does not correspond to one of the five perspectives.

In the control-flow perspective, workflow process definitions (workflow schemas)
are defined to specify which tasks need to be executed and in what order (i.e., the rout-
ing or control flow). A task is an atomic piece of work. Workflow process definitions
are instantiated for specific cases (i.e., workflow instances). Since a case is an instantia-
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tion of a process definition, it corresponds to the execution of concrete work according
to the specified routing. In the resource perspective, the organizational structure and
its population are specified. The organizational structure describes relations between
roles (resource classes based on functional aspects) and groups (resource classes based
on organizational aspects). Thus clarifying organizational issues such as responsibil-
ity, availability, and authorization. Resources, ranging from humans to devices, form
the organizational population and are allocated to roles and groups. The data perspec-
tive deals with control and production data. Control data are data introduced solely
for WFM purposes, e.g., variables introduced for routing purposes. Production data are
information objects (e.g., documents, forms, and tables) whose existence does not de-
pend on WFM. The task perspective describes the elementary operations performed by
resources while executing a task for a specific case. In the operational perspective the
elementary actions are described. These actions are often executed using applications
ranging from a text editor to custom build applications to perform complex calculations.
Typically, these applications create, read, or modify control and production data in the
information perspective.

The focus of this tutorial will be on the control-flow perspective. Clearly, this is the
most dominant perspective. Moreover, Petri nets can contribute most to this perspective.

2.2 Petri Nets

This section introduces the basic Petri net terminology and notations. Readers familiar
with Petri nets can skip this section1.

The classical Petri net is a directed bipartite graph with two node types called places
and transitions. The nodes are connected via directed arcs. Connections between two
nodes of the same type are not allowed. Places are represented by circles and transitions
by rectangles.

Definition 1 (Petri net). A Petri net is a triple (P, T, F ):

- P is a finite set of places,
- T is a finite set of transitions (P ∩ T = ∅),
- F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation)

A place p is called an input place of a transition t iff there exists a directed arc from
p to t. Place p is called an output place of transition t iff there exists a directed arc
from t to p. We use •t to denote the set of input places for a transition t. The notations
t•, •p and p• have similar meanings, e.g., p• is the set of transitions sharing p as an
input place. Note that we do not consider multiple arcs from one node to another. In
the context of workflow procedures it makes no sense to have other weights, because
places correspond to conditions.

At any time a place contains zero or more tokens, drawn as black dots. The state,
often referred to as marking, is the distribution of tokens over places, i.e.,M ∈ P → IN.
We will represent a state as follows: 1p1 +2p2 +1p3+0p4 is the state with one token in

1 Note that states are represented by weighted sums and note the definition of (elementary)
(conflict-free) paths.
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place p1, two tokens in p2, one token in p3 and no tokens in p4. We can also represent
this state as follows: p1 + 2p2 + p3. To compare states we define a partial ordering. For
any two statesM1 andM2,M1 ≤M2 iff for all p ∈ P :M1(p) ≤ M2(p)

The number of tokens may change during the execution of the net. Transitions are
the active components in a Petri net: they change the state of the net according to the
following firing rule:

(1) A transition t is said to be enabled iff each input place p of t contains at least one
token.

(2) An enabled transition may fire. If transition t fires, then t consumes one token from
each input place p of t and produces one token for each output place p of t.

Given a Petri net (P, T, F ) and a stateM1, we have the following notations:

- M1
t→M2: transition t is enabled in stateM1 and firing t inM1 results in stateM2

- M1 →M2: there is a transition t such thatM1
t→ M2

- M1
σ→ Mn: the firing sequence σ = t1t2t3 . . . tn−1 leads from state M1 to state

Mn via a (possibly empty) set of intermediate states M2, ...Mn−1, i.e., M1
t1→

M2
t2→ ...

tn−1→ Mn

A state Mn is called reachable from M1 (notation M1
∗→ Mn) iff there is a firing

sequence σ such that M1
σ→ Mn. Note that the empty firing sequence is also allowed,

i.e.,M1
∗→M1.

We use (PN ,M) to denote a Petri net PN with an initial stateM . A stateM ′ is a
reachable state of (PN ,M) iffM

∗→M ′.
Let us define some standard properties for Petri nets. First, we define properties

related to the dynamics of a Petri net, then we give some structural properties.

Definition 2 (Live). A Petri net (PN ,M) is live iff, for every reachable state M ′ and
every transition t there is a stateM ′′ reachable fromM ′ which enables t.

A Petri net is structurally live if there exists an initial state such that the net is live.

Definition 3 (Bounded, safe). A Petri net (PN ,M) is bounded iff for each place p
there is a natural number n such that for every reachable state the number of tokens in
p is less than n. The net is safe iff for each place the maximum number of tokens does
not exceed 1.

A Petri net is structurally bounded if the net is bounded for any initially state.

Definition 4 (Well-formed). A Petri net PN is well-formed iff there is a stateM such
that (PN ,M) is live and bounded.

Paths connect nodes by a sequence of arcs.

Definition 5 (Path, Elementary, Conflict-free). Let PN be a Petri net. A path C from
a node n1 to a node nk is a sequence 〈n1, n2, . . . , nk〉 such that 〈ni, ni+1〉 ∈ F for
1 ≤ i ≤ k − 1. C is elementary iff, for any two nodes ni and nj on C, i �= j ⇒
ni �= nj . C is conflict-free iff, for any place nj on C and any transition ni on C,
j �= i− 1 ⇒ nj �∈ •ni.
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For convenience, we introduce the alphabet operator α on paths. If C = 〈n1, n2, . . . ,
nk〉, then α(C) = {n1, n2, . . . , nk}.

Definition 6 (Strongly connected). A Petri net is strongly connected iff, for every pair
of nodes (i.e., places and transitions) x and y, there is a path leading from x to y.

Definition 7 (Free-choice). A Petri net is a free-choice Petri net iff, for every two tran-
sitions t1 and t2, •t1 ∩ •t2 �= ∅ implies •t1 = •t2.

Definition 8 (State machine). A Petri net is state machine iff each transition has ex-
actly one input and one output place.

Definition 9 (S-component). A subnet PN s = (Ps, Ts, Fs) is called an S-component
of a Petri net PN = (P, T, F ) if Ps ⊆ P , Ts ⊆ T , Fs ⊆ F , PN s is strongly connected,
PN s is a state machine, and for every q ∈ Ps and t ∈ T : (q, t) ∈ F ⇒ (q, t) ∈ Fs and
(t, q) ∈ F ⇒ (t, q) ∈ Fs.

Definition 10 (S-coverable). A Petri net is S-coverable iff for any node there exist an
S-component which contains this node.

See [30, 63] for a more elaborate introduction to these standard notions.

2.3 WF-Nets

In Figure 3 we indicated that a workflow has (at least) three dimensions. The control-
flow dimension is the most prominent one, because the core of any workflow system
is formed by the processes it supports. In the control-flow dimension building blocks
such as the AND-split, AND-join, OR-split, and OR-join are used to model sequen-
tial, conditional, parallel and iterative routing [55]. Clearly, a Petri net can be used to
specify the routing of cases. Tasks are modeled by transitions and causal dependencies
are modeled by places and arcs. In fact, a place corresponds to a condition which can
be used as pre- and/or post-condition for tasks. An AND-split corresponds to a transi-
tion with two or more output places, and an AND-join corresponds to a transition with
two or more input places. OR-splits/OR-joins correspond to places with multiple out-
going/ingoing arcs. Moreover, in [2] it is shown that the Petri net approach also allows
for useful routing constructs absent in many WFM systems.

A Petri net which models the control-flow dimension of a workflow, is called a
WorkFlow net (WF-net). It should be noted that a WF-net specifies the dynamic behav-
ior of a single case in isolation.

Definition 11 (WF-net). A Petri net PN = (P, T, F ) is a WF-net (Workflow net) if
and only if:

(i) There is one source place i ∈ P such that •i = ∅.
(ii) There is one sink place o ∈ P such that o• = ∅.

(iii) Every node x ∈ P ∪ T is on a path from i to o.
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A WF-net has one input place (i) and one output place (o) because any case handled
by the procedure represented by the WF-net is created when it enters the WFM system
and is deleted once it is completely handled by the system, i.e., the WF-net specifies
the life-cycle of a case. The third requirement in Definition 11 has been added to avoid
“dangling tasks and/or conditions”, i.e., tasks and conditions which do not contribute to
the processing of cases.

Given the definition of a WF-net it is easy derive the following properties.

Proposition 1 (Properties of WF-nets). Let PN = (P, T, F ) be Petri net.

– If PN is WF-net with source place i, then for any place p ∈ P : •p �= ∅ or p = i,
i.e., i is the only source place.

– If PN is WF-net with sink place o, then for any place p ∈ P : p• �= ∅ or p = o, i.e.,
o is the only sink place.

– If PN is a WF-net and we add a transition t∗ to PN which connects sink place o
with source place i (i.e., •t∗ = {o} and t∗• = {i}), then the resulting Petri net is
strongly connected.

– If PN has a source place i and a sink place o and adding a transition t∗ which
connects sink place o with source place i yields a strongly connected net, then
every node x ∈ P ∪ T is on a path from i to o in PN and PN is a WF-net.

start register

send_bill

receive_payment

archive

ship_goods

check_availability

replenish

update

reminder

end

c1

c2

c3

c4

c5

c6

c7

c8

c0

out_of_stock_no_repl

out_of_stock_repl

in_stock

Fig. 4. WF-net.

Figure 4 shows an example of an order handling process modeled in terms of a WF-
net. As indicated before cases are represented by tokens and in Figure 4 the token in
start corresponds to an order. Task register is represented by a transition bearing the
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same name. From a routing point of view it acts as a so-called AND-split (two out-
going arcs) and is enabled in the state shown. If a person executes this task, the token
is removed from place start and two tokens are produced: one for c0 and one for c2.
Then, in parallel, two tasks are enabled: check availability and send bill. Depending
on the eagerness of the workers executing these two tasks either check availability or
send bill is executed first. Suppose check availability is executed first. Based on the
outcome of this task a choice is made. This is reflected by the fact that three arcs are
leaving c1. If the ordered goods are available, they can be shipped, i.e., firing in stock
enables task ship goods. If they are not available, either a replenishment order is issued
or not. Firing out of stock repl enables task replenish. Firing out of stock no repl skips
task replenish. Note that check availability, place c1 and the three transitions in stock,
out of stock repl, and out of stock no repl together form a so-called OR-split: As a re-
sult of this construct one token is produced for either c3, c4, or c5. Suppose that not
all ordered goods are available, but the appropriate replenishment orders were already
issued. A token is produced for c3 and task update becomes enabled. Suppose that at
this point in time task send bill is executed, resulting in the state with a token in c3
and c6. The token in c6 is input for two tasks. However, only one of these tasks can be
executed and in this state only receive payment is enabled. Task receive payment can
be executed the moment the payment is received. Task reminder is an AND-join/AND-
split and is blocked until the bill is sent and the goods have been shipped. However, it
is only possible to send a reminder if the goods have been actually shipped. Assume
that in the state with a token in c3 and c6 task update is executed. This task does not
require human involvement and is triggered by a message of the warehouse indicating
that relevant goods have arrived. Again check availability is enabled. Suppose that this
task is executed and the result is positive, i.e., the path via in stock is taken. In the result-
ing state ship goods can be executed. Now there is a token in c6 and c7 thus enabling
task reminder. Executing task reminder enables the task send bill for the second time.
A new copy of the bill is sent with the appropriate text. It is possible to send several
reminders by alternating reminder and send bill. However, let us assume that after the
first loop the customer pays resulting in a state with a token in c7 and c8. In this state,
the AND-join archive is enabled and executing this task results in the final state with a
token in end.

Figure 4 shows some of the limitations of WF-nets. First of all, the construct involv-
ing check availability, place c1 and the three transitions in stock, out of stock repl, and
out of stock no repl is rather complex for a simple concept as a choice out of three
alternatives. Second, the diagram does not show why things are happening. The text
suggests that some of the tasks are executed by people while others are triggered by
external entities or temporal conditions. Unfortunately, this information is missing in
Figure 4. Finally, the WF-net does not show the other perspectives. The first two prob-
lems can be solved using some “syntactical sugaring” (cf. Figure 5). The third problem
will not be addressed in this tutorial. Here we abstract from the other perspectives. The
interested reader is referred to [12] for modeling the resource perspective.

Figure 5 shows the same process as the one depicted in Figure 4. However, every
task can be an AND/OR-join - AND/OR-split. The semantics of a transition is AND-
join - AND-split. Choices can be modeled using places with multiple outgoing arcs.
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Fig. 5. WF-net extended with some “syntactical sugaring” to denote AND/OR-splits/joins and
triggers.

However, the intuition of a task resulting in a choice is better reflected by the nota-
tion used in Figure 5: the construct involving check availability, place c1 and the three
transitions in stock, out of stock repl, and out of stock no repl is replaced by a single
task check availability using the notation for an OR-split. Note that any WF-net with
OR-splits can be automatically translated into standard WF-net (i.e., a classical Petri
net). Figure 5 also shows three triggers symbols: (1) an arrow denoting a user trigger,
(2) an envelope denoting an external trigger, and (3) a clock denoting a time trigger.
These three triggers symbols denote that the corresponding tasks need a trigger to be
executed, e.g., the tasks bearing an arrow symbol require a user to perform the corre-
sponding activity. Task receive payment can only be executed after the payment trigger
arrives. Task reminder can only be executed after a specified period. Although triggers
are extremely important, we will not formalize the concept. For the reader interested in
the topic we refer to [28, 34] for a discussion on the reactive nature of WFM systems.

The very simple WF-net shown in Figure 5 shows some of the routing constructs
relevant for business process modeling. Sequential, parallel, conditional, and iterative
routing are present in this model. There are also more advanced constructs such as
the choice between receive payment and reminder. This is a so-called deferred choice
(also referred to as implicit choice) since it is not resolved by the system but by the
environment of the system. The moment the bill is sent, it is undetermined whether
receive payment or reminder will be the next step in the process. Another advanced
construct is the fact that task reminder is blocked until the goods have been shipped. The
latter construct is a so-called milestone. The reason that we point out both constructs is
that many systems have problems supporting these rather fundamental process patterns.
In Section 5.1 we will discuss these patterns in more detail.
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2.4 Exercise: Modeling a Complaints Handling Process in Terms of a WF-Net

To conclude this section, we give a small exercise. Model the complaints handling work-
flow of a travel agency in terms of a WF-net, i.e., construct a diagram similar to Figure 5.

Each year the travel agency has to process many customer complaints. There is a
special department for the processing of complaints (department C). There is also an
internal department called logistics (department L) which takes care of the registra-
tion of incoming complaints and the archiving of processed complaints. The following
procedure is used to handle these complaints.

An employee of department L first registers every incoming complaint. After regis-
tration a form is sent to the customer with questions about the nature of the complaint.
This is done by an employee of department C. There are two possibilities: the cus-
tomer returns the form within two weeks or not. If the form is returned, it is processed
automatically resulting in a report which can be used for the actual processing of the
complaint. If the form is not returned on time, a time-out occurs resulting in an empty
report. Note that this does not necessarily mean that the complaint is discarded. Af-
ter registration, i.e., in parallel with the form handling, the preparation for the actual
processing is started.

First, the complaint is evaluated by a complaint manager of department C. Evalua-
tion shows that either further processing is needed or not. Note that this decision does
not depend on the form handling. If no further processing is required and the form is
handled, the complaint is archived. If further processing is required, an employee of
the complaints department executes the task “process complaint” (this is the actual pro-
cessing where certain actions are proposed if needed). For the actual processing of the
complaint, the report resulting from the form handling is used. Note that the report can
be empty. The result of task “process complaint” is checked by a complaint manager.
If the result is not OK, task “process complaint” is executed again. This is repeated
until the result is acceptable. If the result is accepted, an employee of the department
C executes the proposed actions. After this the processed complaint is archived by an
employee of department L.

Give the WF-net, i.e., model the workflow by making a process definition in terms
of a Petri net. For the solution to this exercise we refer to [12] or the corresponding
WWW site with course material: http://www.workflowcourse.com.

3 Workflow Analysis

One of the advantages of using Petri nets for workflow modeling is the availability of
many Petri-net-based analysis techniques. In this section, we focus on the verification
of WF-nets. The correctness criterion used is the so-called soundness property. We
will show how this property can be checked and discuss a verification tool specifically
designed for workflow analysis.

3.1 Verification, Validation, and Performance Analysis

The correctness, effectiveness, and efficiency of the business processes supported by
the WFM system are vital to the organization. A workflow process definition which
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contains errors may lead to angry customers, back-log, damage claims, and loss of
goodwill. Flaws in the design of a workflow definition may also lead to high throughput
times, low service levels, and a need for excess capacity. This is why it is important to
analyze a workflow process definition before it is put into production. Basically, there
are three types of analysis:

– validation, i.e., testing whether the workflow behaves as expected,
– verification, i.e., establishing the correctness of a workflow, and
– performance analysis, i.e., evaluating the ability to meet requirements with respect

to throughput times, service levels, and resource utilization.

Validation can be done by interactive simulation: a number of fictitious cases are fed
to the system to see whether they are handled well. For verification and performance
analysis more advanced analysis techniques are needed. Fortunately, many powerful
analysis techniques have been developed for Petri nets ([30, 63]). Linear algebraic tech-
niques can be used to verify many properties, e.g., place invariants, transition invari-
ants, and (non-)reachability. Coverability graph analysis, model checking, and reduc-
tion techniques can be used to analyze the dynamic behavior of a Petri net. Simulation
and Markov-chain analysis can be used for performance evaluation (cf. [59, 63]). The
abundance of available analysis techniques shows that Petri nets can be seen as a solver
independent medium between the design of the workflow process definition and the
analysis of the resulting workflow.

3.2 Verification of the Control-Flow Perspective

In this tutorial we restrict ourselves to workflow verification, i.e., we will not discuss
techniques for validation and performance analysis. Moreover, we restrict ourselves to
the control flow perspective. Although each of the perspectives mentioned in Section 2.1
is relevant, the general focus of this tutorial is on control flow perspective, i.e., we use
WF-nets as a starting point and demonstrate that Petri-net-based analysis techniques
can be used to verify the correctness of a workflow process.

We abstract from the resource perspective because, given today’s workflow technol-
ogy, at any time there is only one resource working on a task which is being executed
for a specific case. In today’s WFM systems it is not possible to specify that several
resources are collaborating in executing a task. Note that even if multiple persons are
executing one task, e.g., writing a report, only one person is allocated to that task from
the perspective of the WFM system: This is the person that selected the work item from
the in-basket (i.e., the electronic worktray). Since a person is working on one task at a
time and each task is eventually executed by one person (although it may be allocated to
a group a people), it is sufficient to check whether all resource classes have at least one
resource. In contrast to many other application domains such a flexible manufacturing
systems, anomalies such as a deadlock resulting from locking problems are not possi-
ble. Therefore, from the viewpoint of verification, i.e., analyzing the logical correctness
of a workflow, it is reasonable to abstract from resources. However, if in the future col-
laborative features are explicitly supported by the workflow management system (i.e., a
tight integration of groupware and workflow technology), then the resource perspective
should be taken into account.
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We partly abstract from the data perspective. The reason we abstract from produc-
tion data is that these are outside the scope of the WFM system. These data can be
changed at any time without notifying the WFM system. In fact their existence does not
even depend upon the workflow application and they may be shared among different
workflows, e.g., the bill-of-material in manufacturing is shared by production, procure-
ment, sales, and quality control processes. The control data used by the WFM system
to route cases are managed by the WFM system. However, some of these data are set or
updated by humans or applications. For example, a decision is made by a manager based
on intuition or a case is classified based on a complex calculation involving production
data. Clearly, the behavior of a human or a complex application cannot be modeled
completely. Therefore, some abstraction is needed to incorporate the data perspective
when verifying a given workflow. The abstraction used in this section is the following.
Since control data (i.e., workflow attributes such as the age of a customer, the depart-
ment responsible, or the registration date) are only used for the routing of a case, we
incorporate the routing decisions but not the actual data. For example, the decision to
accept or to reject an insurance claim is taken into account, but not the actual data where
this decision is based on. Therefore, we consider each choice to be a non-deterministic
one. There are other reasons for abstracting from the workflow attributes. If we are able
to prove soundness (i.e., the correctness criterion used in this section) for the situation
without workflow attributes, it will also hold for the situation with workflow attributes
(assuming certain fairness properties). Last but not least, we abstract from triggers and
workflow attributes because it allows us to use ordinary Petri nets (i.e., P/T nets) rather
than high-level Petri nets. From an analysis point of view, this is preferable because of
the availability of efficient algorithms and powerful analysis tools.

For similar reasons we (partly) abstract from the task and operation perspectives.
We consider tasks to be atomic and abstract from the execution of operations inside
tasks. The WFM system can only launch applications or trigger people and monitor
the results. It cannot control the actual execution of the task. Therefore, from the view-
point of verification, it is reasonable to focus on the control-flow perspective. In fact, it
suffices to consider the life cycle of one case in isolation. The only way cases interact
directly is through the competition for resources and the sharing of production data.
(Note that control data are strictly separated.) Therefore, if we abstract from resources
and data, it suffices to consider one case in isolation. The competition between cases
for resources is only relevant for performance analysis.

3.3 Soundness

In this section we summarize some of the basic results for WF-nets presented in
[1, 3, 4].

The three requirements stated in Definition 11 can be verified statically, i.e., they
only relate to the structure of the Petri net. However, there is another requirement which
should be satisfied:

For any case, the procedure will terminate eventually and the moment the pro-
cedure terminates there is a token in place o and all the other places are empty.
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Moreover, there should be no dead tasks, i.e., it should be possible to execute an arbi-
trary task by following the appropriate route though the WF-net. These two additional
requirements correspond to the so-called soundness property.

Definition 12 (Sound). A procedure modeled by a WF-net PN = (P, T, F ) is sound if
and only if:

(i) For every state M reachable from state i, there exists a firing sequence leading
from stateM to state o. Formally2:

∀M (i ∗→M) ⇒ (M ∗→ o)

(ii) State o is the only state reachable from state i with at least one token in place o.
Formally:

∀M (i ∗→M ∧ M ≥ o) ⇒ (M = o)

(iii) There are no dead transitions in (PN , i). Formally:

∀t∈T ∃M,M ′ i
∗→M

t→M ′

Note that the soundness property relates to the dynamics of a WF-net. The first re-
quirement in Definition 12 states that starting from the initial state (state i), it is always
possible to reach the state with one token in place o (state o). If we assume a strong
notion of fairness, then the first requirement implies that eventually state o is reached.
Strong fairness means in every infinite firing sequence, each transition fires infinitely
often. The fairness assumption is reasonable in the context of WFM: All choices are
made (implicitly or explicitly) by applications, humans or external actors. Clearly, they
should not introduce an infinite loop. Note that the traditional notions of fairness (i.e.,
weaker forms of fairness with just local conditions, e.g., if a transition is enabled in-
finitely often, it will fire eventually) are not sufficient. See [3, 53] for more details. The
second requirement states that the moment a token is put in place o, all the other places
should be empty. The last requirement states that there are no dead transitions (tasks) in
the initial state i.

The WF-net shown in Figure 5 is sound. This can be verified by checking the three
requirements stated in Definition 12. Note that Figure 5 shows triggers and uses syntac-
tic sugaring. For verification we will abstract from this and consider the pure WF-net as
shown in Figure 4.

Figure 6 shows a WF-net which is not sound. There are several deficiencies. If
time out 1 and processing 2 fire or time out 2 and processing 1 fire, the WF-net will
not terminate properly because a token gets stuck in c4 or c5. If time out 1 and time
out 2 fire, then the task processing NOK will be executed twice and because of the
presence of two tokens in o the moment of termination is not clear.

Given a WF-net PN = (P, T, F ), we want to decide whether PN is sound. In
[1] we have shown that soundness corresponds to liveness and boundedness. To link
soundness to liveness and boundedness, we define an extended net PN = (P , T , F ).

2 Note that there is an overloading of notation: the symbol i is used to denote both the place i
and the state with only one token in place i (see Section 2.2).
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Fig. 6. Another WF-net for the processing of complaints.

PN is the Petri net obtained by adding an extra transition t∗ which connects o and i.
The extended Petri net PN = (P , T , F ) is defined as follows: P = P , T = T ∪ {t∗},
and F = F ∪ {(o, t∗), (t∗, i)}. In the remainder we will call such an extended net
the short-circuited net of PN . The short-circuited net allows for the formulation of the
following theorem.

Theorem 1. A WF-net PN is sound if and only if (PN , i) is live and bounded.

Proof. See [1]. ��

This theorem shows that standard Petri-net-based analysis techniques can be used to
verify soundness.

In literature there exist many variants of the “classical” notion of soundness used
here. Juliane Dehnert uses the notion of relaxed soundness where proper termination is
possible but not guaranteed [28, 34]. The main idea is that the scheduler of the workflow
system should avoid problems like deadlocks etc. In [54] Ekkart Kindler et al. define
variants of soundness tailored towards interorganizational workflows. Kees van Hee et
al. [44] define a notion of soundness where multiple tokens in the source place are
considered. A WF-net is k-sound if it “behaves well” when there are k tokens in place
i, i.e., no deadlocks and in the end there are k tokens in place o. Robert van der Toorn
uses the same concept in [71]. In [18, 7] stronger notions of soundness are used and
places have to be safe. Another notion of soundness is used in [51, 52] where there is
not a single sink place but potentially multiple sink transitions. See [71] for the relation
between these variants of the same concept. Other references using (variants of) the
soundness property include [41, 60]. For simplicity we restrict ourselves to the classical
notion of soundness defined in Definition 12.
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3.4 Structural Characterization of Soundness

Theorem 1 gives a useful characterization of the quality of a workflow process defini-
tion. However, there are a number of problems:

– For a complex WF-net it may be intractable to decide soundness. (For arbitrary WF-
nets liveness and boundedness are decidable but also EXPSPACE-hard, cf. Cheng,
Esparza and Palsberg [26].)

– Soundness is a minimal requirement. Readability and maintainability issues are not
addressed by Theorem 1.

– Theorem 1 does not show how a non-sound WF-net should be modified, i.e., it does
not identify constructs which invalidate the soundness property.

These problems stem from the fact that the definition of soundness relates to the dy-
namics of a WF-net while the workflow designer is concerned with the static structure
of the WF-net. Therefore, it is interesting to investigate structural characterizations of
sound WF-nets. For this purpose we introduce three interesting subclasses of WF-nets:
free-choice WF-nets, well-structured WF-nets, and S-coverable WF-nets.

Free-Choice WF-Nets. Most of the WFM systems available at the moment, abstract
from states between tasks, i.e., states are not represented explicitly. These WFM sys-
tems use building blocks such as the AND-split, AND-join, OR-split and OR-join to
specify workflow procedures. The AND-split and the AND-join are used for parallel
routing. The OR-split and the OR-join are used for conditional routing. Because these
systems abstract from states, every choice is made inside an OR-split building block.
If we model an OR-split in terms of a Petri net, the OR-split corresponds to a num-
ber of transitions sharing the same set of input places. This means that for these WFM
systems, a workflow procedure corresponds to a free-choice Petri net (cf. Definition 7).

It is easy to see that a process definition composed of AND-splits, AND-joins, OR-
splits and OR-joins is free-choice. If two transitions t1 and t2 share an input place
(•t1 ∩ •t2 �= ∅), then they are part of an OR-split, i.e., a “free choice” between a
number of alternatives. Therefore, the sets of input places of t1 and t2 should match
(•t1 = •t2). Figure 6 shows a free-choice WF-net. The WF-net shown in Figure 4 is
not free-choice; archive and reminder share an input place but the two corresponding
input sets differ.

We have evaluated many WFM systems and only some of these systems (e.g.,
COSA [66]) allow for a construct which is comparable to a non-free choice WF-net.
Therefore, it makes sense to consider free-choice Petri nets in more detail. Clearly, par-
allelism, sequential routing, conditional routing and iteration can be modeled without
violating the free-choice property. Another reason for restricting WF-nets to free-choice
Petri nets is the following. If we allow non-free-choice Petri nets, then the choice be-
tween conflicting tasks may be influenced by the order in which the preceding tasks are
executed. The routing of a case should be independent of the order in which tasks are
executed. A situation where the free-choice property is violated is often a mixture of
parallelism and choice. Figure 7 shows such a situation. Firing transition t1 introduces
parallelism. Although there is no real choice between t2 and t5 (t5 is not enabled), the



Business Process Management Demystified 21

parallel execution of t2 and t3 results in a situation where t5 is not allowed to occur.
However, if the execution of t2 is delayed until t3 has been executed, then there is a real
choice between t2 and t5. In our opinion parallelism itself should be separated from the
choice between two or more alternatives. Therefore, we consider the non-free-choice
construct shown in Figure 7 to be improper. In literature, the term confusion is often
used to refer to the situation shown in Figure 7.

t2

t3
i

t4

t5

t1

o

c1

c2

c3

c4

Fig. 7. A non-free-choice WF-net containing a mixture of parallelism and choice.

Free-choice Petri nets have been studied extensively [30, 29, 35, 43], because they
seem to be a good compromise between expressive power and analyzability. It is a class
of Petri nets for which strong theoretical results and efficient analysis techniques exist.
For example, the well-known Rank Theorem [30] enables us to formulate the following
corollary.

Corollary 1. The following problem can be solved in polynomial time.
Given a free-choice WF-net, to decide if it is sound.

Proof. Let PN be a free-choice WF-net. The short-circuited net PN is also free-choice.
Therefore, the problem of deciding whether (PN , i) is live and bounded can be solved
in polynomial time (Rank Theorem [30]). By Theorem 1, this corresponds to soundness.

��

Corollary 1 shows that, for free-choice nets, there are efficient algorithms to decide
soundness. Moreover, a sound free-choice WF-net is guaranteed to be safe (given an
initial state with just one token in i).

Lemma 1. A sound free-choice WF-net is safe.

Proof. Let PN be a sound free-choice WF-net. PN is the Petri net PN extended with
a transition connecting o and i. PN is free-choice and well-formed. Hence, PN is S-
coverable [30], i.e., each place is part of an embedded strongly connected state-machine
component. Since initially there is just one token (PN , i) is safe and so is (PN , i). ��

Safeness is a desirable property, because it makes no sense to have multiple tokens in a
place representing a condition. A condition is either true (1 token) or false (no tokens).

Although most WFM systems only allow for free-choice workflows, free-choice
WF-nets are not a completely satisfactory structural characterization of “good” work-
flows. On the one hand, there are non-free-choice WF-nets which correspond to sen-
sible workflows (cf. Figure 4). On the other hand there are sound free-choice WF-nets
which make no sense. Nevertheless, the free-choice property is a desirable property. If
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a workflow can be modeled as a free-choice WF-net, one should do so. A workflow
specification based on a free-choice WF-net can be enacted by most workflow systems.
Moreover, a free-choice WF-net allows for efficient analysis techniques and is easier to
understand. Non-free-choice constructs such as the construct shown in Figure 7 are a
potential source of anomalous behavior (e.g., deadlock) which is difficult to trace.

Well-Structured WF-Nets. Another approach to obtain a structural characterization
of “good” workflows, is to balance AND/OR-splits and AND/OR-joins. Clearly, two
parallel flows initiated by an AND-split, should not be joined by an OR-join. Two al-
ternative flows created via an OR-split, should not be synchronized by an AND-join.
As shown in Figure 8, an AND-split should be complemented by an AND-join and an
OR-split should be complemented by an OR-join.

AND-split AND-join AND-split

AND-joinOR-split OR-join

OR-join

OR-split

Fig. 8. Good and bad constructions.

One of the deficiencies of the WF-net shown in Figure 6 is the fact that the AND-
split register is complemented by the OR-join c3 or the OR-join o. To formalize the
concept illustrated in Figure 8 we give the following definition.

Definition 13 (Well-handled). A Petri net PN is well-handled iff, for any pair of nodes
x and y such that one of the nodes is a place and the other a transition and for any pair
of elementary pathsC1 andC2 leading from x to y, α(C1)∩α(C2) = {x, y} ⇒ C1 =
C2.

Note that the WF-net shown in Figure 6 is not well-handled. Well-handledness can
be decided in polynomial time by applying a modified version of the max-flow min-
cut technique. A Petri net which is well-handled has a number of nice properties, e.g.,
strong connectedness and well-formedness coincide.

Lemma 2. A strongly connected well-handled Petri net is well-formed.

Proof. Let PN be a strongly connected well-handled Petri net. Clearly, there are no
circuits that have PT-handles nor TP-handles [36]. Therefore, the net is structurally
bounded (See Theorem 3.1 in [36]) and structurally live (See Theorem 3.2 in [36]).
Hence, PN is well-formed. ��
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Clearly, well-handledness is a desirable property for any WF-net PN . Moreover, we
also require the short-circuited PN to be well-handled. We impose this additional re-
quirement for the following reason. Suppose we want to use PN as a part of a larger
WF-net PN ′. PN ′ is the original WF-net extended with an “undo-task”. See Figure 9.
Transition undo corresponds to the undo-task, transitions t1 and t2 have been added to
make PN ′ a WF-net. It is undesirable that transition undo violates the well-handledness
property of the original net. However, PN ′ is well-handled iff PN is well-handled.
Therefore, we require PN to be well-handled. We use the term well-structured to refer
to WF-nets whose extension is well-handled.

i o

t2t1

undo

PN

PN’:

Fig. 9. The WF-net PN ′ is well-handled iff PN is well-handled.

Definition 14 (Well-structured). A WF-net PN is well-structured iff PN is well-han-
dled.

Well-structured WF-nets have a number of desirable properties. Soundness can be ver-
ified in polynomial time and a sound well-structured WF-net is safe. To prove these
properties we use some of the results obtained for elementary extended non-self con-
trolling nets.

Definition 15 (Elementary extended non-self controlling). A Petri net PN is ele-
mentary extended non-self controlling (ENSC) iff, for every pair of transitions t1 and t2
such that •t1 ∩ •t2 �= ∅, there does not exist an elementary path C leading from t1 to
t2 such that •t1 ∩ α(C) = ∅.

Theorem 2. Let PN be a WF-net. If PN is well-structured, then PN is elementary
extended non-self controlling.

Proof. Assume that PN is not elementary extended non-self controlling. This means
that there is a pair of transitions t1 and tk such that •t1 ∩ •tk �= ∅ and there exist an
elementary path C = 〈t1, p2, t2, . . . , pk, tk〉 leading from t1 to tk and •t1 ∩ α(C) = ∅.
Let p1 ∈ •t1 ∩ •tk. C1 = 〈p1, tk〉 and C2 = 〈p1, t1, p2, t2, . . . , pk, tk〉 are paths
leading from p1 to tk. (Note that C2 is the concatenation of 〈p1〉 and C.) Clearly, C1 is
elementary. We will also show that C2 is elementary. C is elementary, and p1 �∈ α(C)
because p1 ∈ •t1. Hence, C2 is also elementary. Since C1 and C2 are both elementary
paths, C1 �= C2 and α(C1) ∩ α(C2) = {p1, tk}, we conclude that PN is not well-
handled. ��
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Fig. 10. A well-structured WF-net.

Consider for example the WF-net shown in Figure 10. The WF-net is well-structured
and, therefore, also elementary extended non-self controlling. However, the net is not
free-choice. Nevertheless, it is possible to verify soundness for such a WF-net very
efficiently.

Corollary 2. The following problem can be solved in polynomial time.
Given a well-structured WF-net, to decide if it is sound.

Proof. Let PN be a well-structured WF-net. The short-circuited net PN is elemen-
tary extended non-self controlling (Theorem 2) and structurally bounded (see proof of
Lemma 2). For bounded elementary extended non-self controlling nets the problem of
deciding whether a given marking is live, can be solved in polynomial time (See [23]).
Therefore, the problem of deciding whether (PN , i) is live and bounded can be solved
in polynomial time. By Theorem 1, this corresponds to soundness. ��

Lemma 3. A sound well-structured WF-net is safe.

Proof. Let PN be the net PN extended with a transition connecting o and i. PN is
extended non-self controlling. PN is covered by state-machines (S-components), see
Corollary 5.3 in [23]. Hence, PN is safe and so is PN (see proof of Lemma 1). ��

Well-structured WF-nets and free-choice WF-nets have similar properties. In both cases
soundness can be verified very efficiently and soundness implies safeness. In spite of
these similarities, there are sound well-structured WF-nets which are not free-choice
(Figure 10) and there are sound free-choice WF-nets which are not well-structured.
In fact, it is possible to have a sound WF-net which is neither free-choice nor well-
structured (Figures 4 and 7).

S-Coverable WF-Nets. What about the sound WF-nets shown in Figure 4 and Fig-
ure 7? The WF-net shown in Figure 7 can be transformed into a free-choice well-
structured WF-net by separating choice and parallelism. The WF-net shown in Figure 4
cannot be transformed into a free-choice or well-structured WF-net without yielding a
much more complex WF-net. Place c7 acts as some kind of milestone which is tested
by the task reminder. Traditional WFM systems which do not make the state of the case
explicit, are not able to handle the workflow specified by Figure 4. Only WFM systems
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such as COSA [66] have the capability to enact such a state-based workflow. Never-
theless, it is interesting to consider generalizations of free-choice and well-structured
WF-nets: S-coverable WF-nets can be seen as such a generalization.

Definition 16 (S-coverable). A WF-net PN is S-coverable if the short-circuited net
PN is S-coverable.

The WF-nets shown in Figure 4 and Figure 7 are S-coverable. The WF-net shown in
Figure 6 is not S-coverable. The following two corollaries show that S-coverability is a
generalization of the free-choice property and well-structuredness.

Corollary 3. A sound free-choice WF-net is S-coverable.

Proof. The short-circuited net PN is free-choice and well-formed. Hence, PN is S-
coverable (cf. [30]). ��

Corollary 4. A sound well-structured WF-net is S-coverable.

Proof. PN is extended non-self controlling (Theorem 2). Hence, PN is S-coverable
(cf. Corollary 5.3 in [23]). ��

All the sound WF-nets presented in this tutorial are S-coverable. Every S-coverable
WF-net is safe. The only WF-net which is not sound, i.e., the WF-net shown in Figure 6,
is not S-coverable. These and other examples indicate that there is a high correlation
between S-coverability and soundness. It seems that S-coverability is one of the basic
requirements any workflow process definition should satisfy. From a formal point of
view, it is possible to construct WF-nets which are sound but not S-coverable. Typically,
these nets contain places which do not restrict the firing of a transition, but which are
not in any S-component. (See for example Figure 65 in [62].) From a practical point of
view, these WF-nets are to be avoided. WF-nets which are not S-coverable are difficult
to interpret because the structural and dynamical properties do not match. For example,
these nets can be live and bounded but not structurally bounded. There seems to be no
practical need for using constructs which violate the S-coverability property. Therefore,
we consider S-coverability to be a basic requirement any WF-net should satisfy.

Another way of looking at S-coverability is the following interpretation: S-com-
ponents corresponds to document flows. To handle a workflow several pieces of infor-
mation are created, used, and updated. One can think of these pieces of information
as physical documents, i.e., at any point in time the document is in one place in the
WF-net. Naturally, the information in one document can be copied to another docu-
ment while executing a task (i.e., transition) processing both documents. Initially, all
documents are present but a document can be empty (i.e., corresponds to a blank piece
paper). It is easy to see that the flow of one such document corresponds a state machine
(assuming the existence of a transition t∗). These document flows synchronize via joint
tasks. Therefore, the composition of these flows yields an S-coverable WF-net. One
can think of the document flows as threads. Consider for example the short-circuited
net of the WF-net shown in Figure 4. This net can be composed out of the following
two threads: (1) a thread corresponding to logistic subprocess (places start, c0, c1, c3,
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c4, c5, c7, and end) and (2) a thread corresponding to the actual processing of the com-
plaint (places start, c2, c6, c8, and end). Note that the tasks register and archive are
used in both threads.

Although a WF-net can, in principle, have exponentially many S-components, they
are quite easy to compute for workflows encountered in practice (see also the above
interpretation of S-component as document flows or threads). Note that S-coverability
only depends on the structure and the degree of connectedness is generally low (i.e., the
incidence matrix of a WF-net typically has few non-zero entries). Unfortunately, in gen-
eral, it is not possible to verify soundness of an S-coverable WF-net in polynomial time.
The problem of deciding soundness for an S-coverable WF-net is PSPACE-complete.
For most applications this is not a real problem. Typically, the number of tasks in one
workflow process definition is less than 100 and the number of states is less than half
a million. Tools using standard techniques such as the construction of the coverability
graph have no problems in coping with these workflow process definitions.

Using the Three Structural Characterizations. The three structural characterizations
(free-choice, well-structured and S-coverable) turn out to be very useful for the analy-
sis of workflow process definitions. Based on our experience, we have good reasons to
believe that S-coverability is a desirable property any workflow definition should sat-
isfy. Constructs violating S-coverability can be detected easily and tools can be build
to help the designer to construct an S-coverable WF-net. S-coverability is a general-
ization of well-structuredness and the free-choice property (Corollary 3 and 4). Both
well-structuredness and the free-choice property also correspond to desirable proper-
ties of a workflow. A WF-net satisfying at least one one of these two properties can be
analyzed very efficiently. However, we have shown that there are workflows that are not
free-choice and not well-structured. Consider for example Figure 4. The fact that task
register tests whether there is a token in c5, prevents the WF-net from being free-choice
or well-structured. Although this is a very sensible workflow, most WFM systems do not
support such an advanced routing construct. Even if one is able to use state-based work-
flows (e.g., COSA) allowing for constructs which violate well-structuredness and the
free-choice property, then the structural characterizations are still useful. If a WF-net is
not free-choice or not well-structured, one should locate the source which violates one
of these properties and check whether it is really necessary to use a non-free-choice or
a non-well-structured construct. If the non-free-choice or non-well-structured construct
is really necessary, then the correctness of the construct should be double-checked, be-
cause it is a potential source of errors. This way the readability and maintainability of a
workflow process definition can be improved.

3.5 Woflan

Few tools aiming at the verification of workflow processes exist. Woflan [73, 72] and
Flowmake [64] are two notable exceptions. We have been working on Woflan since
1997. Figure 11 shows a screenshot of Woflan. Woflan combines state-of-the-art sci-
entific results with practical applications [73, 72]. Woflan can interface with leading
WFM systems such as Staffware, MQSeries Workflow and COSA but also PNML [24].
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Fig. 11. A screenshot showing the verification and validation capabilities of Woflan.

It can also interface with BPR-tools such as Protos. Workflow processes designed us-
ing any of these tools can be verified for correctness. It turns out that the challenge
is not to decide whether the design is sound or not. The real challenge is to provide
diagnostic information that guides the designer to the error. Woflan also supports the
inheritance notions mentioned before. Given two workflow designs, Woflan is able to
decide whether one is a subclass of the other. Tools such as Woflan illustrate the benefits
of a more fundamental approach.

3.6 Exercise

Consider the solution of the exercise given in Section 2.4. Verify whether the WF-net
is sound and make sure that there is an S-cover. A simple verification “web service” is
provided via http://is.tm.tue.nl/research/woflan/. This web service
uses Woflan to verify whether a given process model is sound. Use this web service or
download Woflan to check the correctness of your solution.

4 Workflow Management Systems

In this section we provide insight into the functionality of existing WFM systems. First
we provide an overview of the workflow market. Then we introduce the typical archi-
tecture of a WFM system, followed by an example of a concrete system. Again, we
conclude the section with an exercise.
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4.1 Overview

In Section 1 we put WFM in a historical perspective and using Figure 2 we discussed
the maturity of the BPM market. At this point in time hundreds of WFM/BPM prod-
ucts are available. To illustrate this we use two diagrams of Michael Zur Muehlen [61].
Figure 12 gives a historic overview of office automation and workflow prototypes [61].
Figure 13 provides a historic overview of commercial WFM systems. These two figures
show that: (1) workflow management is not something that started in the nineties but al-
ready in the seventies with the work of Ellis (OfficeTalk, [32]) and Zisman (Scoop,[78])
and (2) the number of commercial systems has considerably grown in recent years. Note
that given the dynamics of the workflow market, it is difficult to keep diagrams like the
one shown in Figure 13 up-to-date. For example, Figure 13 does not show recent sys-
tems like FLOWer [22]. Moreover, systems are often named different for commercial
reasons. For example, IBM’s MQSeries Workflow (formerly known as FlowMark) was
recently renamed into WebSphere MQ Workflow.

Office Automation Prototypes Scientific Workflow Systems

1980 1985 1990 1995 2000

SCOOP

Backtalk

DAISY

Officetalk-Zero

METEOR

MOBILE

WIDE

CrossFlow
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WorCOS

Mariflow

APRICOT

Melmac

WorCRAFT

Poise Polymer D-Polymer Polyflow

OVALObjectLens
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(Esprit)

Fig. 12. Historic overview of early systems and research prototypes (Taken from [61]).

Unfortunately, figures 12 and 13 do not show the increased maturity of WFM/BPM
products. It also does not show that products target at different types of processes. A
well-know classification of WFM systems is given in [40] where the authors distinguish
between ad-hoc, administrative, and production workflows and discuss the continuum
from human-oriented to system-oriented WFM systems. However, we prefer to use the
more recent classification shown in Figure 14 to describe the “workflow spectrum”.

Figure 14 shows four types of systems: groupware, production workflow, ad-hoc
workflow, and case-handling systems. These systems are characterized in terms of their
“focus” (data-driven, process driven, or both) and their “degree of structuredness”. Tra-
ditional groupware products like Lotos Notes and MS Exchange and production work-
flow systems like Staffware and MQSeries Workflow form two ends of a spectrum. As
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Commercial Workflow Systems
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Fig. 13. Historic overview of commercial workflow management systems (Taken from [61]).

Figure 14 shows, traditional groupware products are data-driven (focus on the shar-
ing of information rather than the process) and support only unstructured processes.
Note that Lotus Notes and Exchange are not “process-aware” (unless components like
Domino Workflow are added). Production workflow systems are process-aware and
aim at structured processes. In order to enact a workflow using a production workflow
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Fig. 14. Classification of systems to support work processes.

system one needs to explicitly specify all possible routes. If something is not explic-
itly specified at design time, it is not possible. Ad-hoc WFM systems like InConcert
(TIBCO), Ensemble (Filenet), and TeamWARE Flow (TeamWARE Group) allow for
the creation and modification of workflow processes at execution time. Each case has a
private process model and therefore the traditional problems encountered when chang-
ing a workflow specification can be avoided. Ad-hoc WFM systems allow for a lot of
flexibility. The WFM system InConcert even allows the user to initiate a case having an
empty process model. When the case is handled, the workflow model is extended to re-
flect the work conducted. Another possibility is to start using a template. The moment
a case is initiated, the corresponding process model is instantiated using a template.
After instantiation, the case has a private copy of the template, which can be modified
while the process is running. InConcert also supports “workflow design by discovery”:
The routing of any completed workflow instance can be used to create a new template.
This way actual workflow executions can be used to create workflow process defini-
tions. Figure 14 shows that ad-hoc workflow management systems like InConcert are
process-driven and ad-hoc structured. Case-handling systems like FLOWer and Vectus
can be positioned in-between groupware, production workflow, and ad-hoc workflow.
Unlike in ad-hoc workflow systems the end-users are not expected to change or create
process models. Instead the following paradigms are used for case handling [8]:

– avoid context tunneling by providing all information available (i.e., present the case
as a whole rather than showing just bits and pieces),

– decide which activities are enabled on the basis of the information available rather
than the activities already executed,

– separate work distribution from authorization and allow for additional types of
roles, not just the execute role,

– allow workers to view and add/modify data before or after the corresponding activ-
ities have been executed (e.g., information can be registered the moment it becomes
available).

For more information on case handling we refer to [8, 22]. Clearly the classification
of systems is not as clear-cut as Figure 14 may suggest. Lotus Notes can be extended
with Domino Workflow to join groupware and production workflow functionalities.
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Staffware Case Handler and the COSA Activity Manager are extensions of production
workflow systems in the direction of case handling (both are based on the generic solu-
tion of BPi).

In this tutorial we focus on the classical production workflow systems. However, it
is important to understand that they are part of a spectrum and that their application is
limited to a specific type of processes (process-driven and explicitly structured).

4.2 Architecture

As indicated by Figure 14, WFM systems target at different processes. Therefore, it is
not surprising that there is not one architecture that “fits all systems”. Therefore, we
present the so-called reference model of the Workflow Management Coalition (WfMC)
[38, 55]. Figure 15 shows an overview of this reference model. The reference model de-
scribes the major components and interfaces within a workflow architecture. The core
of any workflow system is the workflow enactment service. The workflow enactment
service provides the run-time environment which takes care of the control and exe-
cution of the workflow. For technical or managerial reasons the workflow enactment
service may use multiple workflow engines. A workflow engine handles selected parts
of the workflow and manages selected parts of the resources. The process definition
tools are used to specify and analyze workflow process definitions and/or resource clas-
sifications. These tools are used at design time. In most cases, the process definition
tools can also be used as a BPR-toolset. Most WFM systems provide three process
definition tools: (1) a tool with a graphical interface to define workflow processes, (2)
a tool to specify resource classes (organizational model), and (3) a simulation tool to
analyze a specified workflow3. The end-user communicates with the workflow system
via the workflow client applications. An example of a workflow client application is the
well-known in-basket. Via such an in-basket work items are offered to the end user. By
selecting a work item, the user can execute a task for a specific case. If necessary, the
workflow engine invokes applications via Interface 3. The administration and monitor-
ing tools are used to monitor and control the workflow. These tools are used to register
the progress of cases and to detect bottlenecks. Moreover, these tools are also used to
set parameters, allocate people and handle abnormalities. Via Interface 4 the workflow
system can be connected to other workflow systems. To standardize the five interfaces
shown in Figure 15, the WfMC aims at a common Workflow Application Programming
Interface (WAPI). The WAPI is envisaged as a common set of API calls and related in-
terchange formats which may be grouped together to support each of the five interfaces
(cf. [55]). In Section 5.2 we will describe XPDL, the XML-based language suggested
by the WfMC to exchange process definition (i.e., a concrete language for Interface 1).

4.3 Example of a WFM System: Staffware

As indicated in Section 4.1, many WFM systems are available. In this tutorial we only
show one system in more detail. Staffware is one of the most widespread WFM systems

3 In many cases simulation is offered through some export to a standard simulation tool, e.g.,
COSA supports simulation through an export to ExSpect.
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Fig. 15. Reference model of the Workflow Management Coalition (WfMC).

in the world. In 1998, it was estimated by the Gartner Group that Staffware has 25
percent of the global market [25]. Staffware provides the functionality described in the
reference model shown in Figure 15. Figure 16 shows some screenshots of the Staffware
product. The top window shows the design tool of Staffware while defining a simple
workflow process. Work is offered through so-called work queues. One worker can have
multiple work queues and one work queue can be shared among multiple workers. The
window in the middle shows the set of available work queues (left) and the content of
one of these work queues (right). The bottom window shows an audit trail of a case.
The three windows show only some of the capabilities offered by Staffware. It is fairly
straightforward to map these windows onto the architecture shown in Figure 15.

Let us now consider the modeling language used by Staffware. In Staffware, tasks
are called steps. There are several kinds of steps: automatic steps (offered to an appli-
cation instead of an end-user), normal steps (executed by an end-user), and event steps
(triggered by some external event). The semantics of a step are OR-join/AND-split,
i.e., a step becomes enabled if one of the preceding steps is completed and the comple-
tion of step will trigger all subsequent steps. Since the OR-join/AND-split semantics is
fixed, two additional building blocks are needed: the wait step and the condition. The
wait step can be used to synchronize flows and has AND-join/AND-split semantics.
To model choices, i.e., OR-splits, the condition building block can be used. Staffware
only allows for binary choices, i.e., just two possible outcomes (e.g., YES and NO).
Staffware processes always start with a start step which is denoted by a symbol rep-
resenting a traffic light. Termination in Staffware is implicit, i.e., it is possible to start
multiple parallel threads which end concurrently. Therefore, there is no need to have
one sink node representing the completion of a case. The end of a thread is denoted
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Fig. 16. The Graphical Workflow Definer, Work Queue, and Audit Trail of Staffware.

by a stop symbol. Conditions are modeled by diamond shaped symbols. Wait steps are
modeled by symbols in the shape of a sand timer. The basic semantics of a step, a
condition, and a wait are shown in Figure 174.

Using this translation shown in Figure 17, it is straightforward to map the Staffware
model shown in Figure 16 onto a WF-net. The result is shown in Figure 18.

Let us consider now a larger Staffware model also including advanced concepts like
time triggers and multiple ending points. For this purpose, we use the model shown
in Figure 19. It models a simplified workflow in a travel agency. To organize a trip, a
travel agency executes several tasks. First the customer is registered. Then an employee
searches for opportunities which are communicated to the customer. Then the customer
will be contacted to find out whether she or he is still interested in the trip of this
agency and whether more alternatives are desired. There are three possibilities: (1) the
customer is not interested at all, (2) the customer would like to see more alternatives,
and (3) the customer selects an opportunity. If the customer selects a trip, the trip is
booked. In parallel one or two types of insurance are prepared if they are desired. A
customer can take insurance for trip cancellation or/and for baggage loss. Note that

4 Note that the semantics of Staffware steps include a number of particularities not included in
the mapping, cf. [72].
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Fig. 17. The semantics of some of the Staffware constructs (left) expressed in Petri nets (right).
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Fig. 18. The Staffware model shown in Figure 16 expressed in terms of a WF-net.

 

Fig. 19. The workflow of a travel agency modeled in terms of the Staffware language.
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start register c2 search c3 communicate c4 contact_cust
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AND_join send_documents c14

cancel
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c13

Fig. 20. The travel agency’s workflow expressed in terms of a WF-net.

a customer can decide not to take any insurance, just trip cancellation insurance, just
baggage loss insurance, or both types of insurance. Two weeks before the start date
of the trip the documents are sent to the customer. A trip can be cancelled at any time
after completing the booking process (including the insurance) and before the start date.
Note that customers who are not insured for trip cancellation can cancel the trip (but
will get no refund). Most of the model is self-explanatory. The two OR-join symbols
represent “dummy tasks”, i.e., Staffware steps not implementing any real task. For the
cancellation two steps with a time-out are used: CANCEL and CANCEL2. The clock
symbol is used to indicate steps with a time-out. In such as step, the lower branch is
taken if the step is not executed within a given period. For simplicity we did not model
all triggers and simplified the choice for both types of insurances.

Let us now translate the model shown in Figure 19 into a WF-net. We do not use
the Staffware names but the names used in the original description (Staffware only
allows names of up-to 8 characters). The WF-net shown in Figure 20, like any WF-net,
has a source place which serves as the start condition (i.e., case creation) and a sink
place which serves as the end condition (i.e., case completion). First, the tasks register,
search, communicate, and contact cust are executed sequentially. Task contact cust is
an OR-split with three possible outcomes: (1) the customer is not interested at all, i.e.,
a token is put into end, (2) the customer would like to see more alternatives, i.e., a
token is put into c2, and (3) the customer selects an opportunity, i.e., a token is put
into c15 to initiate the booking. Tasks AND split and AND join have just been added
for routing purposes. These routing tasks enable the parallel execution of the booking
and insurance tasks. The task book corresponds to the actual booking of the trip. Tasks
insurance1 and insurance2 correspond to handling both types of insurance. Since both
types of insurance are optional, there is a bypass for each of these tasks. The OR-split
insurance1? allows for a bypass of task insurance1 by putting a token in c11. After
handling the booking and optional insurances the AND-join puts a token in c13. The
remainder of the process is, from the viewpoint of triggers, very interesting. Note that
all tasks executed before this point are either tasks that require a resource trigger or
automatic tasks added for routing purposes only. The downward facing arrows denote
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the resource triggers. If the case is in c13, then the normal flow of execution is to first
execute task send documents and then execute start trip. Note that task send documents
requires both a resource trigger and a time trigger. These two triggers indicate that two
weeks before the beginning of the trip a worker sends the documents to the customer.
Task start trip has been added for routing purposes and requires a time trigger. Without
task start trip, i.e., putting the token in end after sending the documents, it would have
been impossible to cancel the trip after sending the documents. Task cancel is an explicit
OR-join and requires both a resource trigger and an external trigger. This task is only
executed if it is triggered by the customer. Task cancel can only be executed if the case
is in c13 or c14, i.e., after handling the booking and insurance related tasks and before
the trip starts.

It is interesting to compare figures 19 and 20. Although the WF-net has more sym-
bols because of the explicit modeling of states (i.e., places), it seems to be a more direct
and more elegant way to model the process.

4.4 Exercises

To conclude this section, we provide two small exercises.

– Consider the Staffware process shown in Figure 21. Translate this Staffware model
into a WF-net.

– Consider the WF-net shown in Figure 5. Translate this WF-net into a Staffware
model, i.e., provide a diagram like the one shown in Figure 21 for the order pro-
cessing process given in Section 2.3.

 

Fig. 21. Exercise: translate this Staffware process into a WF-net.

A solution of the first exercise is given in [12]. A solution for the second exercise is
not given and is also far from trivial given the fact that Staffware does not support the
Milestone and Deferred choice patterns (cf. Section 5.1 and [15]).
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Basic Control Flow Patterns

• Pattern 1 (Sequence)

• Pattern 2 (Parallel Split)

• Pattern 3 (Synchronization)
• Pattern 4 (Exclusive Choice)

• Pattern 5 (Simple Merge)

Advanced Branching and
Synchronization Patterns

• Pattern 6 (Multi - choice)
• Pattern 7 (Synchronizing Merge)

• Pattern 8 (Multi - merge)

• Pattern 9 (Discriminator)

Structural Patterns
• Pattern 10 (Arbitrary Cycles)

• Pattern 11 (Implicit Termination)

State-based Patterns
• Pattern 16 (Deferred

Choice)

• Pattern 17 (Interleaved
Parallel Routing)

• Pattern 18 (Milestone)

Patterns involving Multiple Instances

• Pattern 12 (Multiple Instances Without
Synchronization)

• Pattern 13 (Multiple Instances With a Priori
Design Time Knowledge)

• Pattern 14 (Multiple Instances With a Priori
Runtime Knowledge)

• Pattern 15 (Multiple Instances Without a Priori
Runtime Knowledge)

Cancellation Patterns
• Pattern 19 (Cancel Activity)

• Pattern 20 (Cancel Case)

Fig. 22. Overview of the 20 workflow patterns described in [15].

5 Workflow Standards: An Evaluation of XPDL
Based on Its Support for Workflow Patterns

There are many languages and standards in the WFM/BPM domain. It is impossible
to discuss all of these in any detail. Instead we focus on a single standard. XPDL is
not the most important standard but it is typical for many other standards and propri-
ety languages of workflow vendors. For a critical evaluation of XPDL, we use the set
of workflow patterns described in [15]. The remainder of this section is structured as
follows. First, we introduce the 20 workflow patterns used to evaluate XPDL. Then,
in Section 5.2, we provide an overview of the XPDL language. In Section 5.3 the lan-
guage is analyzed using the 20 workflow patterns. Section 5.4 discusses one of the core
semantical problems: The join construct. Finally, Section 5.5 concludes the section by
comparing XPDL with WFM systems and other standards such as UML Activity Dia-
grams, BPEL4WS, BPML, WSFL, XLANG, and WSCI.

5.1 Workflow Patterns

Since 1999 we have been working on collecting a comprehensive set of workflow pat-
terns [15]. The results have been made available through the “Workflow patterns WWW
site” http://www.workflowpatterns.com. The patterns range from very sim-
ple patterns such as sequential routing (Pattern 1) to complex patterns involving com-
plex synchronizations such as the discriminator pattern (Pattern 9). In this tutorial, we
restrict ourselves to the 20 most relevant patterns. These patterns can be classified into
six categories:
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1. Basic control-flow patterns. These are the basic constructs present in most work-
flow languages to model sequential, parallel and conditional routing.

2. Advanced branching and synchronization patterns. These patterns transcend the
basic patterns to allow for more advanced types of splitting and joining behavior.
An example is the Synchronizing merge (Pattern 7) which behaves like an AND-
join or XOR-join depending on the context.

3. Structural patterns. In programming languages a block structure which clearly
identifies entry and exit points is quite natural. In graphical languages allowing for
parallelism such a requirement is often considered to be too restrictive. Therefore,
we have identified patterns that allow for a less rigid structure.

4. Patterns involving multiple instances. Within the context of a single case (i.e., work-
flow instance) sometimes parts of the process need to be instantiated multiple times,
e.g., within the context of an insurance claim, multiple witness statements need to
be processed.

5. State-based patterns. Typical workflow systems focus only on activities and events
and not on states. This limits the expressiveness of the workflow language because
it is not possible to have state dependent patterns such as the Milestone pattern
(Pattern 18).

6. Cancellation patterns. The occurrence of an event (e.g., a customer canceling an
order) may lead to the cancellation of activities. In some scenarios such events can
even cause the withdrawal of the whole case.

Figure 22 shows an overview of the 20 patterns grouped into the six categories. A
detailed discussion of these patterns is outside the scope of this tutorial. The interested
reader is referred to [15] and http://www.workflowpatterns.com.

We have used these patterns to compare the functionality of numerous WFM sys-
tems. The result of this evaluation reveals that (1) the expressive power of contemporary
systems leaves much to be desired and (2) the systems support different patterns. Note
that we do not use the term “expressiveness” in the traditional or formal sense. If one ab-
stracts from capacity constraints, any workflow language is Turing complete. Therefore,
it makes no sense to compare these languages using formal notions of expressiveness.
Instead we use a more intuitive notion of expressiveness which takes the modeling ef-
fort into account. This more intuitive notion is often referred to as suitability. See [51,
52] for a discussion on the distinction between formal expressiveness and suitability.

The observation that the expressive power of the available WFM systems leaves
much to be desired, triggered the question: How about XPDL as a workflow language?

5.2 XPDL: XML Process Definition Language

The Workflow Management Coalition (WfMC) was founded in August 1993 as a in-
ternational non-profit organization. Today there are about 300 members ranging from
workflow vendors and users to analysts and university/research groups. The mission of
the WfMC is to promote and develop the use of workflow through the establishment of
standards for workflow terminology, interoperability and connectivity between work-
flow products. The WfMC’s reference model identifies five interfaces, as shown in Sec-
tion 4.2. One of the main activities since 1993 has been the development of standards
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for these interfaces. Interface 1 is the link between the so-called “Process Definition
Tools” and the “Enactment Service” (cf. Figure 15). The Process Definition Tools are
used to design workflows while the Enactment Service can execute workflows. The
primary goal of Interface 1 is the import and export of process definitions. The WfMC
defines a process definition as “The representation of a business process in a form which
supports automated manipulation, such as modeling, or enactment by a WFM system.
The process definition consists of a network of activities and their relationships, criteria
to indicate the start and termination of the process, and information about the individual
activities, such as participants, associated IT applications and data, etc.” [55]. Clearly,
there is a need for process definition interchange. First of all, within the context of a
single workflow management system there has to be a connection between the design
tool and the execution/run-time environment. Second, there may be the desire to use
another design tool, e.g., a modeling tool like ARIS or Protos. Third, for analysis pur-
poses it may be desirable to link the design tool to analysis software such as simulation
and verification tools. Fourth, the use of repositories with workflow processes requires a
standardized language. Fifth, there may be the need to transfer a definition interchange
from one engine to another.

To support the interchange of workflow process definitions, there has to be a stan-
dardized language [12, 38, 48, 55, 57, 58]. The WfMC started working on such a lan-
guage soon after it was founded. This resulted in the Workflow Process Definition Lan-
guage (WPDL) [74] presented in 1999. Although many vendors claimed to be WfMC
compliant, few made a serious effort to support this language. At the same time, XML
emerged as a standard for data interchange. Since WPDL was not XML-based, the
WfMC started working a new language named XML Process Definition Language
(XPDL). The starting point for XPDL was WPDL. However, XPDL should not be con-
sidered the XML version of WPDL. Several concepts have been added/changed and
the WfMC remains fuzzy about the exact relationship between XPDL and WPDL. In
October 2002, the WfMC released a “Final Draft” of XPDL [75].

In [75], the authors state “More complex transitions, which cannot be expressed
using the simple elementary transition and the split and join functions associated with
the from- and to- activities, are formed using dummy activities, which can be specified
as intermediate steps between real activities allowing additional combinations of split
and/or join operations. Using the basic transition entity plus dummy activities, routing
structures of arbitrary complexity can be specified. Since several different approaches
to transition control exist within the industry, several conformance classes are specified
within XPDL. These are described later in the document.” The sentence “Using the
basic transition entity plus dummy activities, routing structures of arbitrary complexity
can be specified.” triggered us to look into the expressive power of XPDL.

XPDL [75] uses an XML-based syntax, specified by an XML schema. The main el-
ements of the language are: Package, Application, WorkflowProcess, Activity, Tran-
sition, Participant, DataField, and DataType. The Package element is the container
holding the other elements. The Application element is used to specify the applica-
tions/tools invoked by the workflow processes defined in a package. The element Work-
flowProcess is used to define workflow processes or parts of workflow processes. A
WorkflowProcess is composed of elements of type Activity and Transition. The Ac-
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tivity element is the basic building block of a workflow process definition. Elements of
type Activity are connected through elements of type Transition. There are three types
of activities: Route, Implementation, and BlockActivity. Activities of type Route are
dummy activities just used for routing purposes. Activities of type BlockActivity are
used to execute sets of smaller activities. Element ActivitySet refers to a self contained
set of activities and transitions. A BlockActivity executes such an ActivitySet. Activi-
ties of type Implementation are steps in the process which are implemented by manual
procedures (No), implemented by one of more applications (Tool), or implemented by
another workflow process (Subflow). The Participant element is used to specify the
participants in the workflow, i.e., the entities that can execute work. There are 6 types
of participants: ResourceSet, Resource, Role, OrganizationalUnit, Human, and
System. Elements of type DataField and DataType are used to specify workflow rel-
evant data. Data is used to make decisions or to refer to data outside of the workflow,
and is passed between activities and subflows.

In this section, we focus on the control-flow perspective. Therefore, we will not
consider functionality related to the Package, Application, and Participant elements.
Moreover, we will only consider workflow relevant data from the perspective of rout-
ing. Appendix A shows selected parts of the XPDL Schema [75] relevant for this tu-
torial. The listing shows the elements Activity, TransitionRestriction, TransitionRe-
strictions, Join, Split, Transition and Condition. An activity may have one of more
“transition restrictions” to specify the split/join behavior. If there is a transition restric-
tion of type Join, the restriction is either set to AND or to XOR. The WfMC defines
the semantics of such a restriction as follows: “AND: Join of (all) concurrent threads
within the process instance with incoming transitions to the activity: Synchronization
is required. The number of threads to be synchronized might be dependent on the result
of the conditions of previous AND split(s).” and “XOR: Join for alternative threads:
No synchronization is required.” [75]. Similarly, there are transition restrictions of type
Split that are set to either AND or XOR with the following semantics: “AND: Defines
a number of possible concurrent threads represented by the outgoing Transitions of
this Activity. If the Transitions have conditions the actual number of executed parallel
threads is dependent on the conditions associated with each transition, which are eval-
uated concurrently.” and “XOR: List of Identifiers of outgoing Transitions of this Ac-
tivity, representing. Alternatively executed transitions. The decision as to which single
transition route is selected is dependent on the conditions of each individual transition
as they are evaluated in the sequence specified in the list. If an unconditional Transition
is evaluated or transition with condition OTHERWISE this ends the list evaluation.”
[75]. Appendix A also shows the definition of element Transition. A transition con-
nects two activities as indicated by the From and To field and may contain a Condition
element.

The WfMC acknowledges the fact that workflow languages use different styles and
paradigms. To accommodate this, XPDL allows for vendor specific extensions of the
language. In addition, XPDL distinguishes three conformance classes: non-blocked,
loop-blocked, and full-blocked. These conformance classes refer to the network struc-
ture of a process definition, i.e., the graph of activities (nodes) and transitions (arcs). For
conformance class non-blocked there are no restrictions. For conformance class loop-
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blocked the network structure has to be acyclic and for conformance class full-blocked
there has to be a one-to-one correspondence between splits and joins of the same type.
These conformance classes correspond to different styles of modeling. Graph based
workflow languages like COSA and Staffware correspond to conformance class non-
blocked. Languages such as MQSeries, WSFL, and BPEL4WS correspond to confor-
mance class loop-blocked and block-structured languages such as XLANG are full-
blocked.

A detailed introduction to XPDL is beyond the scope of this tutorial. For more
details we refer to [75].

5.3 The Workflow Patterns in XPDL

In this section, we consider the 20 workflow patterns discussed in Section 5.1, and we
show how and to what extent these patterns can be captured in XPDL. In particular, we
indicate whether the pattern is directly supported by a XPDL construct. If this is not the
case, we sketch a workaround solution. Most of the solutions are presented in a simpli-
fied XPDL notation which is intended to capture the key ideas of the solutions while
avoiding coding details. In other words, the fragments of XPDL definitions provided
here are not “ready to be run”.

WP1 Sequence. An activity in a workflow process is enabled after the completion of
another activity in the same process. Example: After the activity order registration the
activity customer notification is executed.

Solution, WP1. This pattern is directly supported by the XPDL as illustrated in in
Listing 1. Within the process Sequence two activities A and B are linked through
transition AB.

Listing 1 (Sequence)

1 <WorkflowProcess Id="Sequence">
2 <ProcessHeader DurationUnit="Y"/>
3 <Activities>
4 <Activity Id="A">
5 ...
6 </Activity>
7 <Activity Id="B">
8 ...
9 </Activity>

10 </Activities>
11 <Transitions>
12 <Transition Id="AB" From="A" To="B"/>
13 </Transitions>
14 </WorkflowProcess>

WP2 Parallel Split. A point in the process where a single thread of control splits into
multiple threads of control which can be executed in parallel, thus allowing activities to
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be executed simultaneously or in any order [55, 37]. Example: After activity new cell
phone subscription order the activity insert new subscription in Home Location Reg-
istry application and insert new subscription in Mobile answer application are executed
in parallel.

WP3 Synchronization. A point in the process where multiple parallel branches con-
verge into one single thread of control, thus synchronizing multiple threads [55]. It is an
assumption of this pattern that after an incoming branch has been completed, it cannot
be completed again while the merge is still waiting for other branches to be completed.
Also, it is assumed that the threads to be synchronized belong to the same global process
instance (i.e., to the same “case” in workflow terminology). Example: Activity archive
is executed after the completion of both activity send tickets and activity receive pay-
ment. Obviously, the synchronization occurs within a single global process instance:
the send tickets and receive payment must relate to the same client request.

Solutions, WP2 & WP3. This pattern directly supported by the XPDL. This is illus-
trated by the example shown in Listing 2. Within the process Parallel four activities are
linked trough four transitions. Transitions AB and AC link the initial activity A to the
two parallel activities B and C. Note that the split in activity A is of type AND and no
transition conditions are specified. Transitions BD and CD link the two parallel activi-
ties B and C to the final activity D. Note that the join in activity D is of type AND and
again no transition conditions are specified.

WP4 Exclusive Choice. A point in the process where, based on a decision or workflow
control data, one of several branches is chosen. Example: The manager is informed if
an order exceeds $600, otherwise not.

WP5 Simple Merge. A point in the workflow process where two or more alternative
branches come together without synchronization. It is an assumption of this pattern that
none of the alternative branches is ever executed in parallel with another one (if it is
not the case, then see the patterns Multi Merge and Discriminator). Example: After the
payment is received or the credit is granted the car is delivered to the customer.

Solutions, WP4 & WP5. XPDL can address the Exclusive choice pattern (WP4) in
two ways. In both cases, an activity has a split and multiple outgoing transitions. One
way is to use a split of type XOR, i.e., the first transition which as no condition or a
condition which evaluates to true is taken. Another way is to use split of type AND
and define mutual exclusive transition conditions. Listing 3 shows a solution using the
first alternative. Listing 4 shows a solution using the second alternative. In the second
solution transitions AB and AC have a condition. In the first solution transitions AB and
AC do not have a condition which effectively implies that always the first one (AB) is
taken. Besides normal conditions based on workflow relevant data, it is also possible
to use conditions of type OTHERWISE (for the default branch to be taken if all other
conditions evaluate to false) and of type EXCEPTION (for specifying the branch to be
taken after an exception was raised). Listings 3 and 4 also show the direct support for
the Simple merge (WP5).
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Listing 2 (Parallel Split/Synchronization)

1 <WorkflowProcess Id="Parallel">
2 <ProcessHeader DurationUnit="Y"/>
3 <Activities>
4 <Activity Id="A">
5 ...
6 <TransitionRestrictions>
7 <TransitionRestriction>
8 <Split Type="AND">
9 <TransitionRefs>

10 <TransitionRef Id="B"/>
11 <TransitionRef Id="C"/>
12 </TransitionRefs>
13 </Split>
14 </TransitionRestriction>
15 </TransitionRestrictions>
16 </Activity>
17 <Activity Id="B">
18 ...
19 </Activity>
20 <Activity Id="C">
21 ....
22 </Activity>
23 <Activity Id="D">
24 ...
25 <TransitionRestrictions>
26 <TransitionRestriction>
27 <Join Type="AND"/>
28 </TransitionRestriction>
29 </TransitionRestrictions>
30 </Activity>
31 </Activities>
32 <Transitions>
33 <Transition Id="AB" From="A" To="B"/>
34 <Transition Id="AC" From="A" To="C"/>
35 <Transition Id="BD" From="B" To="D"/>
36 <Transition Id="CD" From="C" To="D"/>
37 </Transitions>
38 </WorkflowProcess>

WP6 Multi-choice. A point in the process, where, based on a decision or control data,
a number of branches are chosen and executed as parallel threads. Example: After ex-
ecuting the activity evaluate damage the activity contact fire department or the activity
contact insurance company is executed. At least one of these activities is executed.
However, it is also possible that both need to be executed.

Solution, WP6. XPDL provides direct support for the Multi-Choice pattern as shown in
Listing 5. Depending on the value of amount activity B and/or C is/are executed, e.g.,
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Listing 3 (Exclusive Choice/Simple Merge)

1 <WorkflowProcess Id="Choice1">
2 <ProcessHeader DurationUnit="Y"/>
3 <Activities>
4 <Activity Id="A">
5 ...
6 <TransitionRestrictions>
7 <TransitionRestriction>
8 <Split Type="XOR">
9 <TransitionRefs>

10 <TransitionRef Id="AB"/>
11 <TransitionRef Id="AC"/>
12 </TransitionRefs>
13 </Split>
14 </TransitionRestriction>
15 </TransitionRestrictions>
16 </Activity>
17 <Activity Id="B">
18 ...
19 </Activity>
20 <Activity Id="C">
21 ...
22 </Activity>
23 <Activity Id="D">
24 ...
25 <TransitionRestrictions>
26 <TransitionRestriction>
27 <Join Type="XOR"/>
28 </TransitionRestriction>
29 </TransitionRestrictions>
30 </Activity>
31 </Activities>
32 <Transitions>
33 <Transition Id="AB" From="A" To="B"/>
34 <Transition Id="AC" From="A" To="C"/>
35 <Transition Id="BD" From="B" To="D"/>
36 <Transition Id="CD" From="C" To="D"/>
37 </Transitions>
38 </WorkflowProcess>

if the value of amount is 8 both activities are executed, otherwise just B (amount> 5)
or C (amount< 10).

WP7 Synchronizing Merge. A point in the process where multiple paths converge
into one single thread. Some of these paths are “active” (i.e. they are being executed)
and some are not. If only one path is active, the activity after the merge is triggered
as soon as this path completes. If more than one path is active, synchronization of all
active paths needs to take place before the next activity is triggered. It is an assumption
of this pattern that a branch that has already been activated, cannot be activated again
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Listing 4 (Exclusive Choice/Simple Merge)

1 <WorkflowProcess Id="Choice2">
2 <ProcessHeader DurationUnit="Y"/>
3 <Activities>
4 <Activity Id="A">
5 ...
6 <TransitionRestrictions>
7 <TransitionRestriction>
8 <Split Type="AND">
9 <TransitionRefs>

10 <TransitionRef Id="AB"/>
11 <TransitionRef Id="AC"/>
12 </TransitionRefs>
13 </Split>
14 </TransitionRestriction>
15 </TransitionRestrictions>
16 </Activity>
17 <Activity Id="B">
18 ...
19 </Activity>
20 <Activity Id="C">
21 ...
22 </Activity>
23 <Activity Id="D">
24 ...
25 <TransitionRestrictions>
26 <TransitionRestriction>
27 <Join Type="XOR"/>
28 </TransitionRestriction>
29 </TransitionRestrictions>
30 </Activity>
31 </Activities>
32 <Transitions>
33 <Transition Id="AB" From="A" To="B">
34 <Condition Type="CONDITION">
35 choice == "B" </Condition>
36 </Transition>
37 <Transition Id="AC" From="A" To="C">
38 <Condition Type="CONDITION">
39 choice == "C" </Condition>
40 </Transition>
41 <Transition Id="BD" From="B" To="D"/>
42 <Transition Id="CD" From="C" To="D"/>
43 </Transitions>
44 </WorkflowProcess>

while the merge is still waiting for other branches to complete. Example: After either
or both of the activities contact fire department and contact insurance company have
been completed (depending on whether they were executed at all), the activity submit
report needs to be performed (exactly once).
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Listing 5 (Multi Choice/Synchronizing merge)

1 <WorkflowProcess Id="Multi-choice">
2 <ProcessHeader DurationUnit="Y"/>
3 <Activities>
4 <Activity Id="A">
5 ...
6 <TransitionRestrictions>
7 <TransitionRestriction>
8 <Split Type="AND">
9 <TransitionRefs>

10 <TransitionRef Id="AB"/>
11 <TransitionRef Id="AC"/>
12 </TransitionRefs>
13 </Split>
14 </TransitionRestriction>
15 </TransitionRestrictions>
16 </Activity>
17 <Activity Id="B">
18 ...
19 </Activity>
20 <Activity Id="C">
21 ...
22 </Activity>
23 <Activity Id="D">
24 ...
25 <TransitionRestrictions>
26 <TransitionRestriction>
27 <Join Type="AND"/>
28 </TransitionRestriction>
29 </TransitionRestrictions>
30 </Activity>
31 </Activities>
32 <Transitions>
33 <Transition Id="AB" From="A" To="B">
34 <Condition Type="CONDITION">
35 amount &gt; 5 </Condition>
36 </Transition>
37 <Transition Id="AC" From="A" To="C">
38 <Condition Type="CONDITION">
39 amount &lt; 10 </Condition>
40 </Transition>
41 <Transition Id="BD" From="B" To="D"/>
42 <Transition Id="CD" From="C" To="D"/>
43 </Transitions>
44 </WorkflowProcess>

Solutions, WP7. According to [75] XPDL provides direct support for the Synchroniz-
ing merge pattern. Recall the definition of the AND restriction: “AND: Join of (all)
concurrent threads within the process instance with incoming transitions to the activity:
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Synchronization is required. The number of threads to be synchronized might be de-
pendent on the result of the conditions of previous AND split(s).” [75] which suggests
direct support for the Synchronizing merge pattern. If this is indeed the case, then List-
ing 5 indeed shows an example where activity D either merges or synchronizes the two
ingoing transitions depending on the number of threads activated by activity A. Unfor-
tunately, few workflow systems that claim to support XPDL have indeed this behavior.
Moreover, XPDL allows for multiple interpretations as discussed in Section 5.4.

WP8 Multi-merge. A point in a process where two or more branches reconverge with-
out synchronization. If more than one branch gets activated, possibly concurrently, the
activity following the merge is started for every action of every incoming branch. Ex-
ample: Sometimes two or more branches share the same ending. Two activities audit
application and process applications are running in parallel which should both be fol-
lowed by an activity close case, which should be executed twice if the activities audit
application and process applications are both executed.

Solution, WP8. XPDL only allows for two types of joins: AND and XOR. The seman-
tics of these two joins is not completely clear. A join of type XOR will offer the Simple
merge pattern. Recall that the simple merge assumes that precisely one of the incoming
transitions will occur. However, XPDL allows for situations where the more incoming
transitions will or may occur. Consider Listing 6. Both B and C are executed. Since
activity D has a join of type XOR it can already occur when one of these two have been
executed. However, it is not clear how many times activity D will occur (and when).
In [75] is is stated that “The XOR join initiates the Activity when the transition condi-
tions of any (one) of the incoming transitions evaluates true.”. Since it is not specified
what should happen if multiple incoming transitions evaluate to true at the same time,
we conclude that XPDL does not support the Multi-Merge (WP8). See [15] for typical
work-arounds.

WP9 Discriminator. A point in the workflow process that waits for one of the incoming
branches to complete before activating the subsequent activity. From that moment on
it waits for all remaining branches to complete and “ignores” them. Once all incoming
branches have been triggered, it resets itself so that it can be triggered again (which is
important otherwise it could not really be used in the context of a loop). Example: To
improve query response time a complex search is sent to two different databases over
the Internet. The first one that comes up with the result should proceed the flow. The
second result is ignored.

Solution, WP9. XPDL allows for situations where multiple incoming transitions will
or may occur. However, the precise semantics of a join of type XOR is not specified
and, similar to WP8, we conclude that the Discriminator (WP9) is not supported.

WP10 Arbitrary Cycles. A point where a portion of the process (including one or more
activities and connectors) needs to be “visited” repeatedly without imposing restrictions
on the number, location, and nesting of these points. Note that block-oriented languages
and languages providing constructs such as “while do”, “repeat until” typically impose
such restrictions, e.g., it is not possible to jump from one loop into another loop.
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Listing 6 (Multi-merge?)

1 <WorkflowProcess Id="Parallel">
2 <ProcessHeader DurationUnit="Y"/>
3 <Activities>
4 <Activity Id="A">
5 ...
6 <TransitionRestrictions>
7 <TransitionRestriction>
8 <Split Type="AND">
9 <TransitionRefs>

10 <TransitionRef Id="B"/>
11 <TransitionRef Id="C"/>
12 </TransitionRefs>
13 </Split>
14 </TransitionRestriction>
15 </TransitionRestrictions>
16 </Activity>
17 <Activity Id="B">
18 ...
19 </Activity>
20 <Activity Id="C">
21 ....
22 </Activity>
23 <Activity Id="D">
24 ...
25 <TransitionRestrictions>
26 <TransitionRestriction>
27 <Join Type="XOR"/>
28 </TransitionRestriction>
29 </TransitionRestrictions>
30 </Activity>
31 </Activities>
32 <Transitions>
33 <Transition Id="AB" From="A" To="B"/>
34 <Transition Id="AC" From="A" To="C"/>
35 <Transition Id="BD" From="B" To="D"/>
36 <Transition Id="CD" From="C" To="D"/>
37 </Transitions>
38 </WorkflowProcess>

Solution, WP10. XPDL distinguishes three conformance classes: non-blocked, loop-
blocked, and full-blocked. Conformance class “non-blocked” directly supports this pat-
tern. Note that the transitions basically define a relation and allow for any graph includ-
ing cyclic ones. For the other conformance classes this is not allowed. For conformance
class loop-blocked the network structure has to be acyclic and for conformance class
full-blocked there has to be a one-to-one correspondence between splits and joins of the
same type.
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WP11 Implicit Termination. A given subprocess is terminated when there is nothing
left to do, i.e., termination does not require an explicit termination activity. The goal of
this pattern is to avoid having to join divergent branches into a single point of termina-
tion.

Solution, WP11. XPDL, assuming conformance class “non-blocked”, allows for arbi-
trary graph-like structures. As a result it is possible to have multiple activities without
input transitions (i.e., source activities) and multiple activities without output transitions
(sink activities). The latter suggests direct support for WP11. Unfortunately, [75] does
not clarify the semantics of XPDL in the presence of multiple source and sink activities,
e.g., Do all source activities need to be executed or just one? Although XPDL does not
specify the expected behavior in such cases, we give it the benefit of the doubt. Note
that this illustrates that conformance is still ill-defined in [75] since it refers to syntax
rather than semantics.

WP12 MI without Synchronization. Within the context of a single case, multiple
instances of an activity may be created, i.e. there is a facility for spawning off new
threads of control, all of them independent of each other. The instances might be created
consecutively, but they will be able to run in parallel, which distinguishes this pattern
from the pattern for Arbitrary Cycles. Example: When booking a trip, the activity book
flight is executed multiple times if the trip involves multiple flights.

Solution, WP12. An activity may be refined into a subflow. The subflow may be exe-
cuted synchronously or asynchronously. In case of asynchronous execution, the activity
is continued after an instance of the subflow is initiated. This way it is possible to
“spawn-off” subflows and thus realizing WP12.

WP13-WP15 MI with Synchronization. A point in a workflow where a number of
instances of a given activity are initiated, and these instances are later synchronized,
before proceeding with the rest of the process. In WP13 the number of instances to be
started/synchronized is known at design time. In WP14 the number is known at some
stage during run time, but before the initiation of the instances has started. In WP15 the
number of instances to be created is not known in advance: new instances are created on
demand, until no more instances are required. Example of WP15: When booking a trip,
the activity book flight is executed multiple times if the trip involves multiple flights.
Once all bookings are made, an invoice is sent to the client. How many bookings are
made is only known at runtime through interaction with the user (or with an external
process).

Solutions, WP13-WP15. If the number of instances to be synchronized is known at
design time (WP13), a simple solution is to replicate the activity as many times as it
needs to be instantiated, and run the replicas in parallel. Therefore, WP13 is supported.
However, it is clear that there is no direct support for WP14 and WP15 because any
solution will involve explicit bookkeeping of the number of active instances. In fact in
[75] is is stated that “Synchronization with the initiated subflow, if required, has to be
done by other means such as events, not described in this document.” when describing
the functionality of asynchronous subflows. Therefore, we conclude that there is no
support for WP14 and WP15. Again we refer to [15] for typical workarounds.
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WP16 Deferred Choice. A point in a process where one among several alternative
branches is chosen based on information which is not necessarily available when this
point is reached. This differs from the normal exclusive choice, in that the choice is
not made immediately when the point is reached, but instead several alternatives are
offered, and the choice between them is delayed until the occurrence of some event.
Example: When a contract is finalized, it has to be reviewed and signed either by the
director or by the operations manager, whoever is available first. Both the director and
the operations manager would be notified that the contract is to be reviewed: the first
one who is available will proceed with the review.

Solution, WP16. XPDL only allows for choices resulting from conditions on transi-
tions. Hence each choice is directly-based on workflow relevant data and it is not possi-
ble offer the choice to the environment. XPDL does not allow for the definition of states
(like places in a Petri net) nor constructs like the choice construct in BPML and WSCI
and the pick construct in XLANG and BPEL4WS. There is no simple work-around for
this omission since it is not possible to shift the moment of decision from the end of an
activity to the start of an activity. Moreover, XPDL does not allow for the specification
of triggers and/or external events.

WP17 Interleaved Parallel Routing. A set of activities is executed in an arbitrary
order. Each activity in the set is executed exactly once. The order between the activities
is decided at run-time: it is not until one activity is completed that the decision on what
to do next is taken. In any case, no two activities in the set can be active at the same
time. Example: At the end of each year, a bank executes two activities for each account:
add interest and charge credit card costs. These activities can be executed in any order.
However, since they both update the account, they cannot be executed at the same time.

Solution, WP17. Since XPDL does not allow for the definition of states, it is not pos-
sible to enforce some kind of mutual exclusion. Hence there is no support for WP17.
Even the work-arounds described in [15] are difficult, if not impossible, to apply.

WP18 Milestone. A given activity can only be enabled if a certain milestone has been
reached which has not yet expired. A milestone is defined as a point in the process
where a given activity has finished and another activity following it has not yet started.
Example: After having placed a purchase order, a customer can withdraw it at any time
before the shipping takes place. To withdraw an order, the customer must complete
a withdrawal request form, and this request must be approved by a customer service
representative. The execution of the activity approve order withdrawal must therefore
follow the activity request withdrawal, and can only be done if: (i) the activity place
order is completed, and (ii) the activity ship order has not yet started.

Solution, WP18. XPDL does not provide a direct support for capturing this pattern.
Therefore, a work-around solution has to be used. Again it is difficult to construct so-
lutions inspired by the ideas in [15]. Since other patterns like WP16 and WP19 are not
supported, potential solutions lead to complex process definitions for simply checking
the state in a parallel branch.

WP19 Cancel Activity & WP20 Cancel Case. A cancel activity terminates a running
instance of an activity, while canceling a case leads to the removal of an entire workflow
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instance. Example of WP19: A customer cancels a request for information. Example
of WP20: A customer withdraws his/her order.

Solutions, WP19 & WP20. XPDL does not provide explicit constructs for WP19 and
WP20. The concept of exceptions seems to be related, but like many other concepts
ill-defined. The only construct in XPDL that can raise an exception is the deadline el-
ement. Deadlines are used to raise an exception upon the expiration of a specific period
of time. A deadline can be raised synchronously or asynchronously: “If the deadline
is synchronous, then the activity is terminated before flow continues on the exception
path.” and “If the deadline is asynchronous, then an implicit AND-SPLIT is performed,
and a new thread of processing is started on the appropriate exception transition.” [75].
An exception may trigger a transition but cannot be used to cancel activities or cases.
Hence, XPDL does not support WP19 and WP20.

5.4 Many Ways to Join

In this section, we evaluated XPDL with respect to the patterns. A more detailed analy-
sis reveals that, not only does XPDL have problems with respect to several patterns, the
semantics of many constructs is unclear. To illustrate this we focus on transition restric-
tions of type Join. The restriction is either set to AND or to XOR and the WfMC defines
these settings as follows: “AND: Join of (all) concurrent threads within the process in-
stance with incoming transitions to the activity: Synchronization is required. The num-
ber of threads to be synchronized might be dependent on the result of the conditions of
previous AND split(s).” and “XOR: Join for alternative threads: No synchronization is
required.” [75]. To demonstrate that these descriptions do not fully specify the intended
behavior, Figure 23 shows seven possible interpretations each expressed in terms of a
Petri net (some extended with inhibitor arcs, cf. [63]). Note that Petri nets have formal
semantics, and thus, Figure 23 fully specifies the behavior of each construct. Also note
that we restrict ourselves to local constructs, i.e., the there are no dependencies other
than on the activities directly connected to the join.

The first two constructs correspond to the most straightforward interpretations of
the AND-join (Figure 23(a)) and XOR-join (Figure 23(b)). In Figure 23(a), activity
C always synchronizes A and B, i.e., if A is never executed, C is never executed5. In
Figure 23(b), activity C is executed once for each occurrence of A and B. Although Fig-
ure 23(a) and Figure 23(b) seem to correspond to straightforward interpretations of the
AND-join and XOR-join, few WFM systems actually exhibit this behavior. The other
constructs in Figure 23 show other interpretations for both the AND-join and/or XOR-
join encountered in contemporary systems. Figure 23(c) shows the situation where ac-
tivity A is blocked if C was not executed since the last occurrence of A. Similarly,
activity B is blocked if C was not executed since the last occurrence of B. Note that this
construct uses two inhibitor arcs (i.e., the two connections involving a small circle).
Unlike a normal directed arc in Petri net, an inhibitor arc models the requirement that
a place has to be empty, i.e., A is only enabled if the input place (not shown) contains
a token and the output place is empty. Figure 23(d) shows a similar construct but now
for the XOR-join, i.e., both activity A and activity B are blocked if C was not executed

5 Note that this is not the case in XPDL.
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Fig. 23. Seven frequently used ways to join two flows (expressed in terms of Petri nets with
inhibitor arcs [63]).

since the last occurrence of A or B. The WFM system COSA [67] uses this interpreta-
tion for the AND-join and XOR-join. Figures 23 (c) and (d) use inhibitor arcs to make
sure that activity C is only enabled once. This is realized by blocking the preceding
activities if needed. An alternative approach is to simply remove additional tokens. Fig-
ure 23(e) shows an approach where C synchronizes both flows if both A and B have
been executed. If only one of them has been executed, there is no synchronization. Note
that there are three instances of C: one for the situation where only A was executed,
one for situation where both A and B have been executed, and one where only B was
executed. The two inhibitor arcs make sure that the two flows are synchronized if pos-
sible. Figure 23(f) shows a similar, but slightly different, approach where simply every
attempt to enable C for the second time is ignored. If C is already enabled, then the right
transition will occur, otherwise the left one. Consider the scenario where A occurs twice
before execution C. In Figure 23(e), C will be executed twice, while in Figure 23(f) C
will be executed on ly once. Many systems have a behavior similar to Figure 23(e)/(f),
e.g., a normal step in Staffware [69] behaves as indicated by Figure 23(f). (See [72]
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for a more detailed analysis of Staffware steps.) Although widely supported, the inter-
pretation given in Figure 23(e)/(f) is not very desirable from a modeling point of view
since it introduces “race conditions”, e.g., the number of times C is executed depends
on the interleaving of A, B, and C activities. Figure 23(g) gives yet another interpreta-
tion of the AND/XOR-join. C is enabled immediately after the first occurrence of A or
B, but after it occurs it is blocked until the other activity has also been executed, i.e., the
construct is reset once each of A, B, and C has occurred. Note that this interpretation
corresponds to WP9 (Discriminator pattern).

Figure 23 shows that there are many ways to join two flows. In fact, there are many
more interpretations. An example is the so-called “wait step” in Staffware [69] which
only synchronizes the first time if it is put in a loop (see [72] for more details). An-
other example is the join in IBM’s MQSeries Workflow [46], BPEL4WS [27], and
WSFL (Web Services Flow Language, [56]) which decides whether it has to synchro-
nize or not based on the so-called “Dead-Path-Elimination (DPE)” [57]. Given the quote
“AND: Join of (all) concurrent threads within the process instance with incoming tran-
sitions to the activity: Synchronization is required. The number of threads to be syn-
chronized might be dependent on the result of the conditions of previous AND split(s).”
in [75], the latter interpretation seems to be closest to XPDL. Unfortunately, other than
IBM-influenced products and standards, no other vendors are using nor supporting this
interpretation since it does not allow for Arbitrary cycles (WP10) [9].

The dilemma of joining mixtures of alternative or parallel flows has been discussed
in scientific literature. See [9] for pointers to related papers and an elaborate discussion
in the context of Event-driven Process Chains (EPC’s).

The fact that there are many ways to join and that in [75] the WfMC leaves room for
multiple interpretations, brings us to the issue of conformance. In [75] it is stated that
“A product that claims conformance must generate valid, syntactically correct XPDL,
and must be able to read all valid XPDL.”. Unfortunately, this quote, but also the rest
of [75], does not address the issue of semantics. Note that it is rather easy to generate
and read valid XPDL files. The difficult part is to be able to interpret XPDL generated
by another tool and execute the workflow as intended.

5.5 Comparing XPDL with Other Languages and Standards

Thus far, we provided a critical evaluation of XPDL based on a set of 20 basic work-
flow patterns. To conclude this section, we compare XPDL with other standards and 15
workflow products.

Table 1 shows an evaluation of XPDL and six other standards. If a standard directly
supports the pattern through one of its constructs, it is rated +. If the pattern is not
directly supported, it is rated +/-. Any solution which results in spaghetti diagrams or
coding, is considered as giving no direct support and is rated -. The rating of XPDL is
as explained in this section.

UML activity diagrams [42] are intended to model both computational and orga-
nizational processes. Increasingly, UML activity diagrams are also used for workflow
modeling. Therefore, it is interesting to analyze their expressiveness using the set of
basic workflow patterns as shown in the table. for more information see [31].
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Table 1. A comparison of XPDL with other standards such as UML Activity Diagrams,
BPEL4WS, BPML, XLANG, WSFL, and WSCI.

pattern standard
XPDL UML BPEL4WS BPML XLANG WSFL WSCI

1 (seq) + + + + + + +
2 (par-spl) + + + + + + +
3 (synch) + + + + + + +
4 (ex-ch) + + + + + + +
5 (simple-m) + + + + + + +
6 (m-choice) + - + - - + -
7 (sync-m) +a - + - - + -
8 (multi-m) - - - +/- - - +/-
9 (disc) - - - - - - -
10 (arb-c) +b - - - - - -
11 (impl-t) +c - + + - + +
12 (mi-no-s) + - + + + + +
13 (mi-dt) + + + + + + +
14 (mi-rt) - + - - - - -
15 (mi-no) - - - - - - -
16 (def-c) - + + + + - +
17 (int-par) - - +/- - - - -
18 (milest) - - - - - - -
19 (can-a) - + + + + + +
20 (can-c) - + + + + + +

a Although the description of the AND-join suggests support for WP7, XPDL does not specify
its precise behavior. In fact, for conformance class “non-blocked”, it is unclear how WP7 could
be supported

b For conformance class “non-blocked”, arbitrary graph-like structures are allowed, including
arbitrary cycles. For the other conformance classes this is explicitly excluded

c For all conformance classes there may be multiple source and/or sink activities. Hence, from
a syntactical point of view WP11 is supported. Unfortunately, no semantics are given for this
construct

The recently released BPEL4WS (Business Process Execution Language for Web
Services, [27]) specification builds on IBM’s WSFL (Web Services Flow Language,
[56]) and Microsoft’s XLANG [70]. XLANG is a block-structured language with basic
control flow structures such as sequence, switch (for conditional routing), while (for
looping), all (for parallel routing), and pick (for race conditions based on timing or
external triggers). In contrast to XLANG, WSFL is not limited to block structures and
allows for directed graphs. The graphs can be nested but need to be acyclic. Iteration is
only supported through exit conditions, i.e., an activity/subprocess is iterated until its
exit condition is met. The control flow part of WSFL is almost identical to the workflow
language used by IBM’s MQ Series Workflow. See [76, 77] for more information about
the evaluation of BPEL4WS, XLANG, and WSFL using the patterns.

BPML (Business Process Modeling language, [21]) is a standard developed and
promoted by BPMI.org (the Business Process Management Initiative). BPMI.org is
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Table 2. The main results for Staffware, COSA, InConcert, Eastman, FLOWer, Lotus Domino
Workflow, Meteor, and Mobile.

pattern product
Staffware COSA InConcert Eastman FLOWer Domino Meteor Mobile

1 (seq) + + + + + + + +
2 (par-spl) + + + + + + + +
3 (synch) + + + + + + + +
4 (ex-ch) + + +/- + + + + +
5 (simple-m) + + +/- + + + + +
6 (m-choice) - + +/- +/- - + + +
7 (sync-m) - +/- + + - + - -
8 (multi-m) - - - + +/- +/- + -
9 (disc) - - - + +/- - +/- +
10 (arb-c) + + - + - + + -
11 (impl-t) + - + + - + - -
12 (mi-no-s) - +/- - + + +/- + -
13 (mi-dt) + + + + + + + +
14 (mi-rt) - - - - + - - -
15 (mi-no) - - - - + - - -
16 (def-c) - + - - +/- - - -
17 (int-par) - + - - +/- - - +
18 (milest) - + - - +/- - - -
19 (can-a) + + - - +/- - - -
20 (can-c) - - - - +/- + - -

supported by several organizations, including Intalio, SAP, Sun, and Versata. The Web
Service Choreography Interface (WSCI, [20]) submitted in June 2002 to the W3C by
BEA Systems, BPMI.org, Commerce One, Fujitsu Limited, Intalio, IONA, Oracle Cor-
poration, SAP AG, SeeBeyond Technology Corporation, and Sun Microsystems. There
is a substantial overlap between BPML and WSCI. See [11] for more information about
the evaluation of BPML and WSCI using the patterns.

In addition to comparing XPDL to other standards, it is interesting to compare
XPDL with contemporary WFM systems. Tables 2 and 3 summarize the results of
the comparison of 15 WFM systems in terms of the selected patterns. These tables
are taken from [15] and have been added to compare contemporary workflow products
with XPDL.

From the comparison it is clear that no tool supports all of the selected patterns. In
fact, many of these tools only support a relatively small subset of the more advanced
patterns (i.e., patterns 6 to 20). Specifically the limited support for the discriminator,
the state-based patterns (only COSA), the synchronization of multiple instances (only
FLOWer) and cancellation (esp. of activities), is worth noting.

Please apply the results summarized in tables 1, 2 and 3 with care. First of all, the
organization selecting a WFM system/standard should focus on the patterns most rele-
vant for the workflow processes at hand. Since support for the more advanced patterns
is limited, one should focus on the patterns most needed. Second, the fact that a pattern
is not directly supported by a product does not imply that it is not possible to support
the construct at all. As indicated in [15], many patterns can be supported indirectly
through mixtures of more basic patterns and coding. Third, the patterns reported in this
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Table 3. The main results for MQSeries, Forté Conductor, Verve, Visual WorkFlo, Changengine,
I-Flow, and SAP/R3 Workflow.

pattern product
MQSeries Forté Verve Vis. WF Changeng. I-Flow SAP/R3

1 (seq) + + + + + + +
2 (par-spl) + + + + + + +
3 (synch) + + + + + + +
4 (ex-ch) + + + + + + +
5 (simple-m) + + + + + + +
6 (m-choice) + + + + + + +
7 (sync-m) + - - - - - -
8 (multi-m) - + + - - - -
9 (disc) - + + - + - +
10 (arb-c) - + + +/- + + -
11 (impl-t) + - - - - - -
12 (mi-no-s) - + + + - + -
13 (mi-dt) + + + + + + +
14 (mi-rt) - - - - - - +/-
15 (mi-no) - - - - - - -
16 (def-c) - - - - - - -
17 (int-par) - - - - - - -
18 (milest) - - - - - - -
19 (can-a) - - - - - - +
20 (can-c) - + + - + - +

tutorial only focus on the process perspective (i.e., control flow or routing). The other
perspectives (e.g., organizational modeling) should also be taken into account.

Tables 1, 2 and 3 allow for an objective comparison of the 7 standards and 15 WFM
systems. When comparing XPDL to the 6 other standards, it is remarkable to see that
XPDL seems to be less expressive than web service composition languages such as
BPEL4WS and BPML. An important pattern like the Deferred choice (WP16) is sup-
ported by most standards and is vital for practical application of WFM. Nevertheless,
it is not even mentioned in [75]. Compared to the 15 WFM systems, XPDL is not as
expressive as one would expect. Many systems offer functionality (e.g., the Deferred
choice and the Cancel activity patterns), not supported by XPDL. It almost seems that
XPDL offers the intersection rather than the union of the functionality offered by con-
temporary systems. This may have been the initial goal of XPDL. However, if this is
the case, two important questions need to be answered.

1. If XPDL offers the intersection rather than the union of the functionality of existing
systems, then how to use XPDL in practice? Should workflow designers that want
to be able to export only use a subset of the functionality offered by the system?
If so, users would not be able to use powerful concepts like the Deferred choice
(WP16) and the Cancel activity (WP19) patterns.

2. Why does XPDL support the Synchronizing merge (WP7) while it is only sup-
ported by a few systems. Widely-used systems like Staffware do not support this
pattern, and therefore, will be unable to interpret the AND-join as indicated in [75].
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Note that the issues raised cannot be solved satisfactorily. If XPDL offers the inter-
section of the functionality of existing systems, it is less expressive than many of the
existing tools and standards. If XPDL offers the union of available functionality, it may
become impossible to import a process definition into a concrete system and interpret
it correctly. (Recall that no system supports all patterns.) Unfortunately, this dilemma
is not really addressed by the WfMC [75]. The introduction of extended attributes (i.e.,
extensions of XPDL for a specific product) and conformance classes (i.e., restrictions
to allow the use of specific products) are no solution and only complicate matters.

There have been several comparisons of some of the languages mentioned in this
tutorial. These comparisons typically do not use a framework and provide an opinion
rather than a structured analysis. A positive example is [65] where XPDL, BPML and
BPEL4WS are compared by relating the concepts used in the three languages. Unfor-
tunately, the paper raises more questions than it answers.

Besides the dilemma that XPDL is either not expressive enough or too expressive,
there is the problem of semantics. In [75] the WfMC does not give unambiguous spec-
ification of all the elements in the language. As a result, many vendors can claim to be
compliant while interpreting constructs in a different way. In Section 5.4, we demon-
strated that there are many interpretations of seemingly basic constructs like the AND-
join and XOR-join. The lack of semantics restricts the application of XPDL and does
not allow for a meaningful realization of the topic of conformance. As indicated be-
fore, [75] defines conformance as follows: “A product that claims conformance must
generate valid, syntactically correct XPDL, and must be able to read all valid XPDL.”.
Clearly, this inadequate and will not stimulate further standardization in the workflow
domain. As a result, web service composition languages like BPML and BPEL4WS
may take over the role of XPDL [6].

6 Related Work

There is a lot of literature on WFM and WFM systems. Only some of the books
on WFM are referred to in this tutorial [12, 37, 38, 48, 55, 57, 58, 61]. There are also
many publications reporting on the application of Petri nets to WFM. In this tuto-
rial we mainly referred to papers using WF-nets and soundness (or variants thereof)
[1, 3, 4, 28, 44, 52, 54]. For the evaluation of XPDL we relied heavily on the work on
workflow patterns. See [15, 77] or http://www.workflowpatterns.com for
more information. The two Springer Lecture Notes in Computing science volumes
on BPM can serve as a starting point for finding the state-of-the-art results in this
domain [10, 16]. Clearly, it is impossible to be complete. Please use the references
given in this tutorial for finding more material. Finally, we would like to point out
http://www.workflowcourse.com as a resource for all kinds of learning ma-
terial ranging from slides to interactive animations.

7 Conclusion

The goal of this tutorial is to introduce the WFM/BPM domain from a Petri-net point-
of-view. The focus of the first part of the tutorial was on the application of Petri nets in
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this domain. Sections 2 and 3 showed how WF-nets can be used to model and analyze
workflow processes. The focus of the second part was more on the application domain
itself. Sections 4 and 5 provided information on systems, languages, and standards.
To illustrate things we presented a detailed analysis of XPDL using a set of workflow
patterns.

To conclude this tutorial we reflect on the role of Petri nets in the WFM/BPM do-
main. There are at least three good reasons for using Petri nets for workflow modeling
and analysis ([2]):

1. Formal semantics despite the graphical nature
On the one hand, Petri nets are a graphical language which allows for the mod-
eling of the workflow primitives identified by the WfMC. On the other hand, the
semantics of Petri nets (including most of the extensions) have been defined for-
mally. Many of today’s available WFM systems provide ad-hoc constructs to model
workflow procedures. Moreover, there are WFM systems that impose restrictions
on many of the workflow patterns discussed. Some WFM systems also provide ex-
otic constructs whose semantics are not 100% clear, cf. the join construct in XPDL
and many other languages. Because of these problems it is better to use a well-
established design language with formal semantics as a solid basis.

2. State-based instead of event-based
In contrast to many other process modeling techniques, the state of case can be
modeled explicitly in a Petri net. Process modeling techniques ranging from in-
formal techniques such as dataflow diagrams to formal techniques such as process
algebra’s are event-based, i.e., transitions are modeled explicitly and the states be-
tween subsequent transitions are only modeled implicitly. Today’s WFM systems
are typically event-based, i.e., tasks are modeled explicitly and states between sub-
sequent tasks are suppressed. The distinction between an event-based and a state-
based description may appear to be subtle, but patterns like the Deferred choice
(WP16) and the Milestone (WP18) show that this is of the utmost importance for
workflow modeling.

3. Abundance of analysis techniques
Petri nets are marked by the availability of many analysis techniques. Clearly, this
is a great asset in favor of a Petri nets. In this tutorial, we focused on the verification
of WF-nets. We have seen that Petri-net-based analysis techniques can be used to
determine the correctness of a workflow process definition. The availability of these
techniques illustrates that Petri-net theory can be used to add powerful analysis
capabilities to the next generation of WFM systems.

However, as indicated in [13] there are also problems when modeling workflows in
terms of a Petri nets. For the more advanced routing constructs it is necessary to resort
to high-level nets [49, 50]. Moreover, a straightforward application of high-level Petri
nets does not always yield the desired result. There seem to be three problems relevant
for modeling workflow processes:

1. High-level Petri nets support colored tokens, i.e., a token can have a value. Al-
though it is possible to use this to identify multiple instances of a subprocess, there
is no specific support for patterns involving multiple instances and the burden of
keeping track, splitting, and joining of instances is carried by the designer.
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2. Sometimes two flows need to be joined while it is not clear whether synchronization
is needed, i.e., if both flows are active an AND-join is needed otherwise an XOR-
join. Such advanced synchronization patterns are difficult to model in terms of a
high-level Petri net because the firing rule only supports two types of joins: the
AND-join (transition) or the XOR-join (place).

3. The firing of a transition is always local, i.e., enabling is only based on the tokens
in the input places and firing is only affecting the input and output places. However,
some events in the workflow may have an effect which is not local, e.g., because
of an error tokens need to be removed from various places without knowing where
the tokens reside. Everyone who has modeled such a cancellation pattern (e.g., a
global timeout mechanism) in terms of Petri nets knows that it is cumbersome to
model a so-called “vacuum cleaner” removing tokens from selected parts of the net.

Compared to existing WFM languages high-level Petri nets are quite expressive when it
comes to supporting the workflow patterns. Recall that we use the term “expressiveness”
not in the formal sense. High-level Petri nets are Turing complete, and therefore, can do
anything we can define in terms of an algorithm. However, this does not imply that the
modeling effort is acceptable. High-level nets, in contrast to many workflow languages,
have no problems dealing with state-based patterns. This is a direct consequence of
the fact that Petri nets use places to represent states explicitly. Although high-level
Petri nets outperform most of the existing languages when it comes to modeling the
control flow, the result is not completely satisfactory since the three problems indicated
hamper the application in the WFM/BPM domain. This triggered the development of
YAWL (Yet Another Workflow Language). YAWL is based on Petri nets but extended
with additional features to facilitate the modeling of complex workflows [13, 14]. See
http://www.citi.qut.edu.au/yawl/ for more information or to download
the YAWL system.
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A XPDL Schema

The listing below shows selected parts of the XPDL Schema given in [75] relevant for
this tutorial.

1 <xsd:element name="Activity">
2 <xsd:complexType>
3 <xsd:sequence>
4 <xsd:element ref="xpdl:Description" minOccurs="0"/>
5 <xsd:element ref="xpdl:Limit" minOccurs="0"/>
6 <xsd:choice>
7 <xsd:element ref="xpdl:Route"/>
8 <xsd:element ref="xpdl:Implementation"/>
9 <xsd:element ref="xpdl:BlockActivity"/>

10 </xsd:choice>
11 <xsd:element ref="xpdl:Performer" minOccurs="0"/>
12 <xsd:element ref="xpdl:StartMode" minOccurs="0"/>
13 <xsd:element ref="xpdl:FinishMode" minOccurs="0"/>
14 <xsd:element ref="xpdl:Priority" minOccurs="0"/>
15 <xsd:element ref="xpdl:Deadline" minOccurs="0"
16 maxOccurs="unbounded"/>
17 <xsd:element ref="xpdl:SimulationInformation" minOccurs="0"/>
18 <xsd:element ref="xpdl:Icon" minOccurs="0"/>
19 <xsd:element ref="xpdl:Documentation" minOccurs="0"/>
20 <xsd:element ref="xpdl:TransitionRestrictions" minOccurs="0"/>
21 <xsd:element ref="xpdl:ExtendedAttributes" minOccurs="0"/>
22 </xsd:sequence>
23 <xsd:attribute name="Id" type="xsd:NMTOKEN" use="required"/>
24 <xsd:attribute name="Name" type="xsd:string"/>
25 </xsd:complexType>
26 </xsd:element>
27 ...
28 <xsd:element name="TransitionRestriction">
29 <xsd:complexType>
30 <xsd:sequence>
31 <xsd:element ref="xpdl:Join" minOccurs="0"/>
32 <xsd:element ref="xpdl:Split" minOccurs="0"/>
33 </xsd:sequence>
34 </xsd:complexType>
35 </xsd:element> <xsd:element name="TransitionRestrictions">
36 <xsd:complexType>
37 <xsd:sequence>
38 <xsd:element ref="xpdl:TransitionRestriction" minOccurs="0"
39 maxOccurs="unbounded"/>
40 </xsd:sequence>
41 </xsd:complexType>
42 </xsd:element>
43 ...
44 <xsd:element name="Join">
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45 <xsd:complexType>
46 <xsd:attribute name="Type">
47 <xsd:simpleType>
48 <xsd:restriction base="xsd:NMTOKEN">
49 <xsd:enumeration value="AND"/>
50 <xsd:enumeration value="XOR"/>
51 </xsd:restriction>
52 </xsd:simpleType>
53 </xsd:attribute>
54 </xsd:complexType>
55 </xsd:element>
56 ...
57 <xsd:element name="Split">
58 <xsd:complexType>
59 <xsd:sequence>
60 <xsd:element ref="xpdl:TransitionRefs" minOccurs="0"/>
61 </xsd:sequence>
62 <xsd:attribute name="Type">
63 <xsd:simpleType>
64 <xsd:restriction base="xsd:NMTOKEN">
65 <xsd:enumeration value="AND"/>
66 <xsd:enumeration value="XOR"/>
67 </xsd:restriction>
68 </xsd:simpleType>
69 </xsd:attribute>
70 </xsd:complexType>
71 </xsd:element>
72 ...
73 <xsd:element name="Transition">
74 <xsd:complexType>
75 <xsd:sequence>
76 <xsd:element ref="xpdl:Condition" minOccurs="0"/>
77 <xsd:element ref="xpdl:Description" minOccurs="0"/>
78 <xsd:element ref="xpdl:ExtendedAttributes" minOccurs="0"/>
79 </xsd:sequence>
80 <xsd:attribute name="Id" type="xsd:NMTOKEN" use="required"/>
81 <xsd:attribute name="From" type="xsd:NMTOKEN" use="required"/>
82 <xsd:attribute name="To" type="xsd:NMTOKEN" use="required"/>
83 <xsd:attribute name="Name" type="xsd:string"/>
84 </xsd:complexType>
85 </xsd:element>
86 ...
87 <xsd:element name="Condition">
88 <xsd:complexType mixed="true">
89 <xsd:choice minOccurs="0" maxOccurs="unbounded">
90 <xsd:element ref="xpdl:Xpression"/>
91 </xsd:choice>
92 <xsd:attribute name="Type">
93 <xsd:simpleType>
94 <xsd:restriction base="xsd:NMTOKEN">
95 <xsd:enumeration value="CONDITION"/>
96 <xsd:enumeration value="OTHERWISE"/>
97 <xsd:enumeration value="EXCEPTION"/>
98 <xsd:enumeration value="DEFAULTEXCEPTION"/>
99 </xsd:restriction>

100 </xsd:simpleType>
101 </xsd:attribute>
102 </xsd:complexType>
103 </xsd:element>
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Abstract. We describe InterPlay, a simulation engine coordinator that supports
cooperation and interaction of multiple simulation and execution tools, thus help-
ing to scale-up the design and development cycle of reactive systems. InterPlay
involves two main ideas. In the first, we concentrate on the inter-object design ap-
proach involving LSCs and the Play-Engine tool, enabling multiple Play-Engines
to run in cooperation. This makes possible the distributed design of large-scale
systems by different teams, as well as the refinement of parts of a system using
different Play-Engines. The second idea concerns combining the inter-object ap-
proach with the more conventional intra-object approach, involving, for example,
statecharts and Rhapsody. InterPlay makes it possible to run the Play-Engine in
cooperation with Rhapsody, and is very useful when some system objects have
clear and distinct internal behavior, or in an iterative development process where
the design is implementation-oriented and the ultimate goal is to end up with an
intra-object implementation.

1 Introduction

The goal of this work is to enrich the scale-up possibilities in the development cycle
of reactive systems, when working in an inter-object, scenario-based paradigm, such
as that described in [5]. We do this by introducing and implementing a methodology
of distributed design, which involves two related ideas. The methodology is intended
to supply a new level of flexibility in system development, and to help ensure that the
various parts of a system designed by different teams cooperate and integrate into a
single working and harmonious system.

The ideas are implemented in what we shall be calling InterPlay, a simulation
engine coordinator1 that supports the cooperation and interaction of different simulation
and execution tools. These can support different design approaches to the modeling
parts of a system or the various levels of abstraction thereof.

There are many proposed approaches to distributed computing, and many feature
platform and language independence. This allows connecting applications spanning
multiple platforms and operating systems, which have been written by different com-
panies in various languages. Among such solutions are the following: RMI (Remoter
Method Invocation) for distributed Java applications [11]; DCOM2, which is most often
associated with Microsoft operating systems but is also supported on Unix, VMS and

1 In fact, in [5] InterPlay was referred to by the acronym SEC.
2 Soon to be replaced by .NET [8].
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Macintosh [1]; CORBA [9]; and the more recent Web Services using the SOAP com-
munication protocol [10]. While all these approaches apply to the realm of implemented
components, there appears to be no solution to the problem of high-level model-driven
distributed design that can offer independence of vendors (supporting, e.g., both Ratio-
nal Rose, and Rhapsody from I-Logix), of overall design philosophy (supporting both
an inter-object and an intra-object methodology), and of levels of abstraction. InterPlay
can be viewed as an attempt to address these kinds of independence too.

Before discussing the two ideas manifested in InterPlay, we briefly recall the dual
approaches to specifying reactive behavior, described, e.g., in [2, 5]. The first approach
is an inter-object, scenario-based one, which is based on specifying cross-object sce-
narios of various modalities, one at a time. This approach is particularly natural for
discussing behavior and specifying requirements, and is exemplified by the language of
live sequence charts (LSCs) [2] and the play-in/out method with its supporting Play-
Engine tool [5]. The second approach is the more conventional intra-object one, which
is usually state-based, and is naturally suited for the specification of objects that have
clear internal behavior. This approach specifies all possible behaviors for each object in
the system, and it leads directly to implementation. It is exemplified by the language of
statecharts [3] and the Rhapsody tool [4, 6], or by conventional object-by-object code.
The conceptual duality between these approaches is illustrated visually in Figure 1.

Fig. 1. A visual description of the intra-object and inter-object design approaches respectively.

Let us examine the design and development cycle of a system, observing how the
two approaches may be used within it. In the early stages of transforming the client’s
requirements into a formal specification, the overall functionality of the system is the
most important. Here, the main logical components of the system will typically appear,
with no specific implementation-related details. This bird’s-eye point of view is best
described using the inter-object design approach, where we ignore inner mechanisms
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of system components and focus on the overall behavior of the system, concentrating
on interactions among the user, the environment and the system components. Complex
systems may have a very large number of objects, practically forcing the distribution of
the specification effort – and later also the design and implementation efforts – between
multiple teams.

Accordingly, the first ability of InterPlay concentrates on the inter-object approach,
and enables multiple Play-Engines to run in cooperation. This makes it possible for
different teams to specify the inter-object behavior of different collections of objects,
and then run these specifications in a fully cooperative manner. It also makes it possible
to refine parts of the system using different Play-Engines. Technically, this is achieved
by using external objects: each team is assigned some part of the system (actually, a
set of objects) to design in detail. A particular team’s objects may interact with other
objects, to which the team refers as external. These external objects are in fact the
interface of the other subsystems with respect to the current team’s subsystem3. All
other objects are ignored. The objects with which the team’s specification interacts are
thus outside the assigned scope and responsibility of the team, yet the team is aware
of them, recognizing them as being designed and driven by some other team. The first
part of the InterPlay methodology allows these different parts to be executed in tandem,
by its ability to have multiple Play-Engines execute together. This distributed design
method is illustrated in Figure 2.

Fig. 2. Distributed design with external objects: External objects are drawn as clouds and each
external-internal pair share the same color. Each team specifies a part of the system using the
inter-object design approach, and refers to other relevant objects as external.

Let us now turn to the second ability of InterPlay. Following detailed specifications
and refinement of requirements, we would like to carry out a transition to design and
implementation. While the Play-Engine can indeed execute inter-object specifications,

3 For more details about external objects, interfaces and distribution to subsystems, see Sec-
tion 3.
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including multiple engines playing together through InterPlay, this is still within the
inter-object approach. There will often be objects that have clear and distinct internal
behavior which we would like to specify in a more conventional state-based intra-object
fashion, using, say, statecharts or code. Moreover, the ultimate goal might be to end up
with a complete intra-object implementation, which could be achieved by an iterative
development process, during which objects will be gradually provided with intra-object
implementation-oriented behavior. The Play-Engine would be useful at the very begin-
ning of this process, and a standard intra-object tool like Rhapsody would be useful
at the end, but we want something for the interim, when we have a combination of
inter-object and intra-object specifications.

The second feature of InterPlay allows just that: the cooperative execution of a
mixed system, some parts being specified in a scenario-based fashion, e.g., in LSCs,
and others specified in an intra-object state-based fashion, e.g., in statecharts or code.
Technically, InterPlay allows the Play-Engine and Rhapsody to execute simultaneously,
each taking care of some of the objects. Figure 3 illustrates this, by showing an inter-
object specification, with one object designed using the intra-object approach.

The two InterPlay ideas combined enable what we call horizontal scale-up, where-
by a large system can be split up into parts, each specified in an inter-object or intra-
object fashion, at will, and then executed as a whole by Play-Engines cooperating
among themselves and/or cooperating with the Rhapsody tool. We view this as a crucial
step towards the ability to incorporate the inter-object approach into the development
of large and complex systems.

Fig. 3. An inter-object specification with one object designed using the intra-object approach.

The rest of this paper is organized as follows. Section 2 gives a brief overview of the
LSC language and the Play-Engine, illustrated using a take-out service system, which
serves as a running example throughout the paper. Section 3 discusses the changes intro-
duced in the Play-Engine to support InterPlay and explains their relevance to horizontal
scale-up. Section 4 introduces in more detail the InterPlay tool and techniques. Section
5 elaborates on the take-out service example, illustrating the usefulness of InterPlay in
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integrating the various parts of a system. Section 6 concludes with a discussion of future
work, including related research we are carrying out on vertical scale-up.

2 The Play-Engine and LSCs

This section provides a short introduction to the language of live sequence charts
(LSCs) and the Play-Engine. The discussion, however, is very brief, and we strongly
suggest referring to [5] for more details.

The language of LSCs [2] is a scenario-based visual formalism, which extends clas-
sical message sequence charts (MSCs) with logical modalities, thus achieving a far
greater expressive power, comparable to that of temporal logic [7]. The Play-Engine
supports LSCs, by enabling a system designer to capture behavioral requirements by
playing in behavior using a graphical interface (GUI) of the target system or an abstract
version thereof. As the behavior is played in, the formalized behavior is automatically
generated by the Play-Engine, in the form of LSCs.

LSCs have two types of charts, universal and existential. Universal charts are used
to specify restrictions over all possible system runs, and thus constrain the allowed
behaviors. A universal chart typically contains a prechart, which specifies the scenario
which, if successfully executed, forces the system to satisfy the scenario given in the
actual chart body. Existential charts, on the other hand, specify sample interactions
between the system and its environment, and are required only to be satisfied by at least
one system run. They thus do not force the application to behave in a certain way in
all cases, and can be used to specify system tests, or simply to illustrate longer (non-
restricting) scenarios that provide a broader picture of the behavioral possibilities to
which the system gives rise.

We borrow an LSC from our running example, a take-out system described in detail
in section 5, to illustrate the main concepts and constructs of the language of LSCs.

In the universal LSC of Figure 4, the prechart (top dashed hexagon) contains the
event of the user clicking the btnOper button. If this indeed occurs, the chart body
then requires the CustomerConrtol object to update the occupancy of the restaurant
by means of a method call that changes the number of customers in the restaurant.
However, we want this update to happen only after a fixed time interval – three clock
ticks in our case. The chart body consists of an unbounded loop construct (denoted by
‘*’), which is repeated infinitely many times, unless interrupted. The loop contains an
assignment in which the variable N is assigned the current time. It is important to note
that the assignment’s variable is local to the containing chart and can be used for the
specification of that chart only, as opposed to the system’s state variables, which may
be used in several charts.

After the assignment comes a hot condition, requiring the time to advance 3 ticks
before continuing. Hot conditions are mandatory, and must always be true; if not, the
requirements are violated and the system aborts. However, when dealing with time, the
system simply waits until the specified condition holds. On the other hand, if a cold
condition is false, the surrounding (sub)chart is exited. This is one example of the way
the logical modalities are incorporated into LSCs.
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Fig. 4. An LSC example: Updating the occupancy of a restaurant.

An LSC can have forbidden elements, listed in a separate area underneath the
main chart. Hot and cold elements work similarly there too; e.g., if a hot forbidden
condition becomes true, the requirements are violated and the system aborts, whereas
a cold one becoming true causes the chart or subchart which is its scope to be exited.
In our example in Figure 4, there is a cold forbidden message associated with the loop
subchart, the effect being that if the user presses the btnOper button again the loop
and the chart terminates.

We shall not discuss the play-in process here, but play-out is very relevant. In the
play-out phase the user plays the GUI application as he/she would have done when
executing a system model (or, for that matter, the final system) but limiting him/herself
to ‘end-user’ and external environment actions only. While doing so, the Play-Engine
keeps track of the actions taken, and causes other actions and events to occur as dictated
by the LSCs, thus giving the effect of working with a fully operational system or an
executable model. It is actually an iterative process, where after each step taken by
the user, the play-engine computes a superstep, which is a sequence of events carried
out by the system as response to the event input by the user. Only those things it is
required to do are actually done, while those it is forbidden to do are avoided. This is
a minimalistic, but completely safe, way for a system to behave exactly according to
the requirements. It is noteworthy that no code needs to be written in order to play out
the behavior, nor does one have to prepare a conventional intra-object system model,
as is required in most system development methodologies (e.g., using statecharts or
some other language for describing the full behavior of each object, as in the UML, for
example). We should also emphasize that the behavior played out is up to the user, and
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need not reflect the behavior as it was played in; the user is not merely tracing scenarios,
but is executing the specified behavior freely, as he/she sees fit.

This ability to execute inter-object behavior without building a system model or
writing code leads to various improvements in building reactive systems. It enables ex-
ecutable requirements, for example, whereby the Play-Engine becomes a sort of ‘uni-
versal reactive machine’, running the requirements that were played in via a GUI or
written directly as LSCs4. You provide the global, declarative, inter-object ways you
want your system to behave (or to not behave), and the engine simulates these directly.
It also allows for executable test-suites, whose executions can then be compared with
those of the actual implementation.

As we shall explain later, enabling the cooperation of multiple Play-Engines and
these cooperating with conventional tools, allows both distributed design and refine-
ment of such specifications, as well as the gradual introduction of implementation-
oriented details in advanced design stages.

3 External Objects in Preparation for InterPlay

Some time ago we introduced external objects into LSCs and implemented them in the
Play-Engine along with their respective mechanisms; see Chapter 14 in [5]. However,
that introduction was made bearing in mind the idea presented here. In fact, on their
own, without InterPlay, external objects are rather hollow, providing little substantial
enhancement to the design and development cycle5. In this section, we briefly survey
the addition of external objects, stressing their role in the scheme we present.

When dealing with reactive systems we distinguish between the system proper and
other elements that interact with it, to which we refer as the environment. The system’s
user is separated from the environment and can interact with the system through the
GUI, while the other elements of the environment can affect external settings of the
system, mainly through changing object properties. Since most reactive systems work in
the presence of such external/environmental objects and can affect them and be affected
by them, it is necessary to express the interaction with them.

Technically, we have added to the LSCs language and to the Play-Engine a new
kind of object, the external object, which will be considered as part of the system’s
environment. External objects are recognized by the system, but are driven externally by
another modeling tool, or by code. What will become extremely important, however, is
the fact that external objects allow other systems to interact with the one we are working
on.

Having external objects within the specification entails more than just breaking up
the environment into individual pieces. These pieces are objects in their own right, they
have properties, they can be in different states, they can call other objects, etc. However,
as we shall see in a moment, in terms of what the Play-Engine knows when ‘working
on’ a particular system with its environment, an external object is abstract; it is not

4 In principle this could have been done using any other sufficiently powerful scenario-based
language, such as timing diagrams or temporal logic.

5 Without InterPlay no more than two Play-Engines can run cooperatively, and they must always
use the exact same system model.
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considered to be an ordinary object, and, for example, cannot be triggered (by our Play-
Engine specification) to call other objects.

In the LSCs themselves (and also during play-in) external objects are treated much
like other objects, and the fact they are external is merely indicated by a little cloud at-
tached to the object-name box. Any object can be made external easily, by flipping the
appropriate property in its definition. Thus, objects can be considered internal through-
out some portion of the system development process, and then made external later on,
whether for refining its design elsewhere, or to implement and test it. We shall see later
how this ability can be exploited.

The main difference between internal and external objects occurs during play-out.
Usually, property changes of objects, and calls between them, are performed by the
Play-Engine as a part of its super-steps. This, however, is not what we want for external
objects. The way they are controlled in a simple one-engine use of the Play-Engine is
by the system’s end-user, but the ultimate goal is for them to be controlled by some
other modeling tool, possibly another Play-Engine, or implemented in code. And this is
what InterPlay is all about. Consequently, the execution mechanism of the Play-Engine
has been modified, so that it does not initiate events that originate from external objects,
just as it does not initiate events from the user, or the environment.

Appropriate sets of external objects serve as a commitment between the different
teams and their respective parts of the system. They can be compared to an interface in
object-oriented programming. The team that sees a specific object as external uses it as
a part of its communication mechanism with the outside world. As such, the team relies
on this object having certain properties and methods. Hence, the team that ‘owns’ the
object as internal can add properties or methods to it, but not change the original ones.
All the added properties and methods added in such a way are for the internal use of
that specific team and are not reflected outside on the other external views of the object.

Our methodology is, in a sense, backward compatible, since it can be applied to
any existing specification set, even if it was prepared before the introduction of exter-
nal objects. One of the benefits of this compatibility is that even if two systems have
been specified separately, they can later be joined, without any pre-planning. If the two
different specifications have referred to some common part, even if slightly differently
and by different names, they can still be considered jointly, by choosing the common
part to be external in one of the specifications and remaining internal in the other.

In order to support the external objects mechanism, we added to the Play-Engine an
external event manager, which deals with the technicalities of remote connections to
other computers (e.g., IP, ports, etc.) and conveys messages to and from external objects.
In fact, once the external manager is activated, the Play-Engine transmits to the outside
world the entire sequence of events that occurs among its GUI and internal objects. The
Play-Engine also receives via the external manager events and messages from other
Play-Engines, or other modeling tools. Since external objects reflect elements speci-
fied or implemented outside the scope of the local Play-Engine, events (e.g., property
changes or method calls) that originate in those objects also arrive through the external
manager. Upon receiving such an event, the Play-Engine acts as if the event originated
from the external object itself. In short, the external object is recognized by the local
system, but is driven by a remote one.
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In order to best serve the InterPlay techniques, the external manager has various op-
eration modes, allowing either cooperation between two Play-Engines or execution by
a single Play-Engine and monitoring its run by another. Such a connection was possible
between only two Play-Engines having the exact same system model. However, using
InterPlay any number of Play-Engines, with different system models, can be connected,
as we shall see shortly.

4 InterPlay: Cooperation of Various Design Tools

InterPlay operates in two stages, a preprocessing offline stage, and a main online exe-
cution stage. In the first stage a mapping is set up, which associates each internal object
with all of its images as external objects in other tools, making them all seem as a single
object. During the execution stage InterPlay uses the mapping to translate and transmit
messages and events among the connected models and their respective tools, so that
whatever happens to an object during play-out is reflected in all its external views.

Fig. 5. Inter-object specifications of a system from the points of view of two teams. Objects with
thin dotted lines do not actually appear in the relevant specification and are included for better
illustration only.

InterPlay’s mapping stage is really part of the system’s specification, in which one
indicates how the different parts of the system fit together. We use the two specifications
in Figure 5 throughout this section as a specific example, and concentrate on connecting
only multiple Play-Engines.

Consider object D in the figure. It is internal to the left-hand team TL and external
to the right-hand team TR. Although both teams do deal with this common object, they
might refer to it by different names6 and team TL might have added to it additional

6 Had there been another team containing object D as external, it could have referred to it by
yet a different name than do teams TL and TR.
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Fig. 6. InterPlay screen shot, mapping two biological models through an interface of a method
and a property of two common to both.

properties or methods. Thus InterPlay works on mapping two system parts together,
in order to overcome such naming differences while matching an object to its external
view. This, of course, does not limit the number of specifications of systems parts and
their respective tools that can be fused together. Figure 6 displays a screenshot of In-
terPlay mapping two system models to each other. These are two parts of a biological
system, which communicate using two common proteins Let-23 and Let-60. Although
both parts refer to the same proteins, their descriptions are very different in the two mod-
els. The common interface is a method in Let-23 and an activity measurement property
in Let-60, which are mapped to each other through InterPlay.

When using InterPlay to bridge different levels of abstraction one has to pay partic-
ular attention to the specification refinement from coarse to fine. Objects described on
the coarse level are interface objects for some subsystem that interacts through them.
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Fig. 7. Multiple levels of abstraction. The left figure represents a specification refinement of the
external interface object IX in the coarse level.

Hence, on a coarse level we describe interactions among interface objects, while when
refining the specification we implement7 the subsystems that interact through them.
This rather subtle difference from actually refining an object is further illustrated in
Figure 7: The right-hand side of the figure is the coarse level system, in which there
is an external interface object IX . The left-hand portion of the figure is a refinement
of the IX , and within it the internal object X implements the interface object on the
coarse level. All other objects on the fine level constitute the subsystem behind the
interface X . Thus, all interactions between this subsystem and other subsystems are
conducted through object X . When mapping the two specifications through InterPlay,
X is matched to IX , allowing events on the finer abstraction level to be reflected on the
coarser level, and vice versa.

Here’s how the mapping is set up. InterPlay loads a system model from a Play-
Engine specification and displays it to the user. Only the components of the system are
loaded (i.e., the GUI and internal objects, with their properties and methods), without
any behavior (LSCs) attached. There are several levels of mapping between objects.
Assuming object A has not been extended with new methods or properties by team TR,
the mapping can be completed as is, by simply associating (using an appropriate form
that pops up) the two versions of A on the object level. This implies that all the object’s
properties and methods are also mapped.

Assume that objectB has been expanded by team TR. InterPlay allows partial map-
pings of selected properties and methods, leaving some unmatched. Thus, only the prop-
erties and methods common to the two teams will be mapped to each other and we do
not allow splitting; e.g., mapping some properties ofB in team TR’s specification to ob-
ject B of team TL and others to object C therein. This kind of splitting up of an object
is closely related to aggregation, and is the central aspect of vertical scale-up, which
we discuss briefly in Section 6. Nevertheless, InterPlay does allow mapping multiple
objects to a single one on the object abstraction level. Going back to Figure 5, it might

7 By “implementation” in this context we still refer to inter-object design, used to specify in
detail a subsystem which has been declared on the coarse level.
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be the case that the left-hand team TL considers objectsA,B and C as having the same
functionality. For example,D might be a department manager with a direct phone line
connection to his/her bosses A,B and C. As only these bosses can call this line, D is
impervious to which of them assigns him/her a task. Team TL can thus use a single ex-
ternal object only, say, A, which will be mapped to the group of objects A,B and C in
team TR’s specification. This raises the question of whether any event involving object
A in team TL’s specification would have to be reflected in all of its mapped variants on
the right. Currently, InterPlay broadcasts such an event to all internal objects mapped
to an external one, but other possibilities are mentioned in Section 6.

During play-out, InterPlay carries out the ramifications of the mappings set up in the
preliminary phase. Each Play-Engine connects to InterPlay through its external man-
ager. Once connected, played out events (user operations, property changes and method
calls) are transmitted to InterPlay, which translates them according to the mappings and
sends them to all the relevant Play-Engines. Consider the blue (rightmost) scenario in
Figure 5. Play-out starts with team TR’s Play-Engine, involving object C. Since C is
internal to TR’s, its Play-Engine performs the necessary events, operating it. InterPlay
translates and transmits these events to the TL’s Play-Engine, which traces the scenario
as well. The scenario moves on to object D, which is external to TR’s scope, and thus
TR’s Play-Engine goes idle. Object D is now ‘driven’ by the TL’s Play-Engine and
through InterPlay the respective events are sent to the TR’s Play-Engine. This initiates
an event coming from D, allowing the scenario to proceed. The scenario continues in
a similar fashion, with each Play-Engine running and driving its own internal objects,
and waiting to receive input from the other one if necessary.

As mentioned above, this description concentrates on several Play-Engines, but a
similar process is carried out when the Play-Engine is connected to Rhapsody. More on
this later.

5 An Example: The Food Take-Out System

In this section we illustrate InterPlay by a simple example of a food take-out service that
enables clients to order food from diverse restaurants through a single ordering center.

Fig. 8. The three high-level components of the food take-out system.
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The development process starts with specifying an inter-object overview of the sys-
tem’s overall functionality. This coarse specification identifies the system’s main com-
ponents – a client, the ordering center and a restaurant component – as illustrated in
the GUI of Figure 8. Using the Play-Engine and LSCs, we describe the functional-
ity of the system by interactions among these components, as exemplified in Figure 9.
One LSC therein describes the simple process of acquiring a menu from the ordering
center, while the other concerns placing a take-out order. Before we explain the latter
LSC, note that the Client and Restaurant were internal at this stage and became
external only in later design stages. The prechart contains the event of the Client
ordering a dish by calling the Center’s Order(Dish) method. Should this occur,
the main chart specifies the Center asking for a time estimate on the Dish from
the Restaurant, by calling the Restaurant’s Estimate(Dish) method. The
Restaurant’s resulting estimated time is conveyed to the Center via the Time(T)
method. (In accordance to the inter-object design approach we do not specify at this
stage how the restaurant calculates this estimated time.) After receiving the estimated
time to delivery, the Client responds by calling the Confirm method with its ID
and Decision. Should the Client agree, depicted by the cold Decision=True
condition, a series of method calls follows, confirming the order to the Restaurant
and getting an OrderID in exchange. If for some reason the Customer doesn’t wish
to order, the chart is simply exited, in effect cancelling the order.

Fig. 9. Two LSCs describing an overview of the behavior of the take-out system.

We now decide to distribute the rest of the specification among three teams, each
in charge of one of these components. Each team is required to refine the specifica-
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tion of its assigned subsystem, respecting the interface that was defined on the coarse
level. Hence the client has an internal object called I Panel, implementing the in-
terface defined by the Client object on the coarse level and serving as its interface
with the other system components. It also has an external object called CommUnit
that implements the ordering center’s interface within the client’s subsystem. In other
words, the entire client subsystem interacts with the rest of the system, represented by
CommUnit, through its interface, I Panel. Similarly, the restaurant’s subsystem has
an internal object, I Rest, as its interface with the ‘outside world’, which in turn is
represented by the external CommUnit. These objects can be seen in Figures 10 and
12, which show the refined GUIs and additional objects of the client and restaurant
subsystems, respectively.

Fig. 10. The client’s GUI and internal objects.

Fig. 11. An LSC that describes the ordering process from the client’s point of view. This LSC
is invoked by all three buttons referring to dishes (second row in the GUI), which are of class
Dish Class.

Having the coarse design level available, we then approach the client subsystem
and refine its specification using the aforementioned interface and adding to it further
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objects and internal behavior. Figures 10 and 11 illustrate this specification refinement,
with its GUI and a self-explanatory LSC example that describes the process of the client
ordering a dish.

Now that the client’s subsystem refinement is complete, we make the Client ob-
ject on the coarse level external. As such, the Play-Engine playing out the coarse level
can no longer initiate events from the client. Instead, it waits for them to arrive, having
been initiated by another Play-Engine playing out the client subsystem. We played out
both specifications, one fine and one coarse, in cooperation, using InterPlay, as we ex-
plain shortly. At this stage the restaurant has not been refined yet, so it continued to be
‘driven’ by the coarse level specification.

Fig. 12. The restaurant’s GUI, including cooks and a reflection of its state. Cooks wearing hats
are laboring in the kitchen while the others are on break.

The restaurant’s team then starts to refine its specification, deciding that the restau-
rant has to have some cooks to keep the business running, a few customers who sit
inside, and two indicator buttons to capture the opening and closing of the restaurant.
The team specifies how these parts of the system should behave, independently of, and
in ignorance of, how their ‘outside world’ operates, but still aware of it and interacting
with it through the external CommUnit. The restaurant’s GUI and additional objects
are shown in Figure 12, while an LSC example describing part of its internal behavior
is shown in Figure 13.

The LSC in the figure specifies how the restaurant calculates the time estimate for
a requested dish. It is activated when the CommUnit requests an estimate by calling
the method Estimate(Dish) of the restaurant’s interface, I Rest, as defined in
the prechart. In the main chart, using a select-case construct, the basic time required for
the requested dish is stored. The number of available cooks is also taken into consid-
eration in the if-then-else construct. Finally, the restaurant’s interface I Rest returns
the preparation time to the ordering center, through the CommUnit. The restaurant’s
specification refinement involved a few other LSCs that deal with its internal behavior,
such as one describing the working routine of the cooks in the restaurant, depending on
the amount of clientele patronizing it. For lack of space we will not show these here.
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Fig. 13. An LSC describing part of the restaurant’s inner behavior.

Recall also Figure 4, which updates the number of clients in the restaurant every 3 clock
ticks, by calling the Update method.

Having now refined the specifications of the client and the restaurant subsystems,
we make both Client and Restaurant objects external on the coarse level. The
three system models, with only the objects and their respective properties and methods,
are loaded into InterPlay. We map the refined subsystems to the coarse specification, in
turn, by associating their appropriate interface objects: I panel is mapped to Client
and I Rest is mapped to Rest, while both CommUnits on the fine level are mapped
(separately) to Center on the coarse level. Notice that the latter two mappings are
made based only on a subset of the methods and properties, while the former two are
made on the object level. The mapping of the refined restaurant to the overview of the
system is shown in Figure 14.

The entire system can now be run in cooperation by three different Play-Engines,
one for each of the two refined subsystems and the third running the coarse specifica-
tion, providing the functionality of the yet unrefined ordering center and monitoring the
entire run. Since the Play-Engine can record a run and later display it as an LSC, we
have attached in Figure 15 the three recordings of the respective Play-Engines.

After all of this, and assume we have executed, revised and verified the inter-object
specification, we might want to make a transition to design, or in other words, to move
towards an intra-object implementation. We could pick the restaurant’s interface unit
(I Rest), for example, which has clear internal behavior. We would make it external
to the inter-object specification of the restaurant, and proceed to define its internal be-
havior in a state-based fashion using statecharts and Rhapsody. We can now load the
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Fig. 14. InterPlay screenshot, showing the mapping of the refined restaurant’s subsystem model
to the coarse level overview of the take-out system.

unit’s system model from Rhapsody into InterPlay and map it to the restaurant’s LSCs
specification. This would then allow running the intra-object design, or implementation,
of the panel both against its specification and in cooperation with the rest of the take-out
service system.

Doing this for all the parts of the system that we want to have implemented in
an intra-object way would lead to a full implementation. All remaining parts would
be played-out in an inter-object manner, with the relevant Play-Engines handing over
control whenever an implemented part is to become active.

6 What Next?

In this section we discuss several issues for future research.
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Fig. 15. The results of running the take-out system using three cooperating Play-Engines. Each
LSC is the trace of the run from the point of view of one Engine’s model.

Connecting to Rhapsody: We have repeatedly stated as our goal not only to connect
Play-Engines to each other, but also to allow cooperation between many types of design
or modeling tools. We have set up an initial connection between Rhapsody and the Play-
Engine. Its present status is that of a feasibility test, and was carried out in a tailored
fashion for a particular system model, with very encouraging results. We are now in the
final stages of making this connection generic through InterPlay.

We do not make any changes to Rhapsody’s framework in order to allow this con-
nection. Instead, we offer an API with which a dll plug-in can be created. The plug-in
serves as an observer that receives events of interest from Rhapsody as they take place
during the system run, and can also interact with the animation module of Rhapsody,
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generating events that will impact the animation. We then made it possible for these dll
plug-ins to communicate with InterPlay, in both sending and receiving events.

Connecting to Other Implementations: There is clearly much value in allowing
the Play-Engine to be connected to other kinds of modeling and implementation tools,
including standard programming environments. For example, if a project requires de-
signing a new component that has to fit exactly into an existing complex of implemented
components or systems, it could be extremely useful to connect the LSC model we build
for it using the Play-Engine via InterPlay directly to the real environment, allowing the
composite system to be tested and run as an integrated whole.

Moreover, given such flexible connection abilities, modeling tools like the Play-
Engine could be used to conduct integration tests of implemented components even if
these were designed using other tools. The implemented system could then be executed
with a Play-Engine tracing its runs, making sure they fit the requirements (which would
have been predefined as LSCs).

To make such broad connection abilities possible, we intend to construct a simple
API for connecting to InterPlay, which most implemented systems will be able to in-
corporate. Since they would all connect to each other through InterPlay, no changes in
any of these tools will be required by this addition.

Synchronous Messages: Synchronous messages, supported by the Play-Engine, raise
a whole new level of complexity when one uses InterPlay to carry out truly distributed
modeling and implementation. Recall that a synchronous messages is one that flows
(for all practical purposes in zero time) from the sending object to the receiving object
if and when the former is ready to send it and the latter is free to receive it. When both
objects are controlled by a single Play-Engine it is relatively easy to determine whether
the message can be sent, and if so to make sure nothing changes in the two objects until
the message is delivered. This is far more complicated when the two objects are driven
by different Play-Engines, and even worse if they are driven by statecharts or code.

Several possible solutions come to mind, such as using a two phase commit proto-
col, of the kind used in certain kinds of transaction processing. We have not yet dealt
with this feature, and doing so would probably require subtle changes both in the Play-
Engine and in the InterPlay module.

Centralized Clock Ticks: Another complication that InterPlay gives rise to involves
time. Recall that the Play-Engine supports time via a single clock, with a tick event
that can be advanced through the host computer’s clock or via the model itself (e.g., by
the user or by other objects). Clearly, different Play-Engines running different specifi-
cations cannot be assumed to advance clock ticks at the same (absolute) rate, and the
classical problems of distributed time arise in full force. Even running a single Play-
Engine will advance time very differently when run with or without visual animation
of the LSCs, not to mention different Play-Engines working in tandem or with other
modeling tools.

Without getting into the usual controversies and opinions about how to best deal
with time in a distributed environment, it is quite obvious that there are several incen-
tives for supplying a mechanism for centralized clock ticks across InterPlay. (For one,
we might be using InterPlay to build an ultimately centralized system in a distributed
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fashion.) We propose to add the option of receiving clock tick signals from InterPlay
through the external event manager. This is relatively easily done. We have also looked
closely into Rhapsody, which has a special time mode controlled by the user, and con-
clude that it too can receive clock ticks from InterPlay through the observer dll without
making changes to the main program’s framework.

Type Mapping: Currently two objects, or their properties and methods, can be ef-
fectively mapped to one another if they are of the same type, or receive parameters of
the same type. We plan to consider adding more flexibility to InterPlay through a type-
mapping feature, allowing system models to enrich their interaction without having to
make further adjustments to the model itself.

Delegating to Multiple Objects: Recall that InterPlay allows mapping multiple ob-
jects to a single one on the object abstraction level. However, should an event that
involves the single object be necessarily reflected onto all of its multiple images? We
do not have enough experience with InterPlay to decide on this quite yet. Other than the
obvious approach, currently implemented, of broadcasting each message (and relevant
event) to all the objects mapped to the source, we could also implement a scheme that
sends it to the latest image to have interacted with the source. We could also have a
user-driven mode, letting the user of InterPlay decide at run time how to delegate the
message. Recently we have been toying with the idea of allowing asymmetric map-
pings, which might solve this problem more elegantly, but this is still in preliminary
stages only.

Vertical Scale-up: In this paper we have used the term horizontal scale-up to denote
the kinds of connections between tools we have discussed. The reason is that what they
make possible is the composition of collections of objects in a side-by side manner
(although in an implicit way a limited kind of refinement can be specified too as we
have seen in section 5). Complimentary to this is vertical scale-up, whereby we want to
support in LSCs and the Play-Engine the aggregation, or rich refinement of objects.
In other words we want in the large a full notion of hierarchies of objects, complete
with multiple-level behavior, even within a single LSC specification. And we want all
this related in the play-in and play-out processes. This is a complicated topic, since it
is not clear how to best define aggregation in the presence of inter-object behavior. For
example, how should scenarios (i.e., LSCs) defined within an object, among its sub-
objects, be connected to the scenarios between the parent object and its siblings on the
higher level? What kind of mappings should we allow between levels, etc.? We are in
the midst of a research project on this, and hope to be able to report on it in a future
paper.
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Abstract. This chapter is to provide a tutorial and pointers to results and related
work on timed automata with a focus on semantical and algorithmic aspects of
verification tools. We present the concrete and abstract semantics of timed au-
tomata (based on transition rules, regions and zones), decision problems, and
algorithms for verification. A detailed description on DBM (Difference Bound
Matrices) is included, which is the central data structure behind several verifica-
tion tools for timed systems. As an example, we give a brief introduction to the
tool UPPAAL.

1 Introduction

Timed automata is a theory for modeling and verification of real time systems. Exam-
ples of other formalisms with the same purpose, are timed Petri Nets, timed process
algebras, and real time logics [17, 42, 47, 40, 8, 20]. Following the work of Alur and
Dill [5, 6], several model checkers have been developed with timed automata being the
core of their input languages e.g. [50, 33]. It is fair to say that they have been the driv-
ing force for the application and development of the theory. The goal of this chapter is
to provide a tutorial on timed automata with a focus on the semantics and algorithms
based on which these tools are developed.

In the original theory of timed automata [5, 6], a timed automaton is a finite-state
Büchi automaton extended with a set of real-valued variables modeling clocks. Con-
straints on the clock variables are used to restrict the behavior of an automaton, and
Büchi accepting conditions are used to enforce progress properties. A simplified ver-
sion, namely Timed Safety Automata is introduced in [28] to specify progress properties
using local invariant conditions. Due to its simplicity, Timed Safety Automata has been
adopted in several verification tools for timed automata e.g. UPPAAL [33] and Kronos
[50]. In this presentation, we shall focus on Timed Safety Automata, and following the
literature, refer them as Timed Automata or simply automata when it is understood from
the context.

The rest of the chapter is organized as follows: In the next section, we describe the
syntax and operational semantics of timed automata. The section also addresses deci-
sion problems relevant to automatic verification. In the literature, the decidability and
undecidability of such problems are often considered to be the fundamental proper-
ties of a computation model. Section 3 presents the abstract version of the operational

� Corresponding author: Wang Yi, Division of Computer Systems, Department of Information
Technology, Uppsala University, Box 337, 751 05 Uppsala, Sweden. Email: yi@it.uu.se

J. Desel, W. Reisig, and G. Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 87–124, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



88 Johan Bengtsson and Wang Yi

semantics based on regions and zones. Section 4 describes the data structure DBM (Dif-
ference Bound Matrices) for the efficient representation and manipulation of zones, and
operations on zones, needed for symbolic verification. Section 5 gives a brief introduc-
tion to the verification tool UPPAAL. Finally, as an appendix, we list the pseudo-code
for the presented DBM algorithms.

2 Timed Automata

A timed automaton is essentially a finite automaton (that is a graph containing a finite
set of nodes or locations and a finite set of labeled edges) extended with real-valued
variables. Such an automaton may be considered as an abstract model of a timed sys-
tem. The variables model the logical clocks in the system, that are initialized with zero
when the system is started, and then increase synchronously with the same rate. Clock
constraints i.e. guards on edges are used to restrict the behavior of the automaton. A
transition represented by an edge can be taken when the clocks values satisfy the guard
labeled on the edge. Clocks may be reset to zero when a transition is taken.

The first example. Fig. 1(a) is an example timed automaton. The timing behavior of
the automaton is controlled by two clocks x and y. The clock x is used to control the
self-loop in the location loop. The single transition of the loop may occur when x = 1.
Clock y controls the execution of the entire automaton. The automaton may leave start
at any time point when y is in the interval between 10 and 20; it can go from loop to
end when y is between 40 and 50, etc.

start

loop

end

x:=0, y:=0

10<=y<=20
enter

40<=y<=50

y:=0
leave

x==1

x:=0
work

10<=y<=20
y:=0

start
y<=20

loop
y<=50

end
y<=20

x:=0, y:=0

10<=y
enter

40<=y

y:=0
leave

x==1

x:=0
work

10<=y
y:=0

(a) (b)

Fig. 1. Timed Automata and Location Invariants.

Timed Büchi Automata. A guard on an edge of an automaton is only an enabling con-
dition of the transition represented by the edge; but it can not force the transition to
be taken. For instance, the example automaton may stay forever in any location, just
idling. In the initial work by Alur and Dill [5], the problem is solved by introducing
Büchi-acceptance conditions; a subset of the locations in the automaton are marked as
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accepting, and only those executions passing through an accepting location infinitely
often are considered valid behaviors of the automaton. As an example, consider again
the automaton in Fig. 1(a) and assume that end is marked as accepting. This implies
that all executions of the automaton must visit end infinitely many times. This imposes
implicit conditions on start and loop. The location start must be left when the value
of y is at most 20, otherwise the automaton will get stuck in start and never be able to
enter end. Likewise, the automaton must leave loop when y is at most 50 to be able to
enter end.

Timed Safety Automata. A more intuitive notion of progress is introduced in timed
safety automata [28]. Instead of accepting conditions, in timed safety automata, loca-
tions may be put local timing constraints called location invariants. An automaton may
remain in a location as long as the clocks values satisfy the invariant condition of the
location. For example, consider the timed safety automaton in Fig. 1(b), which corre-
sponds to the Büchi automaton in Fig. 1(a) with end marked as an accepting location.
The invariant specifies a local condition that start and end must be left when y is at
most 20 and loop must be left when y is at most 50. This gives a local view of the
timing behavior of the automaton in each location.

In the rest of this chapter, we shall focus on timed safety automata and refer such
automata as Timed Automata or simply automata without confusion.

2.1 Formal Syntax

Assume a finite set of real-valued variables C ranged over by x, y etc.standing for clocks
and a finite alphabetΣ ranged over by a, b etc.standing for actions.

Clock Constraints. A clock constraint is a conjunctive formula of atomic constraints of
the form x ∼ n or x − y ∼ n for x, y ∈ C,∼∈ {≤, <,=, >,≥} and n ∈ N. Clock
constraints will be used as guards for timed automata. We use B(C) to denote the set of
clock constraints, ranged over by g and also byD later.

Definition 1 (Timed Automaton) A timed automaton A is a tuple 〈N, l0, E, I〉 where

– N is a finite set of locations (or nodes),
– l0 ∈ N is the initial location,
– E ∈ N × B(C) ×Σ × 2C ×N is the set of edges and
– I : N −→ B(C) assigns invariants to locations

We shall write l
g,a,r−−−→ l′ when 〈l, g, a, r, l′〉 ∈ E.

As in verification tools e.g. UPPAAL [33], we restrict location invariants to con-
straints that are downwards closed, in the form: x ≤ n or x < n where n is a natural
number.

Concurrency and Communication. To model concurrent systems, timed automata
can be extended with parallel composition. In process algebras, various parallel compo-
sition operators have been proposed to model different aspects of concurrency (see e.g.
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CCS and CSP [39, 29]). These algebraic operators can be adopted in timed automata.
In the UPPAAL modeling language [33], the CCS parallel composition operator [39] is
used, which allows interleaving of actions as well as hand-shake synchronization. The
precise definition of this operator is given in Section 5.

Essentially the parallel composition of a set of automata is the product of the au-
tomata. Building the product automaton is an entirely syntactical but computationally
expensive operation. In UPPAAL, the product automaton is computed on-the-fly during
verification.

2.2 Operational Semantics

The semantics of a timed automaton is defined as a transition system where a state or
configuration consists of the current location and the current values of clocks. There are
two types of transitions between states. The automaton may either delay for some time
(a delay transition), or follow an enabled edge (an action transition).

To keep track of the changes of clock values, we use functions known as clock
assignments mapping C to the non-negative reals +. Let u, v denote such functions,
and use u ∈ g to mean that the clock values denoted by u satisfy the guard g. For
d ∈ +, let u + d denote the clock assignment that maps all x ∈ C to u(x) + d, and
for r ⊆ C, let [r �→ 0]u denote the clock assignment that maps all clocks in r to 0 and
agree with u for the other clocks in C \ r.

Definition 2 (Operational Semantics) The semantics of a timed automaton is a tran-
sition system (also known as a timed transition system) where states are pairs 〈l, u〉,
and transitions are defined by the rules:

– 〈l, u〉 d−→ 〈l, u+ d〉 if u ∈ I(l) and (u+ d) ∈ I(l) for a non-negative real d ∈ +

– 〈l, u〉 a−→ 〈l′, u′〉 if l
g,a,r−−−→ l′, u ∈ g, u′ = [r �→ 0]u and u′ ∈ I(l′)

2.3 Verification Problems

The operational semantics is the basis for verification of timed automata. In the follow-
ing, we formalize decision problems in timed automata based on transition systems.

Language Inclusion. A timed action is a pair (t, a), where a ∈ Σ is an action taken
by an automaton A after t ∈ + time units since A has been started. The absolute time
t is called a time-stamp of the action a. A timed trace is a (possibly infinite) sequence
of timed actions ξ=(t1, a1)(t2, a2)...(ti, ai)... where ti ≤ ti+1 for all i ≥ 1.

Definition 3 A run of a timed automaton A = 〈N, l0, E, I〉 with initial state 〈l0, u0〉
over a timed trace ξ=(t1, a1)(t2, a2)(t3, a3)... is a sequence of transitions:

〈l0, u0〉 d1−→ a1−→ 〈l1, u1〉 d2−→ a2−→ 〈l2, u2〉 d3−→ a3−→ 〈l3, u3〉 . . .

satisfying the condition ti = ti−1 + di for all i ≥ 1.
The timed languageL(A) is the set of all timed traces ξ for which there exists a run

of A over ξ.
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Undecidability. The negative result on timed automata as a computation model is that
the language inclusion checking problem i.e. to check L(A) ⊆ L(B) is undecidable
[6, 4]. Unlike finite state automata, timed automata is not determinizable in general.
Timed automata can not be complemented either, that is, the complement of the timed
language of a timed automaton may not be described as a timed automaton.

The inclusion checking problem will be decidable if B in checking L(A) ⊆ L(B)
is restricted to the deterministic class of timed automata. Research effort has been made
to characterize interesting classes of determinizable timed systems e.g. event-clock au-
tomata [7] and timed communicating sequential processes [48]. Essentially, the unde-
cidability of language inclusion problem is due to the arbitrary clock reset. If all the
edges labeled with the same action symbol in a timed automaton, are also labeled with
the same set of clocks to reset, the automaton will be determinizable. This covers the
class of event-clock automata [7].

We may abstract away from the time-stamps appearing in timed traces and define
the untimed language Luntimed(A) as the set of all traces in the form a1a2a3 . . . for
which there exists a timed trace ξ = (t1, a1)(t2, a2)(t3, a3)... in the timed language
of A.

The inclusion checking problem for untimed languages is decidable. This is one of
the classic results for timed automata [6].

Bisimulation. Another classic result on timed systems is the decidability of timed
bisimulation [19]. Timed bisimulation is introduced for timed process algebras [47].
However, it can be easily extended to timed automata.

Definition 4 A bisimulation R over the states of timed transition systems and the al-
phabetΣ ∪ +, is a symmetrical binary relation satisfying the following condition:

for all (s1, s2) ∈ R, if s1
σ−→ s′1 for some σ ∈ Σ ∪ + and s′1, then s2

σ−→ s′2 and
(s′1, s

′
2) ∈ R for some s′2.

Two automata are timed bisimilar iff there is a bisimulation containing the initial
states of the automata.

Intuitively, two automata are timed bisimilar iff they perform the same action tran-
sition at the same time and reach bisimilar states. In [19], it is shown that timed bisim-
ulation is decidable.

We may abstract away from timing information to establish bisimulation between
automata based actions performed only. This is captured by the notion of untimed bisim-

ulation. We define s
ε−→ s′ if s

d−→ s′ for some real number d. Untimed bisimulation is
defined by by replacing the alphabet with Σ ∪ {ε} in Definition 4. As timed bisimula-
tion, untimed bisimulation is decidable [35].

Reachability Analysis. Perhaps, the most useful question to ask about a timed automa-
ton is the reachability of a given final state or a set of final states. Such final states may
be used to characterize safety properties of a system.

Definition 5 We shall write 〈l, u〉 → 〈l′, u′〉 if 〈l, u〉 σ−→ 〈l′, u′〉 for some σ ∈ Σ ∪ +.
For an automaton with initial state 〈l0, u0〉, 〈l, u〉, is reachable iff 〈l0, u0〉→∗〈l, u〉.
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More generally, given a constraint φ ∈ B(C) we say that the configuration 〈l, φ〉 is
reachable if 〈l, u〉 is reachable for some u satisfying φ.

The notion of reachability is more expressive than it appears to be. We may specify
invariant properties using the negation of reachability properties, and bounded liveness
properties using clock constraints in combination with local properties on locations [38]
(see Section 5 for an example).

The reachability problem is decidable. In fact, one of the major advances in ver-
ification of timed systems is the symbolic technique [23, 46, 28, 49, 34], developed in
connection with verification tools. It adopts the idea from symbolic model checking for
untimed systems, which uses boolean formulas to represent sets of states and operations
on formulas to represent sets of state transitions. It is proven that the infinite state-space
of timed automata can be finitely partitioned into symbolic states using clock constraints
known as zones [12, 23]. A detailed description on this is given in Section 3 and 4.

3 Symbolic Semantics and Verification

As clocks are real-valued, the transition system of a timed automaton is infinite, which
is not an adequate model for automated verification.

3.1 Regions, Zones and Symbolic Semantics

The foundation for the decidability results in timed automata is based on the notion of
region equivalence over clock assignments [6, 3].

Definition 6 (Region Equivalence) Let k be a function, called a clock ceiling, map-
ping each clock x ∈ C to a natural number k(x) (i.e. the ceiling of x). For a real
number d, let {d} denote the fractional part of d, and �d� denote its integer part. Two
clock assignments u, v are region-equivalent, denoted u

.∼k v, iff

1. for all x, either �u(x)� = �v(x)� or both u(x) > k(x) and v(x) > k(x),
2. for all x, if u(x) ≤ k(x) then {u(x)} = 0 iff {v(x)} = 0 and
3. for all x, y if u(x) ≤ k(x) and u(y) ≤ k(y) then {u(x)} ≤ {u(y)} iff {v(x)} ≤

{v(y)}

Note that the region equivalence is indexed with a clock ceiling k. When the clock ceil-
ing is given by the maximal clock constants of a timed automaton under consideration,
we shall omit the index and write

.∼ instead. An equivalence class [u] induced by
.∼ is

called a region, where [u] denotes the set of clock assignments region-equivalent to u.
The basis for a finite partitioning of the state-space of a timed automaton is the follow-
ing facts. First, for a fixed number of clocks each of which has a maximal constant, the
number of regions is finite. Second, u

.∼ v implies (l, u) and (l, v) are bisimilar w.r.t.
the untimed bisimulation for any locaton l of a timed automaton. We use the equivalence
classes induced by the untimed bisimulation as symbolic (or abstract) states to construct
a finite-state model called the region graph or region automaton of the original timed
automaton. The transition relation between symbolic states is defined as follows:
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y

x

Fig. 2. Regions for a System with Two Clocks.

– 〈l, [u]〉 ⇒ 〈l, [v]〉 if 〈l, u〉 d−→ 〈l, v〉 for a positive real number d and
– 〈l, [u]〉 ⇒ 〈l′, [v]〉 if 〈l, u〉 a−→ 〈l′, v〉 for an action a.

Note that the transition relation ⇒ is finite. Thus the region graph for a timed au-
tomaton is finite. Several verification problems such as reachability analysis, untimed
language inclusion, language emptiness [6] as well as timed bisimulation [19] can be
solved by techniques based on the region construction.

However, the problem with region graphs is the potential explosion in the number
of regions. In fact, it is exponential in the number of clocks as well as the maximal
constants appearing in the guards of an automaton. As an example, consider Fig. 2. The
figure shows the possible regions in each location of an automaton with two clocks x
and y. The largest number compared to x is 3, and the largest number compared to y
is 2. In the figure, all corner points (intersections), line segments, and open areas are
regions. Thus, the number of possible regions in each location of this example is 60.

A more efficient representation of the state-space for timed automata is based on the
notion of zone and zone-graphs [23, 27, 46, 49, 28]. In a zone graph, instead of regions,
zones are used to denote symbolic states. This in practice gives a coarser and thus
more compact representation of the state-space. The basic operations and algorithms
for zones to construct zone-graphs are described in Section 4. As an example, a timed
automaton and the corresponding zone graph (or reachability graph) is shown in Fig. 3.
We note that for this automaton the zone graph has only 8 states. The region-graph for
the same example has over 50 states.

A zone is a clock constraint. Strictly speaking, a zone is the solution set of a clock
constraint, that is the maximal set of clock assignments satisfying the constraint. It is
well-known that such sets can be efficiently represented and stored in memory as DBMs
(Difference Bound Matrices) [12]. For a clock constraintD, let [D] denote the maximal
set of clock assignments satisfying D. In the following, to save notation, we shall use
D to stand for [D] without confusion. Then B(C) denotes the set of zones.

A symbolic state of a timed automaton is a pair 〈l, D〉 representing a set of states of
the automaton, where l is a location and D is a zone. A symbolic transition describes
all the possible concrete transitions from the set of states.

Definition 7 LetD be a zone and r a set of clocks. We defineD↑ = {u+d |u ∈ D, d ∈
+} and r(D) = {[r �→ 0]u | u ∈ D}. Let � denote the symbolic transition relation

over symbolic states defined by the following rules:
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off

dim

bright

press?
x:=0

x<=10
press?

x>10
press?

press?

� off, x = 0 �

〈off, x ≥ 0〉

〈off, x > 10〉

〈dim, x = 0〉

〈dim, x ≥ 0〉〈bright, x = 0〉

〈bright, x ≤ 10〉

〈bright, x ≥ 0〉

Fig. 3. A Timed Automaton and its Zone Graph.

– 〈l, D〉 �
〈
l, D↑ ∧ I(l)

〉
– 〈l, D〉 � 〈l′, r(D ∧ g) ∧ I(l′)〉 if l

g,a,r−−−→ l′

We shall study these operations in details in Section 4 whereD↑ is written as up(D)
and r(D) as reset(D, r := 0). It will be shown that the set of zones B(C) is closed un-
der these operations, in the sense that the result of the operations is also a zone. Another
important property of zones is that a zone has a canonical form. A zoneD is closed un-
der entailment or just closed for short, if no constraint inD can be strengthened without
reducing the solution set. The canonicity of zones means that for each zoneD ∈ B(C),
there is a unique zoneD′ ∈ B(C) such thatD andD′ have exactly the same solution set
and D′ is closed under entailment. Section 4 describes how to compute and represent
the canonical form of a zone. It is the key structure for the efficient implementation of
state-space exploration using the symbolic semantics.

The symbolic semantics corresponds closely to the operational semantics in the
sense that 〈l, D〉 � 〈l′, D′〉 implies for all u′ ∈ D′, 〈l, u〉 → 〈l′, u′〉 for some u ∈ D.
More generally, the symbolic semantics is a correct and full characterization of the
operational semantics given in Definition 2.

Theorem 1 Assume a timed automaton with initial state 〈l0, u0〉.

1. (soundness) 〈l0, {u0}〉 �∗ 〈lf , Df 〉 implies 〈l0, u0〉 →∗ 〈lf , uf 〉 for all uf ∈ Df .
2. (Completeness) 〈l0, u0〉 →∗ 〈lf , uf 〉 implies 〈l0, {u0}〉 �∗ 〈lf , Df〉 for some Df

such that uf ∈ Df

The soundness means that if the initial symbolic state 〈l0, {u0}〉 may lead to a set of
final states 〈lf , Df〉 according to �, all the final states should be reachable according to
the concrete operational semantics. The completeness means that if a state is reachable
according to the concrete operational semantics, it should be possible to conclude this
using the symbolic transition relation.

Unfortunately, the relation � is infinite, and thus the zone-graph of a timed automa-
ton may be infinite, which can be a problem to guarantee termination in a verification
procedure. As an example, consider the automaton in Fig. 4. The value of clock y drifts
away unboundedly, inducing an infinite zone-graph.



Timed Automata: Semantics, Algorithms and Tools 95

start

loop
x<=10

end

x:=0,
y:=0

y>=20
x:=0,
y:=0

x==10
x:=0

� start, x = y �

〈loop, x ≤ 10 ∧ x = y〉

〈loop, x ≤ 10 ∧ y ≤ 20 ∧ y − x = 10〉

〈loop, x ≤ 10 ∧ y ≤ 30 ∧ y − x = 20〉

〈loop, x ≤ 10 ∧ y ≤ 40 ∧ y − x = 30〉

〈end, x = y〉
.
.
.

Fig. 4. A Timed Automaton with an Infinite Zone-Graph.

The solution is to transform (i.e. normalize) zones that may contain arbitrarily large
constants to their representatives in a class of zones whose constants are bounded by
fixed constants e.g. the maximal clock constants appearing in the automaton, using an
abstraction technique similar to the widening operation [26]. The intuition is that once
the value of a clock is larger than the maximal constant in the automaton, it is no longer
important to know the precise value of the clock, but only the fact that it is above the
constant.

3.2 Zone-Normalization for Automata without Difference Constraints

In the original theory of timed automata [6], difference constraints are not allowed to
appear in the guards. Such automata (whose guards contain only atomic constraints in
the form x ∼ n) are known as diagonal-free automata in the literature in [18]. For
diagonal-free automata, a well-studied zone-normalization procedure is the so-called
k-normalization operation on zones [43, 41]. It is implemented in several verification
tools for timed automata e.g. UPPAAL to guarantee termination.

Definition 8 (k-Normalization) Let D be a zone and k a clock ceiling. The semantics
of the k-normalization operation on zones is defined as follows:

normk(D) = {u|u .∼k v, v ∈ D}

Note that the normalization operation is indexed by a clock ceiling k. According to
[43, 41], normk(D) can be computed from the canonical representation ofD by

1. removing all constraints of the form x < m, x ≤ m, x − y < m and x − y ≤ m
wherem > k(x),

2. replacing all constraints of the form x > m, x ≥ m, x − y > m and x − y ≥ m
wherem > k(x) with x > k(x) and x− y > k(x) respectively.

Let [D]k denote the resulted zone by the above transformation. This is exactly the
normalized zone as defined in Definition 8, that is, [D]k = {u|u .∼k v, v ∈ D}

As an example, the normalized zone-graph of the automaton in Fig. 4 is shown in
Fig. 5 where the clock ceiling is given by the maximal clock constants appearing in the
automaton.
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� start, x = y �

〈loop, x ≤ 10 ∧ x = y〉

〈loop, x ≤ 10 ∧ y ≤ 20 ∧ y − x = 10〉

〈loop, x ≤ 10 ∧ y − x = 20〉

〈loop, x ≤ 10 ∧ y > 20 ∧ y − x > 20〉

〈end, x = y〉

Fig. 5. Normalized Zone Graph for the Automaton in Fig. 4.

Note that for a fixed number of clocks with a clock ceiling k, there can be only
finitely many normalized zones. The intuition is that if the constants allowed to use are
bounded, one can write down only finitely many clock constraints. This gives rise to a
finite characterization for →.

Definition 9 〈l, D〉 �k 〈l′, normk(D′)〉 if 〈l, D〉 � 〈l′, D′〉.

For the class of diagonal-free timed automata �k is sound, complete and finite in
the following sense.

Theorem 2 Assume a timed automaton with initial state 〈l0, u0〉, whose maximal clock
constants are bounded by a clock ceiling k. Assume that the automaton has no guards
containing difference constraints in the form of x− y ∼ n.

1. (soundness) 〈l0, {u0}〉 �∗
k 〈lf , Df 〉 implies 〈l0, u0〉 →∗ 〈lf , uf 〉 for all uf ∈ Df

such that uf(x) ≤ k(x) for all x.
2. (Completeness) 〈l0, u0〉 →∗ 〈lf , uf 〉 with uf(x) ≤ k(x) for all x, implies 〈l0, {u0}〉

�∗
k 〈lf , Df 〉 for some Df such that uf ∈ Df

3. (Finiteness) The transition relation �k is finite.

Unfortunately the soundness will not hold for timed automata whose guards contain
difference constraints. We demonstrate this by an example. Consider the automaton
shown in Fig. 6. The final location of the automaton is not reachable according to the
operational semantics. This is because in location S2, the clock zone is (x− y > 2 and
x > 2) and the guard on the outgoing edge is x < z+1∧z < y+1 which is equivalent
to x− z < 1 ∧ z − y < 1 ∧ x− y < 2. Obviously the zone at S2 can never enable the
guard, and thus the last transition will never be possible. However, because the maximal
constants for clock x is 1 (and 2 for y), the zone in location S2: x− y > 2 ∧ x > 2 will
be normalized to x − y > 1 ∧ x > 1 by the maximal constant 1 for x, which enables
the guard x − z < 1 ∧ z − y < 1 and thus the symbolic reachability analysis based on
the above normalization algorithm would incorrectly conclude that the last location is
reachable.
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S0 S1 S2 S3

z:=0

y>2

y:=0
x<z+1, z<y+1

Fig. 6. A counter example.

S0 :

⎧⎨⎩
x − y = 0
y − z = 0
z − x = 0

S1 :

⎧⎨⎩
x − y = 0
z − x ≤ 0
z − y ≤ 0

S2 :

⎧⎪⎪⎨⎪⎪⎩
y − x < −2
y − z ≤ 0
z − x ≤ 0
0 − x < −2

S0 :

⎧⎨⎩
x − y = 0
y − z = 0
z − x = 0

S1 :

⎧⎨⎩
x − y = 0
z − x ≤ 0
z − y ≤ 0

S2 :

⎧⎪⎪⎨⎪⎪⎩
y − x < −1
y − z ≤ 0
z − x ≤ 0
0 − x < −1

S3 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y − x < −1
y − z < 0
z − x < 0
0 − x < −1
0 − z < 0
x − z < 1

(a) Zones without normalization (b) Zones normalized with k-normalization

Fig. 7. Zones for the counter example in Fig. 6.

The zones in canonical forms, generated in exploring the state-space of the counter
example are given in Fig. 7. The implicit constraints that all clocks are non-negative are
not shown.

Note that at S0 and S1, the normalized and un-normalized zones are identical. The
problem is at S2 where the intersection of the guard (on the only outgoing edge) with
the un-normalized zone is empty and non-empty with the normalized zone.

3.3 Zone-Normalization for Automata with Difference Constraints

Our definition of timed automata (Definition 1) allows any clock constraint to appear in
a guard, which may be a difference constraint in the form of x− y ∼ n. Such automata
are indeed needed in many applications e.g. to model scheduling problems [24]. It is
shown that an automaton containing difference constraints can be transformed to an
equivalent diagonal-free automaton [18]. However, the transformation is not applicable
since it is based on the region construction. Besides, it is impractical to implement such
an approach in a tool. Since the transformation modifies the model before analysis, it is
difficult to trace debugging information provided by the tool back to the original model.

In [14, 16], a refined normalization algorithm is presented for automata that may
have guards containing difference constraints. The algorithm transforms DBMs accord-
ing to not only the maximal constants of clocks but also difference constraints appearing
in the automaton under consideration. Note that the difference constraints correspond to
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the diagonal lines which split the entire space of clock assignments. A finer partitioning
is needed.

We present the semantical characterization for the refined normalization operation
based on a refined version of the region equivalence from Definition 6.

Definition 10 (Normalization Using Difference Constraints) Let G stand for a finite
set of difference constraints of the form x−y ∼ n for x, y ∈ C, ∼∈ {≤, <,=, >,≥} and
n ∈ N, and k for a clock ceiling. Two clock assignments u, v are equivalent, denoted
u

.∼k,G v if the following holds:

– u .∼k v and
– for all g ∈ G, u ∈ g iff v ∈ g.

The semantics of the refined k-normalization operation on zones is defined as follows:

normk,G(D) = {u|u .∼k,G v, v ∈ D}

Note that the refined region equivalence is indexed by both a clock ceiling k and a finite
set of difference constraints G, and so is the normalization operation.

Since the number of regions induced by
.∼k is finite and there are only finitely

many constraints in G,
.∼k,G induces finitely many equivalence classes. Thus for any

given zoneD, normk,G(D) is well-defined in the sense that it contains only a finite set
of equivalence classes though the set may not be a convex zone, and it can be computed
effectively according to the refined regions. In general, normk,G(D) is a non-convex
zone, which can be implemented as the union of a finite list of convex zones. The next
section will show how to compute this efficiently.

The refined zone-normalization gives rise to a finite characterization for →.

Definition 11 〈l, D〉 �k,G 〈l′, normk,G(D′)〉 if 〈l, D〉 � 〈l′, D′〉.

The following states the correctness and finiteness of �k,G .

Theorem 3 Assume a timed automaton with initial state 〈l0, u0〉, whose maximal clock
constants are bounded by a clock ceiling k, and whose guards contain only a finite set
of difference constraints denoted G.

1. (soundness) 〈l0, {u0}〉 (�k,G)∗ 〈lf , Df 〉 implies 〈l0, u0〉 →∗ 〈lf , uf〉 for all uf ∈
Df such that uf (x) ≤ k(x) for all x.

2. (Completeness) 〈l0, u0〉 →∗ 〈lf , uf〉 with uf(x) ≤ k(x) for all x implies 〈l0, {u0}〉
(�k,G)∗ 〈lf , Df〉 for someDf such that uf ∈ Df

3. (Finiteness) The transition relation �k,G is finite.

3.4 Symbolic Reachability Analysis

Model-checking concerns two types of properties liveness and safety. The essential
algorithm of checking liveness properties is loop detection, which is computationally
expensive. The main effort on verification of timed systems has been put on safety
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Algorithm 1 Reachability analysis.
PASSED = ∅, WAIT = {〈l0, D0〉}
while WAIT �= ∅ do

take 〈l, D〉 from WAIT

if l = lf ∧ D ∩ φf �= ∅ then return “YES”
if D �⊆ D′ for all 〈l, D′〉 ∈ PASSED then

add 〈l, D〉 to PASSED

for all 〈l′, D′〉 such that 〈l, D〉 � k, G〈l′, D′〉 do
add 〈l′, D′〉 to WAIT

end for
end if

end while
return “NO”

properties that can be checked using reachability analysis by traversing the state-space
of timed automata.

Reachability analysis can be used to check properties on states. It consists of two
basic steps, computing the state-space of an automaton under consideration, and search-
ing for states that satisfy or contradict given properties. The first step can either be per-
formed prior to the search, or done on-the-fly during the search process. Computing
the state-space on-the-fly has an obvious advantage over pre-computing, in that only
the part of the state-space needed to prove the property is generated. It should be noted
though, that even on-the-fly methods will generate the entire state-space to prove certain
properties, e.g. invariant properties.

Several model-checkers for timed systems are designed and optimized for reacha-
bility analysis based on the symbolic semantics and the zone-representation (see Sec-
tion 4). As an example, we present the core of the verification engine of UPPAAL (see
Algorithm 1).

Assume a timed automaton A with a set of initial states and a set of final states (e.g.
the bad states) characterized as 〈l0, D0〉 and 〈lf , φf 〉 respectively. Assume that k is the
clock ceiling defined by the maximal constants appearing in A and φf , and G denotes
the set of difference constraints appearing in A and φf . Algorithm 1 can be used to
check if the initial states may evolve to any state whose location is lf and whose clock
assignment satisfies φf . It computes the normalized zone-graph of the automaton on-
the-fly, in search for symbolic states containing location lf and zones intersecting with
φf .

The algorithm computes the transitive closure of �k,G step by step, and at each
step, checks if the reached zones intersect with φf . From Theorem 2, it follows that
the algorithm will return with a correct answer. It is also guaranteed to terminate be-
cause �k,G is finite. As mentioned earlier, for a given timed automaton with a fixed set
of clocks whose maximal constants are bounded by a clock ceiling k, and a fixed set
of diagonal constraints contained in the guards, the number of all possible normalized
zones is bounded because a normalized zone can not contain arbitrarily large or arbi-
trarily small constants. In fact the smallest possible zones are the refined regions. Thus
the whole state-space of a timed automaton can only be partitioned into finitely many
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symbolic states and the worst case is the size of the region graph of the automaton, in-
duced by the refined region equivalence. Therefore, the algorithm is working on a finite
structure and it will terminate.

Algorithm 1 also highlights some of the issues in developing a model-checker for
timed automata. Firstly, the representation and manipulation of states, primarily zones,
is crucial to the performance of a model-checker. Note that in addition to the opera-
tions to compute the successors of a zone according to �k,G , the algorithm uses two
more operations to check the emptiness of a zone as well as the inclusion between
two zones. Thus, designing efficient algorithms and data-structures for zones is a major
issue in developing a verification tool for timed automata, which is addressed in Sec-
tion 4. Secondly, PASSED holds all encountered states and its size puts a limit on the
size of systems we can verify. This raises the research challenges e.g. state compression
[14], state-space reduction [15] and approximate techniques [9].

4 DBM: Algorithms and Data Structures

The preceding section presents the key elements needed in symbolic reachability anal-
ysis. Recall that the operations on zones are all defined in terms of sets of clock assign-
ments. It is not clear how to compute the result of such an operation. In this section, we
describe how to represent zones, compute the operations and check properties on zones.
Pseudo code for the operations is given in the appendix.

4.1 DBM Basics

Recall that a clock constraint over C is a conjunction of atomic constraints of the form
x ∼ m and x − y ∼ n where x, y ∈ C, ∼∈ {≤, <,=, >,≥} and m,n ∈ N. A zone
denoted by a clock constraintD is the maximal set of clock assignments satisfying D.
The most important property of zones is that they can can be represented as matrices i.e.
DBMs (Difference Bound Matrices) [12, 23], which have a canonical representation.
In the following, we describe the basic structure and properties of DBMs.

To have a unified form for clock constraints we introduce a reference clock 0 with
the constant value 0. Let C0 = C ∪ {0}. Then any zoneD ∈ B(C) can be rewritten as a
conjunction of constraints of the form x− y � n for x, y ∈ C0, �∈ {<,≤} and n ∈ .

Naturally, if the rewritten zone has two constraints on the same pair of variables
only the intersection of the two is significant. Thus, a zone can be represented using
at most |C0|2 atomic constraints of the form x − y � n such that each pair of clocks
x− y is mentioned only once. We can then store zones using |C0| × |C0| matrices where
each element in the matrix corresponds to an atomic constraint. Since each element
in such a matrix represents a bound on the difference between two clocks, they are
named Difference Bound Matrices (DBMs). In the following presentation, we use Dij

to denote element (i, j) in the DBM representing the zoneD.
To construct the DBM representation for a zoneD, we start by numbering all clocks

in C0 as 0, . . . , n and the index for 0 is 0. Let each clock be denoted by one row in the
matrix. The row is used for storing lower bounds on the difference between the clock
and all other clocks, and thus the corresponding column is used for upper bounds. The
elements in the matrix are then computed in three steps.
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– For each constraint xi − xj � n ofD, let Dij = (n,�).
– For each clock difference xi − xj that is unbounded in D, let Dij = ∞. Where ∞

is a special value denoting that no bound is present.
– Finally add the implicit constraints that all clocks are positive, i.e. 0 − xi ≤ 0, and

that the difference between a clock and itself is always 0, i.e. xi − xi ≤ 0.

As an example, consider the zone D = x − 0 < 20 ∧ y − 0 ≤ 20 ∧ y − x ≤
10∧x−y ≤ −10∧0−z < 5. To construct the matrix representation ofD, we number
the clocks in the order 0, x, y, z. The resulting matrix representation is shown below:

M(D) =

⎛⎜⎜⎝
(0 ,≤) (0 ,≤) (0 ,≤) (5 ,<)

(20 ,<) (0 ,≤) (−10 ,≤) ∞
(20 ,≤) (10 ,≤) (0 ,≤) ∞

∞ ∞ ∞ (0 ,≤)

⎞⎟⎟⎠
To manipulate DBMs efficiently we need two operations on bounds: comparison

and addition. We define that (n,�) < ∞, (n1,�1) < (n2,�2) if n1 < n2 and (n,<)
< (n,≤). Further we define addition as b1 + ∞ = ∞, (m,≤) +(n,≤) = (m+ n,≤)
and (m,<) + (n,�) = (m+ n,<).

Canonical DBMs. Usually there are an infinite number of zones sharing the same solu-
tion set. However, for each family of zones with the same solution set there is a unique
constraint where no atomic constraint can be strengthened without losing solutions.

To compute the canonical form of a given zone we need to derive the tightest con-
straint on each clock difference. To solve this problem, we use a graph-interpretation of
zones. A zone may be transformed to a weighted graph where the clocks in C0 are nodes
and the atomic constraints are edges labeled with bounds. A constraint in the form of
x − y � n will be converted to an edge from node y to node x labeled with (n,�),
namely the distance from y to x is bounded by n.

As an example, consider the zone x − 0 < 20 ∧ y − 0 ≤ 20 ∧ y − x ≤ 10∧
x − y ≤ −10. By combining the atomic constraints y − 0 ≤ 20 and x − y ≤ −10
we derive that x − 0 ≤ 10, i.e. the bound on x − 0 can be strengthened. Consider the
graph interpretation of this zone, presented in Fig. 8(a). The tighter bound on x−0 can
be derived from the graph, using the path 0 → y → x, giving the graph in Fig. 8(b).
Thus, deriving the tightest constraint on a pair of clocks in a zone is equivalent to
finding the shortest path between their nodes in the graph interpretation of the zone.
The conclusion is that a canonical, i.e. closed, version of a zone can be computed using
a shortest path algorithm. Floyd-Warshall algorithm [25] (Algorithm 2) is often used
to transform zones to canonical form. However, since this algorithm is quite expensive
(cubic in the number of clocks), it is desirable to make all frequently used operations
preserve the canonical form, i.e. the result of performing an operation on a canonical
zone should also be canonical.

Minimal Constraint Systems. A zone may contain redundant constraints. For exam-
ple, a zone contains constraints x − y < 2, y − z < 5 and x − z < 7. The constraint
x − z < 7 is obviously redundant because it may be derived from the first two. It is



102 Johan Bengtsson and Wang Yi

(a) (b)

Fig. 8. Graph interpretation of the example zone and its closed form.

desirable to remove such constraints to store only the minimal number of constraints.
Consider, for instance, the zone x− y ≤ 0 ∧ y − z ≤ 0 ∧ z − x ≤ 0 ∧ 2 ≤ x− 0 ≤ 3.
This is a zone in a minimal form containing only five constraints. The closed form of
this zone contains more than 12 constraints. It is known, e.g. from [31], that for each
zone there is a minimal constraint system with the same solution set. By computing this
minimal form for all zones and storing them in memory using a sparse representation
we might reduce the memory consumption for state-space exploration. This problem
has been thoroughly investigated in [31, 41, 36].

The following is a summary of the published work on the minimal representation
of zones. We present an algorithm that computes the minimal form of a closed DBM.
Closing a DBM corresponds to computing the shortest path between all clocks. Our
goal is to compute the minimal set of bounds for a given shortest path closure. For
clarity, the algorithm is presented in terms of directed weighted graphs. However, the
results are directly applicable to the graph interpretation of DBMs.

First we introduce some notation: we say that a cycle in a graph is a zero cycle if
the sum of weights along the cycle is 0, and an edge xi

nij−−→ xj is redundant if there is
another path between xi and xj where the sum of weights is no larger than nij .

In graphs without zero cycles we can remove all redundant edges without affecting
the shortest path closure [31]. Further, if the input graph is in shortest path form (as for
closed DBMs) all redundant edges can be located by considering alternative paths of
length two.

As an example, consider Fig. 9. The figure shows the shortest path closure for a

zero-cycle free graph (a) and its minimal form (b). In the graph we find that x1
9−→ x2 is

made redundant by the path x1
7−→ x4

2−→ x2 and can thus be removed. Further, the edge

x3
15−→ x2 is redundant due to x3

5−→ x1
9−→ x2. Note that we consider edges marked

as redundant when searching for new redundant edges. The reason is that we let the
redundant edges represent the path making them redundant, thus allowing all redundant
edges to be located using only alternative paths of length two. This procedure is repeated
until no more redundant edges can be found.

This gives the O(n3) procedure for removing redundant edges presented in Algo-
rithm 3. The algorithm can be directly applied to zero-cycle free DBMs to compute the
minimal number of constraints needed to represent a given zone.
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13
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(a) (b)

Fig. 9. A zero cycle free graph and its minimal form.

However, this algorithm will not work if there are zero-cycles in the graph. The
reason is that the set of redundant edges in a graph with zero-cycles is not unique. As
an example, consider the graph in Fig. 10(a). Applying the above reasoning on this

graph would remove x1
3−→ x3 based on the path x1

−2−−→ x2
5−→ x3. It would also

remove the edge x2
5−→ x3 based on the path x2

2−→ x1
3−→ x3. But if both these edges

are removed it is no longer possible to construct paths leading into x3. In this example

there is a dependence between the edges x1
3−→ x3 and x2

5−→ x3 such that only one of
them can be considered redundant.

x1 x2

x3

-2

3

2

5

3

1

x1 x2

x3

-2

3

2

3

(a) (b)

Fig. 10. A graph with a zero-cycle and its minimal form.

The solution to this problem is to partition the nodes according to zero-cycles and
build a super-graph where each node is a partition. The graph from Fig. 10(a) has two
partitions, one containing x1 and x2 and the other containing x3. To compute the edges
in the super-graph we pick one representative for each partition and let the edges be-
tween the partitions inherit the weights from edges between the representatives. In our
example, we choose x1 and x3 as representatives for their equivalence classes. The

edges in the graph are then {x1, x2} 3−→ {x3} and {x3} 3−→ {x1, x2}. The super-graph
is clearly zero-cycle free and can be reduced using Algorithm 3. This small graph can
not be reduced further. The relation between the nodes within a partition is uniquely
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defined by the zero-cycle and all other edges may be removed. In our example all edges
within each equivalence class are part of the zero-cycle and thus none of them can
be removed. Finally the reduced super-graph is connected to the reduced partitions. In
our example we end up with the graph in Fig. 10(b). Pseudo-code for the reduction-
procedure is shown in Algorithm 4.

Now we have an algorithm for computing the minimal number of edges to repre-
sent a given shortest path closure that can be used to compute the minimal number of
constraints needed to represent a given zone.

4.2 Basic Operations on DBMs

This subsection presents all the basic operations on DBMs except the ones for zone-
normalization, needed in symbolic state space exploration of timed automata, both for
forwards and backwards analysis. The two operations for zone-normalization are pre-
sented in the next subsection.

First note that even if a verification tool only explores the state space in one direction
all operations are still useful for other purposes, e.g. for generating diagnostic traces.
The operations are illustrated graphically in Fig. 11.

To simplify the presentation we assume that the input zones are consistent and in
canonical form. The basic operations on DBMs can be divided into two classes:

1. Property-Checking: This class includes operations to check the consistency of a
DBM, the inclusion between zones, and whether a zone satisfies a given atomic
constraint.

2. Transformation: This class includes operations to compute the strongest postcon-
dition and weakest precondition of a zone according to conjunction with guards,
time delay and clock reset.

Property-Checking

consistent(D) The most basic operation on a DBM is to check if it is consistent,
i.e. if the solution set is non-empty. In state-space exploration this operation is used to
remove inconsistent states from the exploration.

For a zone to be inconsistent there must be at least one pair of clocks where the
upper bound on their difference is smaller than the lower bound. For DBMs this can be
checked by searching for negative cycles in the graph interpretation. However, the most
efficient way to implement a consistency check is to detect when an upper bound is set
to lower value than the corresponding lower bound and mark the zone as inconsistent by
settingD00 to a negative value. For a zone in canonical form this test can be performed
locally. To check if a zone is inconsistent it will then be enough to check whether D00

is negative.

relation(D,D′) Another key operation in state space exploration is inclusion
checking for the solution sets of two zones. For DBMs in canonical form, the con-
dition that Dij ≤ D′

ij for all clocks i, j ∈ C0 is necessary and sufficient to conclude
that D ⊆ D′. Naturally the opposite condition applies to checking if D′ ⊆ D. This
allows for the combined inclusion check described in Algorithm 5.
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reset(D,x := 2)
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up(D) down(D)

and(D,x ≤ 2) normk(D) shift(D, y := y + 1)

free(D, y) copy(D,x := y)

Fig. 11. DBM operations applied to the same zone where for normk(D), k is defined by k(x) =
2 and k(y) = 1.

satisfied(D,xi −xj � m) Sometimes it is desirable to non-destructively check
if a zone satisfies a constraint, i.e. to check if the zone D ∧ xi − xj � m is consistent
without altering D. From the definition of the consistent-operation we know that
a zone is consistent if it has no negative cycles. Thus, checking if D ∧ xi − xj � m
is non-empty can be done by checking if adding the guard to the zone would introduce
a negative cycle. For a DBM on canonical form this test can be performed locally by
checking if (m,�) +Dji is negative.

Transformations

up(D) The up operation computes the strongest postcondition of a zone with respect
to delay, i.e. up(D) contains the clock assignments that can be reached from D by
delay. Formally, this operation is defined as up(D) = {u+ d | u ∈ D, d ∈ +}.

Algorithmically, up is computed by removing the upper bounds on all individual
clocks (In a DBM all elements Di0 are set to ∞). This is the same as saying that any
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clock assignment in a given zone may delay an arbitrary amount of time. The property
that all clocks proceed at the same speed is ensured by the fact that constraints on the
differences between clocks are not altered by the operation.

This operation preserves the canonical form, i.e. applying up to a canonical DBM
will result in a new canonical DBM. The up operation is also presented in Algorithm 6.

down(D) This operation computes the weakest precondition of D with respect to
delay. Formally down(D) = {u |u+d ∈ D, d ∈ +}, i.e. the set of clock assignments
that can reach D by some delay d. Algorithmically, down is computed by setting the
lower bound on all individual clocks to (0,≤). However due to constraints on clock
differences this algorithm may produce non-canonical DBMs. As an example, consider
the zone in Fig. 12(a). When down is applied to this zone (Fig. 12(b)), the lower bound
on x is 1 and not 0, due to constraints on clock differences. Thus, to obtain an algorithm
that produce canonical DBMs the difference constraints have to be taken into account
when computing the new lower bounds.

y y

(a) (b)

x x

Fig. 12. Applying down to a zone.

To compute the lower bound for a clock x, start by assuming that all other clocks
yi have the value 0. Then examine all difference constraints yi − x and compute a new
lower bound for x under this assumption. The new bound on 0−x will be the minimum
bound on yi −x found in the DBM. Pseudo-code for down is presented in Algorithm 7.

and(D, xi − yj � b) The most used operation in state-space exploration is conjunc-
tion, i.e. adding a constraint to a zone. The basic step of the and operation is to check
if (b,�) < Dij and in this case set the bound Dij to (b,�). If the bound has been
altered, i.e. if adding the guard affected the solution set, the DBM has to be put back on
canonical form. One way to do this would be to use the generic shortest path algorithm,
however for this particular case it is possible to derive a specialization of the algorithm
allowing re-canonicalization in O(n2) instead of O(n3).

The specialized algorithm takes the advantage that Dij is the only bound that has
been changed. Since the Floyd-Warshall algorithm is insensitive to how the nodes in the
graph are ordered, we may decide to treat xi and xj last. The outer loop of Algorithm 2
will then only affect the DBM twice, for k = i and k = j. This allows the canonical-
isation algorithm to be reduced to checking, for all pairs of clocks in the DBM, if the
path via either xi or xj is shorter than the direct connection. The pseudo code for this
is presented in Algorithm 8.
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free(D, x) The free operation removes all constraints on a given clock, i.e. the
clock may take any positive value. Formally this is expressed as free(D,x) = {u[x =
d] | u ∈ D, d ∈ +}. In state-space exploration this operation is used in combination
with conjunction, to implement reset operations on clocks. It can be used in both for-
wards and backwards exploration, but since forwards exploration allows other more
efficient implementations of reset, free is only used when exploring the state-space
backwards.

A simple algorithm for this operation is to remove all bounds on x in the DBM
and set D0x = (0,≤). However, the result may not be on canonical form. To obtain
an algorithm preserving the canonical form, we change how new difference constraints
regarding x are derived. We note that the constraint 0 − x ≤ 0 can be combined with
constraints of the form y − 0 � m to compute new bounds for y − x. For instance,
if y − 0 ≤ 5 we can derive that y − x ≤ 5. To obtain a DBM on canonical form we
derive bounds for Dyx based on Dy0 instead of setting Dyx = ∞.In Algorithm 9 this
is presented as pseudo code.

reset(D, x := m) In forwards exploration this operation is used to set clocks to
specific values, i.e. reset(D,x :=m) = {u[x = m] | u ∈ D}. Without the require-
ment that output should be on canonical form, reset can be implemented by setting
Dx0 = (m,≤), D0x = (−m,≤) and remove all other bounds on x. However, if we
instead of removing the difference constraints compute new values using constraints on
the other clocks, like in the implementation of free, we obtain an implementation that
preserve the canonical form. Such an implementation is presented in Algorithm 10.

copy(D, x := y) This is another operation used in forwards state-space exploration.
It copies the value of one clock to another. Formally, we define copy(D,x := y) as
{u[x = u(y)] | u ∈ D}. As reset, copy can be implemented by assigning Dxy =
(0,≤), Dyx = (0,≤), removing all other bounds on x and re-canonicalize the zone.
However, a more efficient implementation is obtained by assigning Dxy = (0,≤),
Dyx = (0,≤) and then copy the rest of the bounds on x from y. For pseudo code, see
Algorithm 11.

shift(D, x := x + m) The last reset operation is shifting a clock, i.e. adding or
subtracting a clock with an integer value, i.e. shift(D,x :=x+m) = {u[x = u(x)+
m] | u ∈ D}. The definition gives a hint on how to implement the operation. We can
view the shift operation as a substitution of x−m for x in the zone. With this reasoning
m is added to the upper and lower bounds of x. However, since lower bounds on x
are represented by constraints on y − x, m is subtracted from all those bounds. This
operation is presented in pseudo-code in Algorithm 12.

4.3 Zone-Normalization

The operations for zone-normalization are to transform zones which may contain arbi-
trarily large constants to zones containing only bounded constants in order to obtain a
finite zone-graph.
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normk(D) For a timed automaton and a safety property to be checked, that contain
no difference constraints, the k-normalization normk(D) is needed, and it can be com-
puted based on the canonical form ofD (see Section 3). It is to remove all upper bounds
higher than the maximal constants and lower all lower bounds higher than the maximal
constants down to the maximal constants. The result of normk(D) is illustrated graph-
ically in Fig. 11.

In the canonical DBM representation of a zone, the operation consists of two steps:
first, remove all bounds x − y � m such that (m,�) > (k(x),≤) and second, set all
bounds x − y � m such that (m,�) < (−k(y), <) to (−k(y), <). Pseudo-code for
k-normalization is given in Algorithm 13 where ki denotes k(xi).

The k-normalization will not preserve the canonical form of a DBM, and the best
way to put the result back on canonical form is to use Algorithm 2.

normk,G(D) For automata containing difference constraints in the guards, it is more
complicated and expensive to compute the normalized zones. Assume an automataon A
containing the set of difference constraints G and the maximal clock constants bounded
by a clock ceiling k. Assume a zone D of A to be normalized. According to the se-
mantical characterization for normk,G(D) in Definition 10 we know that if a difference
constraint is not satisfied by any assignment in the zoneD, it should not be satisfied by
any assignment in the normalized one, normk,G(D), and if all assignments inD satisfy
a difference constraint then so should all assignments in normk,G(D). This leads to a
core normalization algorithm consisting of three steps.

1. Collect all difference constraints g used as guards in A such that
(a) g ∧D is empty. This is the case when g is outside ofD.
(b) ¬g ∧D is empty. That is the case when g containsD completely.
Let Gunsat = {g|g ∧D = ∅} ∪ {¬g|¬g ∧D = ∅}

2. Compute normk(D), that is, to run the k-normalization without considering the
difference constraints.

3. Subtract (or cut) the k-normalized zone ofD by all difference constraints in Gunsat,
that is to compute normk(D) ∧ ¬Gunsat.

The last step is to make sure that none of the collected difference constraints are satisfied
after the k-normalization. In Algorithm 14, the core normalization is given as pseudo
code. The set Gd used in the algorithm is the set of difference constraints appearing
in the automaton under consideration with the maximal clock constants bounded by a
given clock ceiling k as input.

It appears to be the case that normk(D) ∧ ¬Gunsat is the normalized zone we are
looking for. Unfortunately this is not. The core normalization does not handle the case
when a difference constraint splits the zone D to be normalized. That is, there is a
guard g such that g ∧ D �= ∅ and ¬g ∧ D �= ∅. In this case, we need to split D by g
using Algorithm 15, and then apply the core normalization algorithm to the parts of D
separately, which are the sub-zones of D resulted from the splitting. The union of the
normalized sub-zones is what we are looking for, that is normk,G(D).

The complete normalization procedure is presented in Algorithm 16. The splitting,
denoted by split in the description, is used as a preprocessing step and then the core nor-
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malization algorithm (i.e. Algorithm 14) is applied to all the resulted sub-zones resulted
from the splitting.

Finally, the symbolic transition relation �k,G can be computed as follows:
If 〈l, D〉 � 〈l′, D′〉, 〈l, D〉 �k,G 〈l′, D′′〉 for allD′′ ∈ Q used in Algorithm 16, i.e. the
algorithm for normk,G(D′).

To demonstrate the normalization procedure we apply it to the zone for location S2

in our counter example. The difference constraints in the example are g1 ≡ x − z < 1
and g2 ≡ z − y < 1. The zone contains both clock assignments satisfying g1 and
assignments satisfying its negation, and thus we have to split the zone with respect to
this constraint prior to normalization, giving the zones below.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y − x < −2
y − z < −1
z − x ≤ 0
0 − x < −2
0 − z < −1
x− z < 1

⎧⎪⎪⎨⎪⎪⎩
y − x < −2
y − z ≤ 0
0 − x < −2
z − x ≤ −1

(a) satisfying g1 (b) satisfying ¬g1

Zone (a) above does not contain any clock assignments satisfying g2 and thus it
will not be split further. Zone (b) however needs to be split into two parts satisfying
g2 and ¬g2. This gives us the following zones to normalize by the core normalization
procedure. ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y − x < −2
y − z < −1
z − x ≤ 0
0 − x < −2
0 − z < −1
x− z < 1

⎧⎪⎪⎨⎪⎪⎩
y − x < −2
y − z ≤ 0
0 − x < −2
z − x ≤ −1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y − x < −2
y − z ≤ −1
z − x ≤ −1
0 − x < −2
0 − z ≤ −1

(a) g1 and ¬g2 (b) ¬g1 and g2 (c) ¬g1 and ¬g2

The sets of difference constraints not satisfied by the zones (a), (b) and (c) shown
above are: G(a)

unsat = {¬g1, g2}, G(b)
unsat = {g1,¬g2}, G(c)

unsat = {g1, g2} respectively.
We apply k-normalization to each of them, giving:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

y − x < −1
y − z < −1
z − x ≤ 0
0 − x < −1
0 − z < −1
x− z < 1

⎧⎪⎪⎨⎪⎪⎩
y − x < −1
y − z ≤ 0
0 − x < −1
x− z ≥ 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y − x < −1
y − z ≤ −1
z − x ≤ −1
0 − x < −1
0 − z ≤ −1

(A) g1 and ¬g2 (B) ¬g1 and g2 (C) ¬g1 and ¬g2

Since the k-normalized zones (A), (B) and (C) shown above do not enable any
constraint in Gunsat, we need not to subtract the corresponding difference constraints
from the zones. Finally, we note that, as the un-normalized zones (a), (b) and (c), none
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of the normalized zones (A), (B) and (C) intersects with g1 ∧ g2; the transition from S2

to S3 is not enabled by the normalization procedure.

4.4 Zones in Memory

This section describes a number of techniques for storing zones in computer memory.
The section starts by describing how to map DBM elements on machine words. It con-
tinues by discussing how to place two-dimensional DBMs in linear memory and ends
by describing how to store zones using a sparse representation.

Storing DBM Elements. To store a DBM element in memory we need to keep track
of the integer limit and whether it is strict or not. The range of the integer limit is
typically much lower than the maximum value of a machine word and the strictness can
be stored using just one bit. Thus, it is possible to store both the limit and the strictness in
different parts of the same machine word. Since comparing and adding DBM elements
are frequently used operations it is crucial for the performance of a DBM package that
they can be efficiently implemented for the chosen encoding. Fortunately, it is possible
to construct an encoding of bounds in machine words, where checking if b1 is less than
b2 can be performed by checking if the encoded b1 is smaller than the encoded b2.

The encoding we propose is to use the least significant bit (LSB) of the machine
word to store whether the bound is strict or not. Since strict bounds are smaller than
non-strict we let a set (1) bit denote that the bound is non-strict while an unset (0) bit
denote that the bound is strict. The rest of the bits in the machine word are used to store
the integer bound. To encode ∞ we use the largest positive number that fit in a machine
word (denoted MAX_INT).

For good performance we also need an efficient implementation of addition of
bounds. For the proposed encoding Algorithm 17 adds two encoded bounds b1 and
b2. The symbols & and | in the algorithm are used to denote bitwise-and and bitwise-or,
respectively.

Placing DBMs in Memory. Another issue is how to store two-dimensional DBMs
in linear memory. In this section we present two different techniques and give a brief
comparison between them. The natural way to put matrices in linear memory is to store
the elements by row (or by column), i.e. each row of the matrix is stored consequently
in memory. This layout has one big advantage, its good performance. This advantage is
mainly due to the simple function for computing the location of a given element in the
matrix: loc(x, y) = x∗(n+1)+y. This function can (on most computers) be computed
in only two instructions. This is important since all accesses to DBM elements use this
function. How the different DBM elements are place in memory with this layout if
presented in Fig. 13(a).

The second way to store a DBM in linear memory is based on a layered model where
each layer consists of the bounds between a clock and the clocks with lower index in the
DBM. In this representation it is cheap to implement local clocks, since all information
about the local clocks are localised at the end of the DBM. The drawback with this
layout is the more complicated function from DBM indices to memory locations. For
this layout we have:
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loc(x, y) =
{
y ∗ (y + 1) + x if x ≤ y
x ∗ x+ y otherwise

This adds at least two instructions (one comparison and one conditional jump) to the
transformation. This may not seem such a huge overhead, but it is clearly noticeable.
The cache performance is also worse when using this layout than when storing the
DBMs row-wise. This layout is illustrated in Fig. 13(b).

The conclusion is that unless the tool under construction supports adding and re-
moving clocks dynamically the row-wise mapping should be used. On the other hand,
if the tool supports local clocks the layered mapping may be preferable since no re-
ordering of the DBM is needed when entering or leaving a clock scope.

⎛⎜⎜⎝
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

⎞⎟⎟⎠
⎛⎜⎜⎝

0 2 6 12
1 3 7 13
4 5 8 14
9 10 11 15

⎞⎟⎟⎠
(a) Row wise (b) Layered

Fig. 13. Different layouts of DBMs in memory.

Storing Sparse Zones. In most verification tools, the majority of the zones are kept
in the set of states already visited during verification. They are used as a reference to
ensure termination by preventing states from being explored more than once. For the
states in this set we may benefit from storing only the minimal number of constraints
using a sparse representation.

A straight forward implementation is to store a sparse zone as a vector of constraints
of the form 〈x, y, b〉. We may save additional memory by omitting implicit constraints,
such as 0 − x ≤ 0. A downside with using sparse zones is that each constraint require
twice the amount of memory needed for a constraint in a full DBM, since the sparse
representation must store clock indices explicitly. Thus, unless half of the constraints in
a DBM are redundant we do not gain from using sparse zones.

A nice feature of the sparse representation is that checking whether a zone Df

represented as a full DBM is included in a sparse zoneDs may be implemented without
computing the full DBM for Ds. It suffices to check for all constraints in Ds that the
corresponding bound in Df is tighter. However, to check if Ds ⊆ Df we have to
compute the full DBM forDs.

5 UPPAAL

In the last decade, there have been a number of tools developed based on timed automata
to model and verify real time systems, notably Kronos [50] and UPPAAL [33]. As an
example, we give a brief introduction to the UPPAAL tool (www.uppaal.com).

UPPAAL is a tool box for modeling, simulation and verification of timed automata,
based on the algorithms and data-structures presented in previous sections. The tool was
released for the first time in 1995, and since then it has been developed and maintained
in collaboration between Uppsala University and Aalborg University.



112 Johan Bengtsson and Wang Yi

5.1 Modeling with UPPAAL

The core of the UPPAAL modeling language is networks of timed automata. In addition,
the language has been further extended with features to ease the modeling task and to
guide the verifier in state space exploration. The most important of these are shared
integer variables, urgent channels and committed locations.

Networks of Timed Automata. A network of timed automata is the parallel compo-
sition A1| · · · |An of a set of timed automata A1, . . . , An, called processes, combined
into a single system by the CCS parallel composition operator with all external actions
hidden. Synchronous communication between the processes is by hand-shake synchro-
nization using input and output actions; asynchronous communication is by shared vari-
ables as described later. To model hand-shake synchronization, the action alphabetΣ is
assumed to consist of symbols for input actions denoted a?, output actions denoted a!,
and internal actions represented by the distinct symbol τ .

An example system composed of two timed automata is shown in Fig. 14. The
network models a time-dependent light-switch (to the left) and its user (to the right).
The user and the switch communicate using the label press. The user can press the
switch (press!) and the switch waits to be pressed (press?). The product automaton, i.e.
the automaton describing the combined system is shown in Fig. 15.

off

dim

bright

press?
x:=0

x<=10
press?

x>10
press?

press?

t

y<5

study

idle

relax

press!
y:=0

press!
y>10

press!
y:=0

press!

press!

Fig. 14. Network of Timed Automata.

The semantics of networks is given as for single timed automata in terms of tran-
sition systems. A state of a network is a pair 〈l, u〉 where l denotes a vector of current
locations of the network, one for each process, and u is as usual a clock assignment re-
membering the current values of the clocks in the system. A network may perform two
types of transitions, delay transitions and discrete transitions. The rule for delay tran-
sitions is similar to the case of single timed automata where the invariant of a location
vector is the conjunction of the location invariants of the processes. There are two rules
for discrete transitions defining local actions where one of the processes makes a move
on its own, and synchronizing actions where two processes synchronize on a channel
and move simultaneously.
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Fig. 15. Product Automaton for the Network in Fig. 14.

Let li stand for the ith element of a location vector l and l[l′i/li] for the vector l with
li being substituted with l′i. The transition rules are as follows:

– 〈l, u〉 d−→ 〈l, u+ t〉 if u ∈ I(l) and (u+ d) ∈ I(l), where I(l) =
∧
I(li)

– 〈l, u〉 τ−→ 〈l[l′i/li], u′〉 if li
g,τ,r−−−→ l′i, u ∈ g, u′ = [r �→ 0]u, u′ ∈ I(l[l′i/li])

– 〈l, u〉 τ−→
〈
l[l′i/li][l

′
j/lj], u

′〉 if li
gi,a?,ri−−−−−→ l′i, lj

gj ,a!,rj−−−−−→ l′j , i �= j, u ∈ gi ∧ gj , u′ =
[ri ∪ rj �→ 0]u and u′ ∈ I(l[l′i/li][l′j/lj]).

Note that a network is a closed system which may not perform any external action.
In fact, the CCS hiding operator is embedded in the above rules.

Shared Integer Variables. Clocks may be considered as typed variables with type
clock. In UPPAAL, one may also use integer variables and arrays of integers, each with
a bounded domain and an initial value. Predicates over the integer variables can be
used as guards on the edges of an automaton process and the integer variables may
be updated using resets on the edges. In the current version of UPPAAL, the syntax
related to integer variables resembles the standard C syntax. Both integer guards and
integer resets are standard C expressions with the restriction that guards can not have
side-effects.

The semantics of networks can be defined accordingly. The clock assignment u in
the state configuration 〈l, u〉 can be extended to store the values of integer variables in
addition to clocks. Since delay does not affect the integer variables, the delay transi-
tions are the same as for networks without integer variables. The action transitions are
extended in the natural way, i.e. for an action transition to be enabled the extended clock
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assignment must also satisfy all integer guards on the corresponding edges and when a
transition is taken the assignment is updated according to the integer and clock resets.

There is a problem with variable updating in a synchronizing transition where one
of the processes participating in the transition updates a variable used by the other.
In UPPAAL, for a synchronization transition, the resets on the edge with an output-
label is performed before the resets on the edge with an input-label. This destroys the
symmetry of input and output actions. But it gives a natural and clear semantics for
variable updating. The transition rule for synchronization is modified accordingly:

– 〈l, u〉 τ−→
〈
l[l′i/li][l

′
j/lj], u

′〉 if li
gi,a?,ri−−−−−→ l′i, lj

gj ,a!,rj−−−−−→ l′j , i �= j, u ∈ gi ∧ gj , u′ =
[ri �→ 0]([rj �→ 0]u) and u′ ∈ I(l[l′i/li][l′j/lj])

Urgent Channels. To model urgent synchronizing transitions, which should be taken
as soon as they are enabled, UPPAAL supports a notion of urgent channels. An urgent
channel works much like an ordinary channel, but with the exception that if a syn-
chronization on an urgent channel is possible the system may not delay. Interleaving
with other enabled action transitions, however, is still allowed. In order to keep clock
constraints representable using convex zones, clock guards are not allowed on edges
synchronizing on urgent channels.

To illustrate why this restriction is necessary, consider the network shown in Fig. 16.
Both processes may independently go from their first state to their second state. In the
second state, the first process must delay for at least 10 time units before it is allowed to
synchronize on the urgent channel u. In the second state, the other process must delay
for at least 5 time units before it is allowed to synchronize on the urgent channel u. As
soon as both processes have spent the minimal time periods required in their second
state, they should synchronize and move to their third state. The problem is in [S2,T2]
where the zone may be for example (x ≥ 10 ∧ y = 5) ∨ (y ≥ 5 ∧ x = 10) which is a
non-convex zone.

S2S1S0 x:=0 x>=10

u!

T2T1T0 y:=0 y>=5

u?

Fig. 16. An example of a network with non convex timing regions.

For this example, the problem can be solved by splitting the non-convex zone into
two convex ones. But in general, the splitting is a computationally expensive operation.
In UPPAAL, we decided to avoid such operations for the sake of efficiency. So only
integer guards are allowed on edges involving synchronizations on urgent channels.

Committed Locations. To model atomic sequences of actions, e.g. atomic broadcast
or multicast, UPPAAL supports a notion of committed locations. A committed location
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is a location where no delay is allowed. In a network, if any process is in a committed
location then only action transitions starting from such a committed location are al-
lowed. Thus, processes in committed locations may be interleaved only with processes
in a committed location.

Syntactically, each process Ai in a network may have a subset NC
i ⊆ Ni of loca-

tions marked as committed locations. Let C(l) denote the set of locations in l, that are
committed. For the same reason as in the case of urgent channels, as a syntactical re-
striction, no clock constraints but predicates over integer variables are allowed to appear
in a guard on an outgoing edge from a committed location.

The transition rules are given in the following, where →c denotes the transition
relation for a network with committed locations and → denotes the transition relation
for the same network without considering the committed locations.

– 〈l, u〉 d−→c 〈l, u+ d〉 if 〈l, u〉 d−→ 〈l, u+ d〉 and C(l) = ∅
– 〈l, u〉 τ−→c 〈l[l′i/li], u′〉 if 〈l, u〉 τ−→ 〈l[l′i/li], u′〉 and either li ∈ C(l) or C(l) = ∅
– 〈l, u〉 τ−→c

〈
l[l′i/li][l

′
j/lj], u

′〉 if 〈l, u〉 τ−→
〈
l[l′i/li][l

′
j/lj], u

′〉 and either li ∈ C(l),
lj ∈ C(l) or C(l) = ∅

5.2 Verifying with UPPAAL

The model checking engine of UPPAAL is designed to check a subset of TCTL formula
[2] for networks of timed automata. The formulas should be one of the following forms:

– A[] φ— Invariantly φ.
– E<> φ— Possibly φ.
– A<> φ— Always Eventually φ.
– E[] φ— Potentially Always φ.
– φ --> ψ — φ always leads to ψ. This is a shorthand for ∀�(φ ⇒ ∀♦ψ).

where φ, ψ are local properties that can be checked locally on a state, i.e. boolean ex-
pressions over predicates on locations and integer variables, and clock constraints in
B(C).

The transition system of a network may be unfolded into an infinite tree contain-
ing states and transitions. The semantics of the formulas are defined over such a tree.
The letters A and E are used to quantify over paths. A is used to denote that the given
property should hold for all paths of the tree while E denotes that there should be at
least one path of the tree where the property holds. The symbols [] and <> are used to
quantify over states within a path. [] denotes that all states on the path should satisfy
the property, while <> denotes that at least one state in the execution satisfies the prop-
erty. In Fig. 17 the four basic property types are illustrated using execution trees, where
the dashed arrows are used to denote repetitions in the trees. The states satisfying φ are
denoted by filled nodes and edges corresponding to the paths are highlighted using bold
arrows.

The two types of properties most commonly used in verification of timed systems
are E<>φ and A[]ψ. They are dual in the sense that E<>φ is satisfied if and only if
A[]¬φ is not satisfied. This type of properties are often classified as safety properties,
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(a) A[]φ (b) E<>φ

(c) A<>φ (c) E[]φ

Fig. 17. (T)CTL-formulae.

i.e. meaning that the system is safe in the sense that a specified hazard can not occur. It
is also possible to transform so called bounded liveness properties, i.e. properties stating
that some desired state will be reached within a given time, into safety properties using
observer automata [1] or by annotating the model [37]. For example, to check if an
automaton will surely reach a location l within 10 time units, we use one clock x (set to
0 initially) and introduce a boolean variable lb (set to false initially). For each incoming
edge to l in the automaton, set lb to true. Then if the automaton satisfies the invariant
property "x ≤ 10 ∨ lb", it will surely reach l within 10 time units provided that the
automaton contains no zeno loops which stop time to progress.

The other three types of properties are commonly classified as unbounded liveness
properties, i.e. they are used to express and check for global progress. These properties
are not commonly used in UPPAAL case-studies. It seems to be the case that bounded
liveness properties are more important for timed systems.

5.3 The UPPAAL Architecture

To provide a system that is both efficient, easy to use and portable, UPPAAL is split into
two components, a graphical user interface written in Java and a verification engine
written in C++. The engine and the GUI communicate using a protocol, allowing the
verification to be performed either on the local workstation or on a powerful server in a
network.
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Fig. 18. Schematic view of the reachability pipeline in UPPAAL.

To implement the reachability analysis algorithm 1, the UPPAAL verification engine
is organized as a pipeline that incarnates the natural data flow in the algorithm. A sketch
of this pipeline is shown in Fig. 18. This architecture simplifies both activating and
deactivating optimizations at runtime by inserting and removing stages dynamically,
and introducing new optimizations and features in the tool by implementing new or
changing existing stages.

In addition to the zone-manipulation algorithms described in Section 4 and the
pipeline architecture, in UPPAAL a number of optimizations have been implemented:

– Minimal constraint systems [31] and CDDs [32, 11], to reduce memory consump-
tion by removing redundant information in zones before storing them.

– Selective storing of states in PASSED [31], where static analysis is used to detect
states that can be omitted safely from PASSED without losing termination.

– Compression [13] and sharing [10, 21] of state data, to reduce the memory con-
sumption of PASSED and WAIT.

– Active clock reduction [22], that use live-range analysis to determine when the
value of a clock is irrelevant. This does not only reduce the size of individual states
but also the perceived state-space.

– Supertrace [30] and Hash Compaction [45, 44] where already visited states are
stored only as hash signatures, and Convex-hull approximation [9] where convex
hulls are used to approximate unions of zones, for reducing memory consumption
at a risk of inconclusive results.
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Appendix: Pseudo-Code for Operations on DBMs

Algorithm 2 close(D): Floyds algorithm for computing shortest path

for k := 0 to n do
for i := 0 to n do

for j := 0 to n do
Dij := min(Dij , Dik + Dkj)

end for
end for

end for

Algorithm 3 Reduction of Zero-Cycle Free Graph G with n nodes

for i := 1 to n do
for j := 1 to n do

for k := 1 to n do
if Gik + Gkj ≤ Gij then

Mark edge i → j as redundant
end if

end for
end for

end for
Remove all edges marked as redundant.

Algorithm 4 Reduction of negative-cycle free graph G with n nodes

for i := 1 to n do
if Nodei is not in a partition then

Eqi = ∅
for j := i to n do

if Gij + Gji = 0 then
Eqi := Eqi ∪ {Nodei}

end if
end for

end if
end for
Let G′ be a graph without nodes.
for each Eqi do

Pick one representative Nodei ∈ Eqi

Add Nodei to G′

Connect Nodei to all nodes in G′ using weights from G.
end for
Reduce G′

for each Eqi do
Add one zero cycle containing all nodes in Eqi to G′

end for
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Algorithm 5 relation(D,D′)

fD⊆D′ := tt
fD⊇D′ := tt
for i := 0 to n do

for j := 0 to n do
fD⊆D′ := fD⊆D′ ∧ (Dij ≤ D′

ij)
fD⊇D′ := fD⊇D′ ∧ (Dij ≥ D′

ij)
end for

end for
return 〈fD⊆D′ , fD⊇D′〉

Algorithm 6 up(D)

for i := 1 to n do
Di0 := ∞

end for

Algorithm 7 down(D)

for i := 1 to n do
D0i = (0,≤)
for j := 1 to n do

if Dji < D0i then
D0i = Dji

end if
end for

end for

Algorithm 8 and(D, g)

if Dyx + (m,�) < 0 then
D00 = (−1,≤)

else if (m,�) < Dxy then
Dxy = (m,�)
for i := 0 to n do

for j := 0 to n do
if Dix + Dxj < Dij then

Dij = Dix + Dxj

end if
if Diy + Dyj < Dij then

Dij = Diy + Dyj

end if
end for

end for
end if
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Algorithm 9 free(D, x)

for i := 0 to n do
if i �= x then

Dxi = ∞
Dix = Di0

end if
end for

Algorithm 10 reset(D, x := m

for i := 0 to n do
Dxi := (m,≤) + D0i

Dix := Di0 + (−m,≤)
end for

Algorithm 11 copy(D, x := y)

for i := 0 to n do
if i �= x then

Dxi := Dyi

Dix := Diy

end if
end for
Dxy := (0,≤)
Dyx := (0,≤)

Algorithm 12 shift(D, x := x + m)

for i := 0 to n do
if i �= x then

Dxi := Dxi + (m,≤)
Dix := Dix + (−m,≤)

end if
end for
Dx0 := max(Dx0, (0,≤))
D0x := min(D0x, (0,≤))

Algorithm 13 normk(D))

for i := 0 to n do
for j := 0 to n do

if Dij �= ∞ and Dij > (ki),≤) then
Dij = ∞

else if Dij �= ∞ and Dij < (−kj , <) then
Dij = (−kj , <)

end if
end for

end for
close(D)
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Algorithm 14 Core normalization: Core-Normk(D).

Gunsat := ∅
for all g ∈ Gd do

if D ∧ g = ∅ then
Gunsat := Gunsat ∪ {g}

end if
if D ∧ ¬g = ∅ then
Gunsat := Gunsat ∪ {¬g}

end if
end for
D := normk(D)
for all g ∈ Gunsat do

D := D ∧ ¬g
end for
return D

Algorithm 15 Zone splitting: split(D).

Q := {D}, Q′ := ∅
for all g ∈ Gd do

for all D′ ∈ Q do
if D′ ∧ g and D′ ∧ ¬g then

Q′ := Q′ ∪ {D′ ∧ g, D′ ∧ ¬g}
else

Q′ := Q′ ∪ {D′}
end if

end for
Q := Q′, Q′ := ∅

end for
return Q

Algorithm 16 Normalization: normk,G(D).

Q := ∅
for all D′ ∈ split(D) do

Q := Q ∪ {Core-Normk(D′)}
end for
return Q

Algorithm 17 Algorithm for adding encoded bounds.

if b1 = MAX_INT or b2 = MAX_INT then
return MAX_INT

else
return b1 + b2 − ((b1&1)|(b2&1))

end if
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Abstract. Dependability evaluation main objective is to assess the ability of a
system to correctly function over time. There are many possible approaches to
the evaluation of dependability: in these notes we are mainly concerned with de-
pendability evaluation based on probabilistic models. Starting from simple prob-
abilistic models with very efficient solution methods we shall then come to the
main topic of the paper: how Petri nets can be used to evaluate the dependability
of complex systems.

1 Introduction

The term dependability is normally used to refer to the ability of an element ( hardware
or software component, plant or whatever complex system) to correctly perform its
intended function, or mission, over time.

In this paper we are interested in the quantitative evaluation of dependability, a
research field that has many practical implications, as: 1) the analysis of risks and safety;
2) the specification and contract document of a system - it is usually the case that the
definition of a new system also includes requirements about dependability, that is to say
on how much we can rely on the system being built, whether this is a software product,
an automation system, or a bridge; 3) incidence of maintenance in the life cycle of a
system - being able to estimate the dependability of an object allows to predict how
often it will break down, with the consequence of additional costs on maintenance,
and to take decision on the balance between investing more time and money on the
construction of the system and having bigger maintenance costs; 4) dimensioning of
technical assistance sector: being able to predict how often a component of a car will
break down allows to estimate the number of spare components needed over a certain
time period, the costs of the repairs during the warranty period, and the planning of the
preventive maintenance.

To study the evolution over time of the dependability of a system it is necessary to
be able to foresee when and how its component will be subject to malfunctioning, and
how the malfunctioning of a component may affect the system behavior. There are two
major approaches: measuring of physical, existing systems, and evaluation of abstract
models of the (existing or planned) systems.

For what concerns measures, we can distinguish the following classes:

� Field measures.
It assumes that the system is already operational, and that is possible to measure the
quantities of interest without altering the system behavior. Field measures should
be collected for a “statistically significant” period.
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� Single component measures.
Only a subset of the components are placed under test to collect measures. This is
usually accompanied by acceleration technique, that generate, in a short period of
time, the same conditions that the component will encounter along a much longer
period.

� Prototype measures.
A prototype of the system is built, and measures are taken on the prototype under
normal operational condition. This technique is very expensive, and it can be used
only for goods of large consume or that involve an expected high safety risk.

The approach based on models requires first the construction of abstract mathe-
matical models that describe the behavior of the system: the quantity of interest is the
computed through the analysis and solution of the model. Modeling for dependability
suffers of the same problems as any other modeling approach: the choice of the right
level of abstraction for the quantity/property we want to evaluate and the complexity of
the model solution.

Models are usually distinguished according to the following characteristics:

� Modeling language.
A model can be described in terms of basic quantities and mathematical expressions
that relate the overall behavior to the basic quantities, as well as through an high
level language with a well defined semantics, as for example Petri nets or queueing
networks, or application-specific languages, in which the language elements have
a direct counterpart on the system basic components. In general, the higher level is
the language, the easier is to define the model, and usually the harder is to solve it.
By model solution we mean the evaluation of the quantity of interest, in our case it
is usually a direct definition of the dependability of the system.

� Solution methods.
There are two large classes of solution methods: analytical techniques and simu-
lation. Analytical techniques assume that it is possible to derive from the model
a set of equations that describe the quantities under evaluation, and that there are
mathematical techniques, exact or approximate, to solve the equations. Simulation
consists instead in executing the model on a computer a number of times that is suf-
ficient to provide a statistically acceptable estimation of the quantities of interest.
There are high level modeling languages for which simulation is the only viable
analysis technique, as it is usually the case for application-oriented languages, in
which the semantics of the basic elements of the language is not defined in mathe-
matical terms, but through a piece of program code.

Topic of these notes is indeed to describe various modeling approaches to the eval-
uation of dependability, with a large emphasis on Petri nets.

Measures and models should by no means be considered as competitors. The eval-
uation of dependability requires the synergic use of both: measures can indeed be used
to set the model parameters, while models can be used to drive the, usually expensive,
measuring activity.

With the inherent complexity of modern systems it is extremely difficult to precisely
and deterministically describe the physical, technological, and environmental factors
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and interactions that provoke a system malfunctioning. It is instead very much accepted
that the time to failure of a system (how long does it take for the system to go into
a faulty state) is not a deterministic quantity, but a random variable of a, generally
unknown, distribution. A similar rationale supports also the idea that, if a system can
be repaired, then the time to repair (how long it takes for the system to be repaired) is
also a random variable.

The above observations led to the development of a probabilistic approach to the
quantitative evaluation of system dependability, that is the main topic of this paper.

Let us now introduce the terminology used in this paper.

Faults, errors and failures. We adhere to the terminology discussed in [43], and we say
that when the delivered service of a system deviates from fulfilling the system intended
function, then the system has a failure. A failure is due to a deviation from the correct
state of the system, known as error. Such a deviation is due to a given cause, for instance
related to the physical state of the system, or to a bad system design. This cause is called
a fault. We shall generically refer to fault, errors, and failures as the “FEF elements.”

Systems and components. We view a system as built out of elementary components.
We shall first discuss dependability of a component in isolation (that can be seen as a
single-component system), to then introduce the dependability of a system as a function
of the dependability of its components. When dealing with a single component we do
not distinguish the FEF elements, so we equivalently refer to a component as being
faulty/non-faulty, failed/not-failed, not-working/working, down/up, which are current
terms in the literature. For a system with a simple structure like whose presented in
Sub-Section 5.1 we distinguish between fault in a component and failure of the system
(provoked by one or more faulty components). The reader should nevertheless be aware
that it is also common of the literature to use the generic term failure, so that the failure
of one or more component provokes the failure of the system.

Net classes. Since the main topic of the paper is on quantitative analysis based on
probabilistic approach, we shall consider Petri nets with timed transitions. The time
associated to transition is either zero (immediate transition) or it is a delay described
by an exponentially distributed random variable. We shall use two specific net classes:
Generalized Stochastic Petri Nets (GSPN) [1], and their colored counterpart Stochastic
Well-formed Nets (SWN) [18].

The paper is organized as follows: in Section 2 the basic concepts of dependability
are introduced. Section 3 presents two combinatorial techniques for the dependability
analysis of systems consisting of a number of independent components: the reliability
block technique and fault tree analysis. Section 4 describes state enumeration tech-
niques that can be applied also for the dependability analysis of systems in which the
independence assumption among components does not hold. The material presented in
Sections 2,3 and 4 derives from [13]. Section 5 introduces dependability modeling us-
ing Petri Nets. Two examples are presented: a simple one, representing a system with
two independent components, and a more complex example with several interacting
components that is a simplified version of the case study analyzed in [10]. Section 6
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describes a systematic, compositional approach to the construction of Stochastic Petri
Net models for dependability and Section 7 describes the application of such approach
to the automation system domain. The material presented in Sections 6 and 7 has been
taken from [8, 7, 4]. Finally, conclusions are written in Section 8.

2 Basic Concepts of Dependability

A first step towards quantitative evaluation of dependability is the definition of the de-
pendability quantity. The definition of dependability takes different flavors depending
on whether we consider a system that, once broken, stays broken forever, or a system
that, once broken, it is repaired and goes through cycles of correct functioning and re-
pairs. In the first case the measure to be considered is the reliability, in the second case
is the availability, as we shall see in the following.

2.1 Dependability of Non-repairable Components: Reliability

The first case considered is that of non-repairable components, that is to say the system
under study is seen as a monolithic component that, once it is broken/malfunctioning, it
will stay in that state forever. In this case the dependability of the system is characterized
by the reliability quantity. A commonly accepted definition of reliability [60] is:

The reliability of a component at time t is the probability that the component
correctly fulfills the assigned mission during the interval [0,t], given its environ-
mental conditions.

Observe that the definition relates the reliability of a component to its environment:
it is therefore possible that the same component will have a very different reliability
depending on the environment in which it is placed.

Let τ be the random variable that represents the time to failure of the component
under study, τ being a time quantity, it is defined only for non-negative values. The
probability distribution function of the variable τ is:

F(t) = Prob{τ ≤ t } (1)

that defines the probability that the system is malfunctioning at time t. The following
properties hold true for F(t):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F(0) = 0

lim
t→∞

F(t) = 1

F(t) not decreasing in t

(2)

The reliability function is defined as the complement of F(t):

R(t) = Prob{τ > t } = 1 − F(t) (3)
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that defines the probability that the system is still working properly (still up) at time
t (and since the system is not repairable, being up at time t it means that no fault has
taken place). The following properties hold true for R(t):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

R(0) = 1

lim
t→∞

R(t) = 0

R(t) not increasing in t

(4)

If F(t) is derivable, the probability density function of the variable τ is:

f (t) =
d F(t)

d t
= − d R(t)

d t
(5)

where f (t)dt is the probability that the value of τ falls in between t and t +dt, that is to
say, the fault takes place in between t and t + dt. Moreover:∫ b

a
f (t) d t = Prob{a < τ ≤ b} = F(b) − F(a)

represents the probability that the fault takes place in the interval [a,b].
The expected value of the variable τ, E[τ], is called Mean Time To Failure, and is

indicated by the acronym MTTF.

The hazard rate. The hazard (or failure) rate represents the probability that a component
gets faulty between t and t +dt, given that it was correctly functioning up to time t (that
is to say, the hazard rate is equal to the probability density function of the τ variable,
conditioned on the fact that the component was still working correctly at time t [51]).

h(t) = Prob{ t < τ ≤ t + dt |τ> t } =
Prob{ t < τ ≤ t + dt , τ> t }

Prob{τ> t } (6)

From (6), using (5), we can derive:

h(t) =
f (t)
R(t)

= − 1
R(t)

d R(t)
dt

(7)

and solving for R(t) we get:

R(t) = exp

[
−

∫ t

0
h(x)dx

]
(8)

that is the fundamental equation that relates reliability and hazard rate.
The classic shape of the failure rate when plotted over the time axis is that of a bath-

tube: the failure rate is high at the beginning of the life of the object, it then remains
stable for a significant period, and it finally increases. In terms of behavior of a system,
it means that most systems have a very high probability of breaking when they are new,
this probability decreases while experiencing a correct functioning of the system, up to
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a point in time in which the failure rate is constant, that is to say the failure rate does
not depend on the particular time instant that we are considering, and up to a certain
time barrier after which the aging of the system is predominant and the probability
of breaking down increases as the time passes by. The bath-tube shape is particularly
evident for manufacturing products, while for electronic components the aging effect is
less evident.

In the technical literature it is often the case that the failure rate is a single constant
value, which implies that we are assuming that the system is in its period of life corre-
sponding to the bottom of the bath-tube: a constant failure rate is therefore equivalent
to saying that the system has no memory of its past.

Which distribution for τ? Given that the time of correct functioning of a system is a
random variable, what is an adequate distribution for it? We shall present two candidate
distributions: exponential and Weibull.

The main characteristic of the exponential distribution is that the failure rate is con-
stant, and, vice-versa, any distribution with a constant failure rate is exponential [63].
Given a constant failure rate, h(t) = cost = λ, from (7) and (5) we can derive:

F(t) = 1 − e−λ t

R(t) = e−λ t

f (t) = λ e−λ t (9)

h(t) = λ

The mean value is of τ is MT T F = 1/λ, that is to say, the failure rate has a clear
physical meaning: it is the inverse of the failure rate.
The exponential distribution is known as memoryless since the reliability conditioned
on the fact that the component has been working correctly already for a duration t = a,
is equal to the reliability at time t = 0.

The Weibull distribution is:

F(t) = 1 − exp
[

−(t/η)β
]

where η > 0 is the scaling parameter (displacement on the x-axis), and β > 0 is the
shaping parameter. Changing β we get a different characterization of the failure rate:

β < 1 =⇒ h(t) decreasing

β = 1 =⇒ h(t) constant

β > 1 =⇒ h(t) increasing

Observe that the exponential distribution can be seen as a Weibull with β = 1. The abil-
ity to represent various behaviors of the failure rate is the major appeal of the Weibull
distribution for dependability modeling.
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2.2 Dependability of Repairable Components: Availability

We now consider the case of a component that, once broken, can be repaired. The
behavior of a repairable component over time is therefore determined not only by the
way in which it fails, but also by the way in which it is repaired, and we can consider
the life of a system as an alternation between two states: Up (system is working) and
Down (system is not working and it is under repair).

We assume that the intervals of correct functioning (time to failure), and the inter-
vals of incorrect functioning (time to repair) are described by random variables. Let
τ1, τ2, τ3, . . . be the random variables of the successive duration of the up times, and
θ1, θ2, θ3, . . . the associated repair times, under the hypothesis that the repair is “regen-
erative”, that is to say that after the repair the component is “good as new”, then all the
τi have the same distribution F(t), and all the θi have the same distribution G(t), and
we can describe the behavior of the system with only two random variables τ, duration
of the Up times, and θ, duration of the Down times. G(t) represents the probability that
the component is repaired in [0,t], and it is called Maintainability. Similarly to what we
have done for F(t), we get for G(t) the following expressions:

g(t) =
d G(t)

dt

hg(t) =
g(t)

1 − G(t)

MT T R =
∫ ∞

0
t g(t)dt

where MTTR is the Mean Time To Repair, and hg(t), the repair rate, is the probability
that the repair is terminated in the interval [t,t + dt], given that the component was
still unrepaired at time t. If we assume that the repair rate hg(t) is time-independent,
hg(t) = cost = μ, then the maintainability is an exponential function:

G(t) = 1 − e−μt and MT TR =
1
μ

(10)

The assumption of time-independence is not very realistic since, in general, the time
it takes to finish a repair does depend on how long the repair has already taken, but
this assumption is nevertheless often taken in the literature and in the practice, for the
advantages that it offers in the solution process.

It is clear that if a system is subject to failures and repairs, the reliability function
R(t) is not particularly informative since for any t greater than the time of the first
failure, the value of R(t) is always going to be zero.

A new quantity is therefore defined, and it is called availability, indicated as A(t).
A(t) is the probability that the system is Up at time t.

A(t) = Prob{at time t, state = Up} (11)

The unavailability U(t) is instead the probability that the system is Down at time t.

U(t) = Prob{at time t, state = Down} (12)
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and, since we assume that the system is either Up or Down , we have:

A(t) + U(t) = 1

The computation of A(t) and U(t) of a system starts from the observation that A(t)
(U(T )) is equivalent to the probability of being in the Up (Down) state at time t. But the
probability of being in the Up state can be computed writing equilibrium equation, since
the variation over time of the probability of being in state Up is equal to the difference
between the probability of entering the Up state and the probability of leaving the state,
that, assuming a fixed failure (repair) rate equal to λ (μ), amounts to the following
equations: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

d A(t)
d t

= −λA(t) + μU(t)

d U(t)
d t

= λA(t) − μU(t)

(13)

Assuming that at time 0 the system is working properly, we can set A(0) = 1, we can
solve the equations (13), and obtain:

A(t) =
μ

λ + μ
+

λ
λ + μ

e−(λ+μ)t

(14)

U(t) =
λ

λ + μ
− λ

λ + μ
e−(λ+μ)t

And we get:

A(0) = 1 ; lim
t→∞

A(t) = A∞ =
μ

(λ + μ)
(15)

The typical shape of the availability function is made up of a transient term that ex-
hibits an exponential decay, and a time independent term that constitute the horizontal
asymptote.

Since in a repairable system MT T F � MT T R, and hence λ � μ, the contribution
of the transient term decays very quickly, and therefore the availability is often identified
by its asyntotic behavior in (15).

If A∞ is the asymptotic availability, we can write

A∞ =
μ

λ + μ
=

1/λ
1/λ + 1/μ

=
MT TF

MT T F + MT T R
(16)

Although the above expression has been derived under the hypothesis of constant
failure and repair rate, it has been proven [24] that it holds for any distribution F(t) and
G(t), given that MTTF is the mean value of F(t) and MTTR is the mean value of G(t).

3 Combinatorial Methods for System Dependability

Assuming that we are able to characterize the failure and repair distribution of a compo-
nent, we have seen how to predict its availability. But if a system is a complex aggregate
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of components, it may be difficult to associate directly to the system a failure and repair
distribution. As usual in computer science, when a problem is too complex, a divide
and conquer technique may lead to viable solution, and this is indeed the approach that
we shall discuss next: given a number of independent components, and a well defined
way of combining them into a system configuration, we shall see how to compute the
reliability (availability) of a (repairable) system. We present two techniques: reliability
blocks [60] and fault trees [59].

3.1 Reliability of Non-repairable Systems

In reliability blocks we assume that the system under study is built out of two basic
configuration schemes: series configuration and parallel configuration.

A system is the series configuration of two components if the failure of one of
them provokes the failure of the whole system. If we assume that the components are
statistically independent, and letting R1(t), R2(t), . . . ,Rn(t) be the reliability of the n
components at time t, then the reliability of the system at time t, Rs(t) is [60]:

Rs(t) = R1(t) · R2(t) · · · Rn(t) (17)

The reliability of the system is the product of the reliability of the components, and
since the Ri(t) are positive values less than 1, it implies that more components we have
in a series the less reliability we have.

If the failure rate of the components is constant (and therefore the Ri(t) are expo-
nential distributions of parameter λi), we derive from (17):

Rs(t) = e−λs t with : λs =
n

∑
i=1

λi and MT TF =
1
λs

(18)

meaning that the whole system fails according to an exponential distribution.
If we want to build a more robust system, we can use the concept of parallel redun-

dancy: the system is built out of n components, and the whole system fails only if all
the components fail. Again, assuming that the components are independent, and for the
simple case of n = 2, we can state that the unreliability Fs(t) can be computed as:

Fs(t) = F1(t) · F2(t) (19)

from which we derive:

Rs(t) = R1(t) + R2(t) − R1(t) · R2(t) (20)

Equation (20) implies that the reliability of the system is greater that the maximum
reliability of its components. In the case of constant failure rate we get:

Rs(t) = e−λ1 t + e−λ2 t − e−(λ1+λ2)t e MT T F =
1
λ1

+
1
λ2

− 1
λ1 + λ2

(21)

The expression for Fs(t) of (19) can be generalized to the n case, leading to:

[1 − Rs(t)] =
n

∏
i=1

[1 − Ri(t)] (22)

from which Rs(t) can be computed.
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The equations above allow the computation of the reliability function of systems
that have a complex parallel-series composition scheme, indeed each Ri(t) could be the
reliability of a complex subsystem, that can be expressed with a formula that depends
on whether the subsystem is the serial or parallel composition of sub-subsystems, and
so on.

A special type of parallel redundancy is the so-called k out of n (indicated as k:n):
the system has n redundant components placed in parallel, and the system works fine
when at least k out of the n components works properly. An example of such a system
can be a redundant water pipeline in which the required water flow is ensured as far as
k pipelines are correctly transporting their flows.

The probability that exactly i components out of n work fine, in the hypothesis that
all components have the same failure rate R, is given by the binomial distribution:

Pr{ i : n} =
(

n
i

)
Ri (1 − R)(n−i) (23)

since the system is working in all cases in which i components, with i> k, are correctly
working, we get:

Rk:n =
n

∑
i=k

(
n
i

)
Ri (1 − R)(n−i) (24)

3.2 Availability of Repairable Systems

Let us now consider the case of a system built out of repairable components. Again
we shall consider the failure process and the repair process of the components totally
independent: this hypothesis is less realistic than in the case of a single component,
since it is often the case that there is a limited number of resources allocated for repairs,
shared among all components, so that the computed availability may be an upper bond
of the real value.

If there are n components configured in series, then the availability of the system As

is given by:
As = A1 · A2 · · · An

where the A1, A2, . . . , An and As are evaluated for the same time instant t, or at infinity.
If the constant rate hypothesis applies, then the first equation in (14) can be used.

Again, the availability of the system is smaller than the availability of the worst
component, and therefore to increase the availability of a system it is advisable to act
on the worst component.

For what concerns the redundant parallel systems, considering the simplifying hy-
pothesis of two components, we have that the unavailability Us is given by:

Us = U1, ·U2 (25)

from which we can derive

As = (1 − Us) = A1 + A2 − A1 · A2 (26)

showing that the availability of the system is greater than the availability of the most
available component.
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3.3 Fault Trees

Another approach to the combinatorial study of systems built out of independent com-
ponents is that of fault trees [59]: logical trees for the representation and analysis of the
critical conditions whose combined occurrence causes a specific event, called the Top
Event (TE), to occur.

When the TE is one particular undesired event, then the analysis of the combina-
tion of elementary events that lead to the occurrence of the TE assumes the name of
Fault-tree analysis (FTA). Elementary events are of the type: component X is working
properly, or component X is not working properly.

The TE is the root of the tree and the construction of the tree is usually “top / down”
from general to specific. The FTA is particularly suited to the analysis of complex sys-
tems comprising several subsystems or components which are connected in various
configurations, with a high level of redundancy. FTA is commonly used by reliability
engineers dealing with aircraft, space, chemical and nuclear systems, and it is also con-
sidered in the IEC-1025 standard [36]. The interested reader can find a full treatment of
the topic in [3, 31, 32, 22, 59].

The methodological approach to dependability based on FTA consists of the fol-
lowing steps: definition of the Top Event, construction of the Fault Tree, qualitative
analysis, and qualitative analysis.

Definition of the Top Event. TE candidates are events whose occurrence may lead to
unsafe operating conditions, catastrophic failure or malfunction, unaccomplishment of
the assigned mission, and so on.

If more TE’s need to be investigated a different tree for each one the TE’s must be
generated and analyzed.

Construction of the fault-tree. Once the TE has been defined, the construction of the
FT proceeds by identifying the immediate causes for the occurrence of the TE, and their
logical relationship (for example, whether the immediate causes must occur separately
or simultaneously for the TE to occur).

The immediate, necessary and sufficient causes for the TE constitute the first level
of the tree. Each immediate cause is now treated as a sub-top event, and the analysis
proceeds to determine their immediate causes. In this way, the construction evolves
iteratively from events to their causes, continuously approaching finer resolution, until
a desired level of detail is reached.

Interactions between causes at each level of the iterative construction are repre-
sented by means of logic gates (usually OR and AND gates, but more complex gates can
be defined, as, for example, k out of n gates), while the output of the logical gates repre-
sents the occurrence of the higher level of the tree. The events at which the construction
of the tree is ended are called terminal events.

Qualitative Analysis of a FT. The qualitative analysis is aimed at identifying all the
combinations of events that cause the top event to occur, as a function of the terminal
events. Combinations are ranked according to the number of events, since the smaller
the number of events that cause the TE the less resilient to failure it is likely to be our
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system. The qualitative analysis of an FT consists in deriving a logical expression of
the TE, in such a way that all the combinations of events whose simultaneous occur-
rence provokes the TE are evidenced. A combination of events whose simultaneous
occurrence provokes the TE is called a cut set (CS) for the system. A CS that does not
contain any subset which is again a CS , is minimal and is called a minimal cut set
(MCS) or mincut.

Definition. A CS is a set of terminal events whose simultaneous occurrence forces the
occurrence of the TE. A CS is an MCS if it does not contain any subset of terminal
events that is still a CS.

Suppose the FT has m MCS denoted by K1, K2, . . . , Km. According to the above
definition, the occurrence of any Ki (i = 1, 2, . . . ,m) implies the occurrence of the TE,
hence:

T E = K1 or K2 or . . . or Km = ORm
i=1 Ki (27)

The list of all the MCS provides a very valuable information to the analyst since it
provides all the minimal sets of failure events that can provoke the TE to occur, that is
the system failure event, and allows the analysts to identify the potential weak points of
the system and to initiate corrective actions.

The determination of the CS proceeds iteratively in a top down fashion, starting
from the TE and applying the rules of the logic algebra, guided by the gate typology,
until all the terminal nodes are reached. If the FT does not contain repeated events, the
above search directly provides the MCS, otherwise if the FT contains repeated events
the list of the MCS must be further extracted from the obtained CS.

Quantitative Analysis. The quantitative analysis has the objective of evaluating the
probability of occurrence of the TE, of the MCS and of any other intermediate event
of the FT in terms of the probability of occurrence of the basic events. FTA assumes
that the failures of the basic components are statistically independent. According to this
assumption, the properties of the FT are completely specified if an individual probability
is assigned to each single basic event.

Let Ai be a terminal event and denote Qi = P(Ai), where Ai stays for “component
Ai not working”. To compute the probability values in either cases a mission time must
be fixed. Denote the mission time TM, hence

Qi = P(Ai, TM) (28)

If a component is non-repairable, then Qi is the component unreliability computed at
time TM , if it is repairable Qi is the component unavailability computed at time TM.

Many FT tools accept as input parameter for each basic even only a constant failure
and a constant repair rate, thus implicitly assuming that the failure and repair times of
each component are exponentially distributed and restricting the analysis to this case,
only. By denoting with λi and μi, respectively, the constant failure and a repair rate of
component Ai, formula (28) becomes [3, 64]:

Qi =
λi

λi + μi
(1 − e− (λi +μi)TM ) (29)

from which the value for a non-repairable component (the usual unreliability expression
for a component with constant failure rate) is obtained by setting μi = 0.
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Probability of the TE. Since the TE can always be expressed in disjunctive normal form
in terms of the MCS, then:

P(T E) = P(K1 + K2+, . . . , Km)

where each CS K is the AND of a number (called the CSorder) of terminal events, then

K = A1 A2 · · · A


and
Pr (K) = Pr (A1)Pr (A2) · · · Pr (A
) (30)

If there are m MCS’s (K1, K2, · · · , Km), since the occurrence of a single MCS implies
the TE, then the probability of TE is given by

Pr (T E) = Pr (K1 + K2 + · · · + Km) (31)

Recall that, if A and B are two events, then

Pr (A or B) = Pr (A) + Pr (B) − Pr (A B) (32)

and that the OR of m events requires an expansion into (2m − 1) terms involving the
computation of the probability of the AND of groups of j events, ( j = 1, 2, . . . , m).

The computation of the probability of the TE can therefore be quite complex, but we
should consider that the probability of the single events are in general quite low (they are
failure probabilities), and that all terms that compute the product of a significant number
of basic events can be quite low. It is therefore a widely accepted practice to truncate
the computation, especially considering that upper and lower bounds on Pr (T E) can
be computed using the probability of the single CS’s and the probability of the AND of
pair of CS’s, as follows.

Pr (T E) ≤ ∑
i

Pr (Ki) (33)

Pr (T E) ≥ ∑
i

Pr (Ki) − ∑
i> j

Pr (Ki Kj) (34)

The computation of the probability of occurrence of the TE and of the MCS is, usually,
the main concern of a FTA. However, several other useful measures can be defined and
evaluated, like the expected number of failed components, the main failure equivalence,
and the Mean Time To Failure.

FTA is a widespread practice for the availability analysis of systems, and there are
indeed a number of tools that support it, among them we cite [55, 62].

4 State Enumeration Techniques

The work of the previous section is here extended to consider systems of independent
components but with arbitrary configurations, and systems in which the independence
assumption does not hold. Both techniques are based on the idea of enumerating all the
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possible states of the system, and to classify them as “good” or “bad”. The probability
of being in a state (at time t or in steady-state) is then computed, and the reliability of
the system is then obtained summing up the probability of all the good states.

If the components are independent we can provide a closed form expression for
the probability of each state, thus adopting a combinatorial approach, as for reliability
blocks, while if dependencies among components are to be taken into account, more
complex quantitative analysis techniques need to be considered, based on the solution
of the associated stochastic process.

In this section we shall first consider the problem of state enumeration, to then sep-
arately discuss the quantitative analysis for the independent case and for the dependent
one, limited to the simpler case in which the associated stochastic process is a Markov
chain.

Consider a system with n components and any configuration among them. The usual
hypothesis is to assume that each single component can be represented by two mutually
exclusive conditions or states referred to as working (or Up) and failed (or Down),
identified by the state indicator variable xi associated to the i-th component, with the
following encoding:

xi =
{

1 component i Up
0 component i Down

The state of the system is identified by the vector x = (x1,x2, . . . ,xn) [3]. The state
space of the system Ω is the set of all the possible values of x, i.e. the set of all the
possible combinations of the n components being working or failed, leading to N =
|Ω| = 2n.

The state space, that we shall call RG for similarity with Petri nets terminology,
is a labeled directed graph whose nodes are the states of the system and each edge
represents the transition between states due to failure or repair. If we assume that no
multiple failures or repairs can take place at the same time, which is indeed the case for
independent components working in continuous time, then there is a direct arc labelled
i between state x and x′ only if the two states differ only in the value of variable xi.

We assume that the system as a whole can be classified according to a binary behav-
ior: working or failed. Hence, we introduce a binary indicator variable y for the system
[3, 41]:

y =
{

1 system is in a working state
0 system is in a failed state

(35)

The value of y is a function of the state, and we can define y = ϕ(x), or y =
ϕ(x1,x2, . . . ,xn)

The state space Ω can be partitioned in two exhaustive and mutually exclusive sub-
sets Ωu and Ωd .

Ωu = {Ω : ϕ(x) = 1} ; Ωd = {Ω : ϕ(x) = 0}

Let Nu = |Ωu| be the cardinality of Ωu, and Nd = |Ωd| the cardinality of Ωd , then

Ω = Ωu ∪ Ωd ; Ωu ∩ Ωd = 0 ; N = Nu + Nd (36)
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Observe that the system configuration is totally identified by the function y = ϕ(x).
For example, in the 2-parallel connection configuration the only system failed state is
x = (0,0), that is to say, both components have to be down for the whole system to fail.

The failure process defined on the state space. The evolution of the system in time can
be represented by means of the succession of states passed through by the system due
to failure or repair events of its components.

Denoting by Z(t) the function of the time that represents the state occupied by the
system at time t. For any value of t, Z(t) is a random variable that assumes non negative
values in the states of Ω. The probability that the system is in state x at time t is denoted
by px(t) and is defined as:

px(t) = Pr{Z(t) = x} (37)

under the normalization condition:

∑
x∈Ω

px(t) = 1 for any t ≥ 0 .

On the failure process the following measures con be defined:
Reliability: since there are many states (all whose in Ωu) in which the system is consid-
ered as working properly, then the Reliability of the system is obtained summing up the
probability of each of these states, leading to:

RS(t) = ∑
x∈Ωu

px(t) (38)

Availability:
A(t) = ∑

x∈Ωu

px(t) (39)

Mean sojourn time spent in a state up to time t:


x(t) =
∫ t

0
px(z) d z (40)

System MTTF

MT T F =
∫ ∞

0
RS(z)dz = ∑

x∈Ωu

∫ ∞

0
px(z)dz = lim

t→∞ ∑
x∈Ωu


i(t)

Average interval availability:

AI(t) =
1
t ∑

x∈Ωb


i(t)

Z(t) is a stochastic process defined over the discrete state space Ω and with continu-
ous time parameter t. The quantitative evaluation of the state probabilities expressed
by equation (37), completely determines the stochastic process Z(t) and, hence, the
behavior of the system. If the components are statistically independent, evaluation of
expression (37) can be performed by resorting to combinatorial formulas, presented in
the following subsection, while the case of statistically dependent components will be
treated next.
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4.1 Independent Components

If the components of a system are statistically independent, the probability px(t) of
being in a generic state x with characteristic vector x = (x1, x2, . . . , xn) at time t can be
expressed as the product of the probabilities of the individual variables:

px(t) = Pr{(x1(t)} · Pr{(x2(t)}· · ·Pr{(xn(t)} (41)

where, thanks to the independent component assumption, each term Pr{(xi(t)} is given
by: {

Pr{xi(t) = 1} = Ri(t)
Pr{xi(t) = 0} = 1 − Ri(t)

(42)

where Ri(t) is the probability that component i is in working condition at time t, and
coincides with the reliability of component i in case of non-repairable components or
with the availability of component i in case of repairable components.

In the usual case in which the time to failure distribution of each individual compo-
nent is considered exponentially distributed with failure rate λi, equation (42) takes the
form:

Pr{xi(t)} =
{

Ri(t) = e−λi t if xi(t) = 1
1 − Ri(t) = 1 − e−λi t if xi(t) = 0

(43)

4.2 Markovian Methods for Dependent Components

The analysis above relies on the hypothesis that the components are independent, but
this is not always the case. In the previous section we have shown how state enumer-
ation techniques can be used to cheaply compute the reliability of a system built out
of independent components. The hypothesis of independence is not always reasonable,
for example the failure of a component may induce a larger load on the remaining com-
ponents, thus increasing their failure rate, or two or more components have a common
cause of failure (for example a computer and a video can be seen as independent, but if
they use the same source of power their failure are not independent). If the component
are statistically dependent, i.e. the failure or repair process of any one of them is de-
pendent on the state of the other(s), more sophisticated techniques are necessary, able
to incorporate the conditional dependencies of each component with respect to the state
of the other ones.

Consider a system with two components whose state space is the Cartesian product
of the state spaces of the components and is depicted in Figure 1; if λ1 �= λ′

1 then the
failure rate of the first component depends on the state of the second component (for
example the failure rate of the first component increases if the second component is
not working properly). This dependency does not allow to compute the reliability of the
system in the simple product form of Equation (41), and we need to solve the associated
stochastic process. Continuous Time Markov Chains (CTMC) are stochastic process
with a good tradeoff between expressiveness and solution cost.

A very large literature exists on the topic, the interested reader may refer, for ex-
ample, to [51, 25, 42, 64]. Reliability analysis through CTMC is also dealt with in the
international standard IEC1165 [37].
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Fig. 1. The state space of a two components system

Let Z(t) be a stochastic process defined over the discrete state space Ω. Z(t) is a
Continuous Time Markov Chain (CTMC) [51, 64] if, given any ordered sequence of
time instants (0 < t1 < t2 < .. . < tm), the probability of being in state x(m) at time tm
depends only on the state occupied by the system at the previous instant of time tm−1

and not on the complete sequence of state occupancies. This property, that is usually
referred to as the Markov property, can be rephrased by saying that the future evolution
of the process only depends on the present state and not on the past. More formally the
Markov property may be written as:

P{Z(tm) = x(m) |Z(tm−1) = x(m−1), , . . . ,Z(t1) = x(1)}
(44)

= P{Z(tm) = x(m) |Z(tm−1) = x(m−1) }

If we number the states from 1 to N, for example taking the lessicographical order, then
we can define the transition probability matrix of the process:

P(u,v) = [pi j(u,v)]

of dimension (N × N) whose entries are the transition probabilities pi j(u,v) defined as:

pi j(u,v) = P{Z(v) = j |Z(u) = i} (u ≤ v) (45)

pi j(u,v) represents the probability that the Markov chain Z(t) is in state j at time v,
given it was in state i at time u, and it is called the transition probability between state
i and j. For the transition probabilities pi j(u,v), the following initial conditions hold:

pii(v,v) = 1 ; pi j(v,v) = 0 (46)

Further, let pi(t) be the (unconditional) probability that the system is in state i at
time t. pi(t) is the state occupancy probability, or simply the state probability, and is
defined as:

pi(t) = Pr{Z(t) = i} (47)

and p(t) = [pi(t)] denotes the row vector of dimension (1 × N) whose entries are the
state probabilities pi(t) defined in (47). p(t) is called the state probability vector of the
process.
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If the Markov process is homogeneous1 we can derive the following equation:

d p(t)
d t

= p(t) · Q with initial condition p(0) = p0 (48)

where p0 is a probability vector describing the initial conditions, and Q is a matrix,
called infinitesimal generator, whose elements qi j are the conditional probabilities of
jumping in state j in a small interval Δ t, given that the CTMC was in state i at the
beginning of the interval. The quantities qi j are called the transition rates of the process,
and they are a simple function of the pi j values.

Equation (48) is the fundamental equation for CTMC: it consists of a set of N first
order differential equations with constant coefficients, that provide the state occupancy
probabilities at time t, from which the required performance models can be computed.
Various analytical and numerical solution techniques are available for the fundamental
CTMC Equation ([61]).

If the Markov chain is irreducible, that is to say each state is reachable from any
other state, then the limit

lim
t→∞

pi(t) = πi

always exists and it is independent of the initial state; equation 48, when t goes to
infinity, simplifies to:

π · Q = 0 with
N

∑
i=1

πi = 1 (49)

where the normalizing condition on the right is necessary to impose that the solution is
a probability vector. Equation (49) is a linear set of homogeneous equations, and can be
solved with numerical solution techniques [61].

Observe that, if the components are non-repairable, then the associated MC will
never be irreducible (from a state in which there is a failed component is never possible
to come back to the initial state in which all components are working properly), and
therefore the only reasonable measures to be computed are the probabilities at time t,
and derived quantities.

From what concerns complexity, we can observe that most techniques used for the
solution “at time t” or in steady state are based on iterative methods: at each iteration
the most expensive operation is a vector-matrix multiplication (vector of size equal
to the number of states and matrix with a number of non-null elements equal to the
number of arcs in the RG). The iteration procedure is stopped when a certain (estimated)
convergence towards the actual solution is reached.

The number of iteration is usually the major factor affecting the solution cost.

5 Dependability Modeling Using Petri Nets

Specifying systems at the state space level can be an error-prone, low level activity. Petri
nets have been widely recognized in the literature as an effective way to specify systems

1 A Markov process is said to be homogeneous when the transition probabilities in matrix P(u,v)
depend only on the length time interval (v − u) and not on the values of the time instants v
and u.
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using a reasonably high-level formalism, while at the same time having a precise oper-
ational semantics that allows the derivation of the associated state-space. In particular
the class of Stochastic Petri Nets [47, 2] (SPN) has a semantics defined through Markov
chains, so they are considered a natural language to use when the stochastic process
underlying the system is a Markov chain. With the term SPN we actually indicate the
more general class of Petri nets with stochastic delays associated to transitions, that in-
clude various extensions like ESPN [28], GSPN [1], Stochastic Reward nets [48], and
colored/parametric extensions like Stochastic Activity Networks [57], and Stochastic
Well-formed Nets [18].

Indeed SPN have been widely used not only for the study of generic performance
indices, but also specifically for dependability studies, as testified by the available SPN
tools that allow the computation of some pre-defined dependability quantities, like
SURF-2 [30], UltraSAN [23], and SPNP [20]. Among the initial works on the use of
SPNs for dependability modeling and analysis we can mention [33, 35, 48, 58, 39, 46,
14]. In [29] Extended SPNs are used for carrying out sensitivity analysis of the system
reliability and availability when the error coverage probability varies. The work [49]
presents an overview of different classes of non Markovian Petri Nets used for depend-
ability analysis. Net-compositionality has been adopted in [40, 56, 16, 11] to cope with
the complexity of dependability modeling. Concerning works on the translation of Fault
Trees into SPNs we mention the works [34, 45, 15]. In [34] and in [45] the translation
into Petri Nets allows to model the dependences among system components, while in
[15] SWNs are used as a target formalism of the translation to exploit the symmetries
of the parametric fault trees.
But what do we gain from the use of Petri nets?

– An high level language to describe the system.
– The possibility of reusing the tools and the solution methods available for the SPN

tools, including the possibility of validating qualitative properties (like liveness or
deadlock freeness) that can be an important issue when the system being modeled
as a complex behavior.

What do we loose by using SPN? The solution associated to an SPN is usually produced
solving the associated CTMC, but the CTMC is, in principle, a “flat” structure, in which
all the information on independency between components is basically lost, thus forcing
the solution of the whole Markov chain with numerical methods, even in whose cases,
like that of independent components, in which the solution is just the product of the
solution of the components.

The section is organized as follows: we shall first show a very simple model, equiv-
alent to a 2-parallel configuration, and then a slightly more complex case, in which a
model of a system is modified to include the presence of faults. We conclude the sec-
tion with the presentation of a (simplified version) of a case study of a “dependability
mechanisms”.

5.1 Simple PN Models of Dependability

The very simple SPN model of Figure 2 represents a system with two independent
components. Each SPN is a simple sequence place - transition - place, where the tran-
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p1 p3

p2 p4

T1 T2

Fig. 2. A simple SPN model of a two component system

sition represents the failure. The Markov chain of this SPN is exactly that of Figure 1 if
λi = λ′

i and it is equal to the rate of transition Ti. If λi �= λ′
i then it is necessary to resort

to marking dependent rates.
How do we compute the reliability/unreliability of the system? Again, as for CTMC

based approaches, we can sum up the probability of the Up and Down states, where the
Up and Down states depend on the system configuration. But how can we specify a
system configuration? There are two possible approaches: an implicit one, in which it
is the definition of the measure that encodes the configuration, and an explicit one, in
which the configuration is reported in the net.

If we assume the implicit approach, and we want to express a series configuration,
then to compute the unreliability of the system we have to sum up the probability of all
states in which either place p2 is marked, or place p4 is marked, or both. For the parallel
configuration we sum over a single state: that with a token each in places p2 and p4.

p1 p3

p2 p4

T1 T2

Failed

(a)
p1 p3

p2 p4

T1 T2

Failed

(b)

Fig. 3. Explicit modeling of the failure state

If we want to make the configuration explicit we can add a place Failed, as it is
done in Figure 3. The place is connected to places p2 and p4 in different manners, to
reflect the parallel configuration in Figure 3(a), and the series one in Figure 3(b).
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The simple SPN model of Figure 2 can be modified so as to take into account re-
pairs, leading to the SPN model of Figure 4 where one repair transition per component
(named T3 and T4) has been added. Again, we can define the configuration in an im-
plicit manner through the definition of the availability/unavailability metrics, or we can
explicitly define the configuration in the model. Indeed the modification of the net is
not as simple as in the unrepairable components case, since we need to put a token in
place Failed without removing the tokens from the places P2 and P4, moreover we need
to model also the fact that, in consequence of a component repair, the whole system can
be working again, and this may not be trivial.

p1 p3

p2 p4

T1 T2T3 T4

Fig. 4. Modeling of repair actions

The approach based on reliability blocks can be translated into SPN with a limited
effort, nevertheless since the SPN solution requires the solution of the Markov chain,
then this translation makes sense only if we need to insert dependencies between the
components (for example a simple failure rate dependency).

A similar argument holds true also for fault trees. There has been a number of trans-
lation defined from fault trees of various flavors to various flavors of SPN, always with
the objective of being able to include dependencies [33, 45], or to exploit symmetries
of the fault tree also in the solution process [15].

In the previous SPN models we have assumed that a component has only two states,
Up and Down, represented as distinct places, but a model can be a much more com-
plicated net. In the next section we shall introduce a simplified version of the model
of a piece of software that provides a sort of parallel redundancy. Although being a
simplified version of the real code, it has indeed a more articulated structure than the
two-states approach discussed in these SPN introductory examples, moreover it is a
good example of the problem related to the modeling of the restart of normal operation
after a failure.

5.2 A More Complex PN Model of Dependability: The Local Voter

The Local Voter mechanism (LV) presented in this sub-section is a simplified version
of a fault-tolerance mechanism designed and implemented within the TIRAN EEC
project [17] and studied in [10]. A fault-tolerance mechanism is basically a piece of
code aimed at improving the reliability of a complex software system. LV aims at mask-
ing occurrences of faults during the execution of the code of an application process.
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Fault masking is achieved by the adoption of a spatial redundancy (as in the k : n case
that we have seen for reliability blocks) of the execution of the piece of code and by
the voting on the results coming from the replicas. Depending on the voting technique
adopted in the LV and on the spatial redundancy, a limited number of faults may be
masked; for instance, by using a majority voting algorithm and by running concurrently
K copies, up to [K−1

2 ] faults can be made transparent for an application process.
In [10] the purpose of the modeling activities was to evaluate the “goodness”of the

mechanism both from a qualitative (i.e., correctness with respect to the design specifi-
cation) and from a quantitative point of view (i.e., performance and dependability). In
particular, concerning the quantitative analysis of the LV two important issues were ad-
dressed: first, the amount of overhead induced by the use of the mechanism with respect
to not to use it in the application execution; second, the probability of voting success.

Observe that the first measure is not a dependability measure in a strict sense, but it
is aimed at evaluating the cost of “dealing with faults”, in particular the cost of masking
them whenever possible. The second measure can be considered instead a reliability
measure, since we can consider as the “assigned mission” of our system the ability to
vote on an agreed value.

IST12

ISTn2

Plane 2

IST11

ISTn1

Plane 1

O
V

n
O
V

1

BB

APPn

APP1

Plane 0

IST10

ISTn0

Fig. 5. Representation of the local voter mechanism

Figure 5 shows a graphical representation of the simplified LV; the LV can be used
concurrently by several application processes and three replicas are considered per ap-
plication.

The replicas are executed on separate “planes”, that naturally correspond to separate
processing nodes. The application process APPi that uses the LV mechanism is split in
two parts, a part that does not require a replicated execution, and a part that requires
it. If there are n applications that use LV, then each application has its distinct piece of
code to be executed.

The three replicas of an application i, called ISTi0, ISTi1 and ISTi2 in the figure,
receive the same input data from the application.
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When a replica ISTi j ends its computation, it sends its output data to the appropriate
voting OVi; there is one voting task per application.

The components of the local voter interact with the backbone BB, which is a sort of
run-time support for the TIRAN library of mechanisms which handles all exceptions as
well as the recovery actions. All interactions among tasks are based on communication
through mailbox.

Table 1 lists the acronyms used for the different tasks, and for each task lists how
many copies of that task there are in a LV that serves n applications.

Table 1. Acronyms

Acr. description no. of copies

APP application n
IST replicated software to vote upon 3∗n
OV output voter n
BB backbone 1

Each OVi is characterized by a timer which is set and starts to count-down for
expiration as soon as OVi receives the first output from one of the replicas of the cor-
responding application APPi. If either all the three replicas of APPi or two of them
are received before the time-out expiration then the timer is disabled and a voting on
the available replicas is carried out. In any case, OVi will send a message to the BB to
notify the voting outcome on the available replicas and, if it is the case, the time-out
expiration. The BB is in charge of notifying the termination of the elaboration to the
application and of restarting the system in case of a time-out occurrence.

The SWN Model of the Local Voter. The following assumptions were made to model
LV: tasks communicate in an asynchronous manner via mailboxes, and there is one
mailbox for each ordered pair of tasks; time required to prepare a message is in gen-
eral negligible, while the time to actually transmit it from the task output buffer to the
recipient mailbox is not. With respect to the graphical representation, we have used
cross-lined places to emphasize mailboxes and shadowed boxes to delimit portions of
the nets that correspond to “recovery actions”, and that will be explained in a second
step. Moreover, we have adopted the SWN syntax of the GreatSPN [5] tool: net objects,
i.e., places and transitions, are denoted as name|label where name is the name of the
object and label is the label, τ labels are omitted. Labels are used for net composition.

Colors have been used to identify applications, planes and to distinguish the output
value as “termination with normal operation” or “termination under abnormal condi-
tions”. Three color classes have been defined:

AP is the color class of applications that can request a replicated execution of their
code, and it is defined as AP = {ap1, ..,apn};

P is the color of the planes, and there are always three planes, therefore P = {pl1, pl2,
pl3};
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Exc is the color used to distinguish the positive or negative outcome of a LV activity,
and it is built out of two static subclasses Exc = Ecx1 ∪ Ecx2, where Exc1 = {e1}
means that there has been a time-out expiration, while Exc2 = {e2} means that
there was no time-out expiration.

Since the system is specified compositionally, it is a very natural choice to model
each component of Figure 5 as an isolated SWN, to then compose them. This approach
simplifies the model construction and allows model reuse, but it might make more com-
plex the modeling of whose activities that require the knowledge of the global state, as
for the restart activity after a failure.

P2ap
AP

ap|mbxAP-Ist
AP

P3ap
AP

Idle_Appl

A
AP

P1ap
AP

ap|mbxBB-AP

AP

T1ap
<x> <x,S>

activity
<x> <x>

rcv_reply

<x>

<x>

<x>

snd_LV

<x>

<x>

<x>

Fig. 6. The application model

Figure 6 shows the SWN model of the APPi, that cyclically execute their own ac-
tivity, broadcast the input to their replicas (tasks ISTi j), and wait for a message of ter-
mination of elaboration coming from the backbone BB.

Figure 7 shows the SWN model of a copy of the code to be executed on the different
planes: it is assumed that all replicas are activated at the beginning and then suspend
themselves waiting for a message from the APP tasks. There are |AP|× |P| replicas,
i.e., one for each application and for each plane. Each replica (x,y) waits for the input
message (x,y) from the application x. When such message is received the replica of
application x on plane y starts its activity, modeled by timed transition comp, and then
sends the result of the computation to OV.

Figure 8 shows the SWN model of the output voter OV: there is an OV for each
application that can use LV.

Each OV executes the voting algorithm (majority voting 2 out of 3) on replicas of
the same application, independently from the others. OV waits for the replicas outcome
from the three different planes. As soon as the first outcome is received, a timeout for
reception of the other two replicas outcome is set (transition setTOforx). Then three
situations may occur:

C1 all the three outcomes are received before the time-out expiration (transition
recv3noTO fires) and voting on the three outcomes takes place;

C2 the time-out has expired and two of the three outcomes have been received (transi-
tion recv2&TO fires), and a vote on the two replicas takes place;

C3 the time-out has expired and only one of the three outcomes has been received by
OV (transition recv1&TO fires).
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Fig. 7. The model of the replicated code

Under condition C1 an exception message of type e2 (no time-out has occurred)
is sent to the the backbone BB; in cases C2 and C3 a message of exception of type
e1 (a time-out has occurred) is sent to BB. Observe that we are not passing on to the
backbone the information on whether the vote was successful or not, although this will
be a trivial extension, since the success or failure of the 2-out-of-3 algorithm is modeled
in detail in the SWN of Figure 8.

When the message is sent to BB, OV waits for an acknowledge from BB to return
back into its idle state. Observe that we are assuming that no direct answer goes back
directly from OV to APP, not even in the case of a “normal” 3-out-of-3 voting, since we
impose that all restarted are caused by BB.

Figure 9 shows the SWN model of the BB task, or, more precisely, of that part of
BB devoted to interactions with LV. BB is in an idle state until it receives an exception
message coming from OV. If the exception is of type e2, i.e., no time-out has occurred,
then BB sends an acknowledge to OV and to the application. If instead the exception
is of type e1, then a time-out has occurred, and therefore a reset operation is needed,
before sending back the messages to OV and to APP.

Local Voter without Recovery Actions: An Open Model. A first analysis was per-
formed for the case of a “single run” for each application. In order to obtain the com-
plete model the single nets have to be composed using the program algebra [10], a
program associated to the GreatSPN tool that allows superposition of nets over places
and transitions. The nets used are the one without shadowed portion and, since in the
non-shadowed portion no message is passed from OV to BB, each application is ex-
ecuted only once. The resulting SWN net has been solved, for the single application
case, using the reachability graph construction of GreatSPN, that produces 68 tangible
states.
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Fig. 8. The model of the output voter

There are 7 dead markings. Three of them correspond to the case of time-out ex-
piration after OV receives the results coming from one replica and is waiting for the
results to be sent by the other two replicas. The three markings differ from the identity
of the replica that has sent the results to the OV before the time-out expiration. All com-
ponents, except OV and APP, are in their initial states (idle state), APP and OV are both
waiting for a message from BB, that will, of course, never arrives. Three deadlocks cor-
respond to the case of time-out expiration after the results coming from any two replicas
have been received. The last deadlock represents the case of reception of all the three
replicas before the time-out occurrence. The qualitative behavior was judged correct by
the system designer, and the modeling activity could move on to the subsequent step.

Local Voter and Recovery Actions: An Ergodic Model In a second step the recovery
actions due to the time-out expiration have been added to the model. The recovery
action taken by BB is:
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Fig. 9. The model of the backbone

– to remove messages from mailboxes that refer to the application that has caused the
exception;

– to take the corresponding tasks back to the their initial states.

To accomplish this BB enables a number of immediate transitions, one per model
component, and they are labelled in such a way as to superpose with the resetting tran-
sitions in the model components. Observe that these transitions are assigned a different
priority, mainly to avoid the generation of useless inter leavings of immediate transi-
tions, that could significantly slow down the state space generation.

The model is obtained by composing all nets, including also the shadowed portions.
The resulting SWN is ergodic (since there is a single strongly connected component in
the reachability graph and only exponential and immediate transitions are present).

The reachability graph for the single application case has 106 tangible states and
the initial marking is a home state. The generation takes a few seconds on a 256Mbyte
Pentium 4 machine.

Local Voter without Recovery Actions and Explicit Faults In the models considered
up to now no fault is explicitly included in the model, so that a time-out can expire only
due to a delay in the completion of one of the replicas. In order to consider the effect
of explicit faults the model of IST has been modified to include a timing transition
that models the fault and that takes IST into an error state place: the modified model is
depicted in Figure 10.
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Fig. 10. The modified model of the replicated code

The model assumes that:

– only the replicas ISTi j can be affected by a fault and only during their computation
phase;

– faults are independent.

The resulting model, for the single application case, has 119 tangible markings and
there are 20 dead markings. Among them a very interesting one is the marking that
represents the state of the model where all the replicas are in an error state, and this
corresponds to a case in which no replica will ever reach OV, so no time-out will be set.
This case was, up to the modeling phase, overlooked by the specification document and
it is an example of use of Petri Nets for the correctness analysis of the mechanism.

Quantitative Results. The mechanism overhead may be analyzed using the ergodic
model with a single application and the time-out deactivated, and computing the mean
time to execute a computation through the local voter (inverse of the throughput of
transition activity of Figure 6) divided by the mean time spent by a single replica to
perform the operation (inverse of the throughput of transition comp of Figure 7).

The probability of different voting outcomes for one application cycle is given by
the relative throughput of transitions recv1&TO,recv2&TO, recv3&noTO of Figure 8.
The value of the metric depends on the length of the time-out as well as on the proba-
bility of matching of the results produced by the replicas. Observe that, not having ex-
plicit faults in the ergodic model, the time-out can expire only due to excessive delays
of the computations on the planes and/or of the communications between the model
components. This implies that, assuming that the results produced by the replicas al-
ways match, the probability of 3-out-of-3 voting converges to one as the length of the
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time-out goes to infinity. This behavior cannot be observed, instead, if we consider the
effect of explicit faults and we compute the same metric on the third model. A detailed
description of the quantitative analysis of the LV can be found in [10].

6 Dependability of Complex Systems Using Petri Nets

A system can be a complex aggregation of components, and the ways in which the up
and down states of a component influence the up and down states of the whole system
may not be so straightforward as what we have seen in the previous sections. As we have
seen in the introduction (Section 1), when the delivered service of a system deviates
from fulfilling the system intended function, we say that the system has a failure. A
failure is due to a deviation from the correct state of the system, known as error. Such a
deviation is due to a given cause, for instance related to the physical state of the system,
or to a bad system design. This cause is called a fault.

But if we consider a system as a set of interacting components, which is pretty much
in the line with the way systems are designed nowadays, then we should consider, as
pointed out in [44], that the failure of a sub-component (deviation from its intended
functionality) may be perceived by the other sub-components as an external fault, thus
giving rise to the so-called Fault-Error-Failure (FEF) chain.
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Dormant

Fault

Error Error Input
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Error
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Er-
ror

Service
 Interface

Er-
ror

Service
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propagation propagation external
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propagation propagation

Service
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Correct
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Service
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Failure

Incorrect
Service

Incorrect
Service

Fig. 11. Relationships between faults, errors and failures

Error propagation within and among system components is explicitly shown in Fig-
ure 11 extracted from [44]: internal propagation is caused by the computation process
of the faulty component A while the external propagation from component A to compo-
nent B, that receives service from A, occurs when, through internal error propagation,
an error reaches the service interface of the faulty component A. Then, the service de-
livered by component B to component A becomes incorrect provoking the failure of
component A that appears as an external fault to component B and propagates the error
into B.
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Fig. 12. The CD system description

To be able to model the FEF chain we need a more articulated vision of the system,
that allows to clearly identify the components that can be affected by a fault, the system
elements on which faults can induce erroneous behaviors, and how these behaviors may
lead to a (sub)system failure. Although with a different aim in mind, the work in [27]
introduces a view of the system as a layered structure in which a system component
realizes a certain function by using a set of resources. Since the pattern of usage of
resources can be quite complicated, an intermediate level is added, called services. This
point of view on system behavior leads to a three layer structure, represented as an UML
Class Diagram (CD) in the left portion of Figure 12.

The right portion of the CD shows instead the FEF chain: relationships between
faults, errors and failures as well as their propagation among the system entities is cap-
tured by the cause-effect associations. Once customized on a specific application the
CD shows which faults provoke which errors and which (set of) errors provoke a fail-
ure, that is to say a deviation from the function delivered by the system. The diagram
also connects each type of fault, error and failure with the corresponding system entity
affected by it, so a fault may affect a resource, an error may affect a service performed
on one or more faulty resources, and a failure may affect the whole system if errors are
not recovered in due time.

Moreover, if a service is affected by an error, the error can be propagated to an-
other service either performed by the same resource (i.e., internal propagation) or by
another resource communicating with the former (i.e., external propagation). This error
propagation is represented by the Ecause-Eeffect association.

Since a failure of a system component can be perceived by another component as
an external fault (as described in [44]), an association exists between the failure and the
fault classes. This is an aspect that adds additional complexity to the modeling and is
out of the scope of these notes.

We would like to use the high-level information provided by the CD of Figure 12
to drive the construction of PN models. To do this we need first to introduce the PSR
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modeling approach that has been presented in [27], and then to modify it to allow for
the treatment of the FEF aspects.

6.1 A Layered Approach to Modeling: The PSR

The PSR is a model construction approach in which the PN model is organized into
three levels: resources, services and processes. Resources are at the bottom level, and
they provide operations for the services, where a service is basically a complex pattern
of use of the resources. Services are then requested by the application model placed at
the highest level, called process level (and that we have called “System Component” in
the CD, since it is more intuitive, although it is not the original term used in [27]).

PSR provides a schema of how the resource, service, and process levels nets should
look like, and a compositional operator to compose them.

Figure 13, bottom part, depicts a model of a resource: a resource can be idle, and
it can offer one or more operations op i through the sequence of actions start opera-
tion, operation, end operation. Each transition of the sequence has an associated label
(shown in italics in the figure), that is used for composition with the service level, and
that is derived from the association perform(Resource,Service) of the CD diagram of
Figure 12, prefixing it with an S or with an E to indicate Start and End of operation,
and postfixed with the operation index. Depending on the type of operation it may be
necessary to acquire a lock (transition lockRes and unlockRes). Figure 13, in the mid-
dle, models a service. A service can be requested by a process through the pair of labels
of start and end service (S perform(Service, System Component), E perform(Service,
System Component)). Once activated the service can request resource operation via the
S perform(Resource, Service) i, E perform(Resource, Service) i labels.

The upper part of Figure 13 depicts a skeleton of the process model that uses ser-
vices: the request of a service is performed through the label perform(Service,System
Component) and through a matching function that maps the label into the pair of labels
S perform(Service,System Component), E perform(Service,System Component).

Each level is defined through net composition operators based on transition super-
position (“horizontal composition”), then resource level is composed with the service
level, and the resulting net is composed with the process level also through transition su-
perposition (“vertical composition”). Transition superposition of nets is based on tran-
sition labels: two transitions of equal label in two separate nets are fused into a single
one: the formal definition of the superposition operator for GSPN can be found in [27],
and the SWN extension is instead presented in [10]. Therefore if {Ri},{Sk},{Pm}, are
the sets of GSPN (or SWN) models representing resources, services, and processes, re-
spectively, and if || is the transition superposition operator, then the full model of the
system is given by:

R = R1 ||R2 || · · · ||Rnr

S = S1 ||S2 || · · · ||Sns

P = P1 ||P2 || · · · ||Pnp

PSR = R ||S ||P
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Fig. 13. Resource, service and process models

From now on the term PSR will refer to a structure of the models according to
Figure 13.

6.2 PSR and FEF Elements

The PSR originally defined in [27] is not adequate for dependability modeling, since
it does not take into consideration the interactions with the FEF elements. In [7, 4]
the PSR has been modified by changing the basic models of the resources, services, and
process so as to allow interactions with the FEF elements, and by extending the formula
to compose the {Ri}, {Sk}, and {Pm} with models of the FEF elements.
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Fig. 14. The modified models of resources, services, and processes

Figure 14 presents the modification to the basic PSR models. Following the CD
scheme of Figure 12, we assume that faults affect only the behavior of the resources,
errors are perceived at the service level, while failure are a concern of System Compo-
nents, and therefore of the process level.

Figure 14, bottom part, models a resource. From each state in which a fault can
be perceived by the resource a transition labeled affect(Fault,Resource) has been added
(to be used for synchronization with the fault model) which takes the resource into a
faulty state. Again, affect(Fault,Resource) is the association that, in the CD diagram of a
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specific application, relates a specific type of fault to a specific type of resource affected
by that fault.

Also for service and process models (Figure 14 in the middle part and at the bot-
tom part, respectively), transitions to be used for synchronization with an error and a
failure model, respectively, have been added which take the services/processes into an
anomalous state.

Resource

Failure

Service Error

Fault

System
Component

Ri FTj

Sk Eh

Pm

affect(FTj,Ri)

perform(Ri,Sk)

affect(FTj,Ri)

effect(FTj,Eh)

perform(Ri,Sk)

affect(Eh,Sk)
affect(Eh,Sk)

effect(FTj,Eh)

Eeffect(Eh,Eh’)
effect(Eh,Fn)

Fn

effect(Eh,Fn)

affect(Fn,Pm)affect(Fn,Pm)

perform(Sk,P)

perform(Sk,Pm)

Fig. 15. Organization of the Petri net models in the layered approach

Now that we have the modified resource, service, and process models we need to
modify the PSR construction: indeed the {Ri}, {Sk}, and {Pm} models have to be inte-
grated with the models of the FEF elements. Figure 15 assumes that there are a number
of models for faults, errors, and failures, called {FTj}, {Eh}, and {Fn}, respectively,
and it provides a schematic view of how they are organized in three levels: fault models
are placed at the resource level, error models at the service level and failure models at
process level. Each model is depicted as a box with explicit interface transitions that are
labelled according to the associations defined in the CD of Figure 12.

Each level is obtained through horizontal composition, and the global model is ob-
tained through vertical composition of the levels, as for the original PSR. Therefore if
{Ri},{FTj},{Sk},{Eh},{Pm},{Fn} are the sets of GSPN (or SWN) models represent-
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ing resources, faults, services, errors, processes, and failure, and if || is the transition
superposition operator, then the full model of the system is given by

R = R1 ||R2 || · · · ||Rnr ||FT1 ||FT2 || · · · ||FTnr

S = S1 ||S2 || · · · ||Sns ||E1 ||E2 || · · · ||Ene

P = P1 ||P2 || · · · ||Pnp ||F1 ||F2 || · · · ||Fn f

PSR = R ||S ||P

The proposed approach to the construction of Petri net models for dependability
shares similarities with other approaches. In [54] there is an example of organization
of dependability GSPN model into layers to separate the architecture model, the ser-
vice model and the failure modes model, although without explicitly modeling the FEF
chain. The modeling of the FEF is made more explicit instead in [12], although the ap-
proach taken is that of a top down hierarchical approach more than flat compositional
as in the PSR.

6.3 PN Models of the FEF Elements

The compositional approach depicted in Figure 15 requires the definition of models
for the FEF elements. In the following we present a library of FEF element models
that respect the transition interface of the boxes of Figure 15. The original definition
of the library can be found in [8]. The library is built starting from a classification
of faults, errors, and failures into a hierarchy of classes that has been devised in the
DepAuDE [26] EEC project, and whose complete description can be found in [9].
The classification of the FEF elements in DepAuDE was heavily inspired by the work
in [43], customized on the automation system field that was the application target of
DepAuDE.

The hierarchy of the classes has a counterpart in a hierarchy of PN components. To
set the field to the description of the hierarchy of the FEF models we need first to define
the notion of PN component and that of hierarchy for PN components.
PN component is a GSPN system [1] (or an SWN one [18]) labeled over transitions,
parametric with respect to transition rates (weights) and/or initial marking and with an
associated list RESULTS of performance results to be computed and/or verified and a
list CONST R of constraints to be verified.

Hierarchy of PN models. Hierarchy in a Class Diagram involves a notion of inher-
itance, that involves the structure of a class (attributes, operation names, and associa-
tions) as well as behavior (operations). In GSPN the inheritance of the structure of a
class is reflected into 1) inheriting parameters (rate/weight, initial marking), results to
be computed, constraints to be verified, and possibly adding new ones; 2) inheriting,
and in case modifying, the labels associated to either places or transitions. Inheritance
of the dynamic behavior of the super-class is reflected in either maintaining the same
net structure in the sub-class or modifying it by applying transformation rules that pre-
serve the behavioral inheritance [66]. Two main notions of behavioral inheritance are
introduced in [66]: protocol inheritance and projection inheritance. Although they have
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been defined for labeled transition systems, it is rather straightforward to use them for
the reachability graphs (RGs) of SPN models. Intuitively, let p and q be two SPN mod-
els representing the behavior of a class P and of its super-class Q, respectively; protocol
inheritance can be verified by not allowing to fire transitions that are present in p and not
in q (i.e., blocking new actions) and by checking whether the RGs of p and q are equiv-
alent. Projection inheritance can be verified, instead, by considering not observable the
transitions that are present in p and not in q (i.e., hiding the effect of new actions) and by
checking whether the RGs of p and q are equivalent. In both cases, branching bisimula-
tion [53] is used as equivalence relation. Branching bisimulation belongs to the class of
observational equivalence, in which two systems are equivalent if an external observer
cannot discriminate between them. Of course two systems may or may not be equiv-
alent depending on what an observer is allowed to see. In our context an observer is
allowed to see all transition labels, unless otherwise stated, that is to say the labels that
are used to compose models.

The two basic notions of inheritance are combined [66] in order to obtain a stronger
and a weaker notion. Stronger inheritance is preserved if both protocol and projection
inheritance are satisfied. Life cycle inheritance is the weaker notion: the set of transitions
present in p and not in q is partitioned into “not-observable” and “not-allowed to fire”
such that the observable behavior of P equals the behavior of Q.

Observe that the proposed rules for inheritance only consider the net functional
behavior, the stochastic behavior may not be preserved, and usually it is not.

Fault Models. Figure 16(A) is the classification of faults: the root class of the inher-
itance tree describes a generic fault; the first level of the inheritance tree distinguishes
Physical Fault, Design Fault, Interaction Fault and Malicious Logic. Physical faults
are characterized by two input attributes that allow to specify the maximum time dur-
ing which the fault is active and can be perceived by the system (duration) and the
frequency of its occurrence (fault rate). Attribute fault dormancy, the length of time
between the occurrence of a fault and the appearance of the corresponding error, is con-
sidered instead as a metric to be evaluated. The different type of usage of class attributes
is denoted by prefixing the attribute name with a specific symbol (i.e., “$” = input at-
tribute, “/” = metric to be evaluated, “/$” = metric to be evaluated and validated).

Physical Faults may be either considered permanent or temporary: their discrim-
ination depends on the values assigned to the input attributes min-duration and max-
duration as emphasized by the constraint written in the note symbol. Permanent phys-
ical faults and temporary physical faults are further specialized by several sub-classes.
For example, temporary physical faults are discriminated in DevTemp Physical Faults,
that is internal faults due to the development phase; Transient Physical Faults, that is
faults induced by environmental phenomena; Intermittent Physical Faults, i.e., internal
physical defects that become active depending on a particular point-wise condition.

Transient and intermittent physical faults classes are enriched with some input pa-
rameters, such as: latency rateN and latency rateB, representing the rate of transient
fault activation in case of normal conditions and burst conditions, respectively, persis-
tence rate, representing the rate of fault disactivation and latency rate, representing the
rate of intermittent fault activation.
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Dotted boxes in Figure 16(A) represent classes that are not described here: the in-
terested reader can find a complete description in [9].

GSPN component models for faults have been built according to the hierarchy view
of Figure 16(A): each GSPN model is an elaboration of previous generic Petri net mod-
els of fault generator proposed in [50] where only physical faults are considered and
they are classified with respect to their persistence in permanent and temporary, the
latter being further specialized in transient and intermittent.

(A) (B)

Fault

Error

affect
Resource

effect

Design
Faults

Interaction 
Faults

Malicious
Logic

Permanent Physical
 Faults

$min-duration

Temporary
 Physical Faults

$max-duration

Intermittent
Physical Faults

Transient
Physical Faults

$persistence_rate
$latency_rate

Design Faults
 subclasses

Interaction Faults
 subclasses

Malicious Logic
 subclasses

$latency_rateN
$latency_rateB
$persistence_rate

DevTemp
Physical Faults

FT0

FT0 FT0 FT0

FT0 FT0 FT0

FT21
FT22

FT31

FT22

FT32

FT21

Physical Faults

$duration
$fault_rate
/fault_dormancy

FT1

Permanent Physical
Faults subclasses

{ min-duration> max-duration }

FT1 no_ft

ft_occ

ft_prcv

ft_end
act_ft

gone_ft

PARAMETER:
fault_rate
duration
RESULT:
fault_dormancy

no_ft

ft_occ

ft_prcv

ft_end
act_ft

gone_ft

FT0 PARAMETER: 
RESULT: 
CONSTR:

FT21 no_ft

ft_occ

ft_prcv

ft_end
act_ft

gone_ft

PARAMETER:
min-duration
CONSTR:
duration >= min-duration

FT22 no_ft

ft_occ

ft_prcv

ft_end
act_ft

gone_ft

FT31 no_ft

ft_occ

ft_prcv

ft_end
act_ft

gone_ft

lat_ft

act-lat

lat-act

PARAMETER: 
persistence_rate
latency_rate

PARAMETER: 
fault_rate = 1
persistence_rate
latency_rateN
latency_rateB

FT32

ft_prcv

no_ft

ft_occ

ft_end act_ft

gone_ft

lat_ft
act-lat

lat-actN

lat-actB

N-B B-N

normal

burst

PARAMETER:
max-duration
CONSTR: 
duration <= max-duration

affect(Fault,Resource) and effect(Fault,Error)

affect(Fault,Resource)
and effect(Fault,Error)

affect(Fault,Resource)
and effect(Fault,Error)

affect(Fault,Resouce)
and effect(Fault,Error)

affect(Fault,Resource)
and effect(Fault,Error)

affect(Fault,Resource)
and effect(Fault,Error)

Projection inheritance

Projection & protocol inheritance

Fig. 16. GSPN component models of fault classes

In Figure 16(B) each box is a labelled GSPN component: a GSPN net with a set of
parameters, results to be computed, and constrains to be verified. For sake of graphical
clarity the rates of transitions are not shown in the figure, they are listed in the text when
needed. Labels are associated to transitions, they determine the observable part of the
net behavior and they identify the transitions that can be used for the composition with
another model.

The behavior of Fault super-class of Figure 16(A) corresponds to the GSPN com-
ponent model FT0 of Figure 16(B) characterized by three states: the fault is not present
(place no f t ), the fault is active and it may be perceived by a system entity (place
act f t) and the fault is terminated (place gone f t). The fault occurrence is represented
by the firing of transition f t occ, and when the fault is active it can be perceived (transi-
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tion f t prcv) by a system entity, causing an error situation. Transition f t prcv is labeled
so as to allow synchronization with the affected system entity (i.e., the resource model
of Figure 14) and with an error model. The fault termination is represented by the firing
of transition f t end. Since neither attributes nor constraints are specified for the Fault
super-class, the lists of parameters, results and constraints of the corresponding GSPN
model FT0 are empty.

Classes Design Faults, Interaction Faults, Malicious Logic, and their corresponding
sub-classes, present the same behavior of the more general class Fault, so that the GSPN
model FT0 is reused to represent these classes also.

The class Physical Faults is associated with the GSPN model FT1 that inherits
from FT0 and adds to the parameter list fault rate and duration and to the result list
fault dormancy. The parameters and the result correspond to the homonyms attributes
defined in the Physical Fault class.

The net structure of FT0 has been maintained, but rates of transitions f t occ and
f t end have been defined as functions of the added parameters, i.e., w( f t occ) = f ault
rate and w( f t end) = 1/duration.

The behavior of Permanent Physical Faults and of Temporary Physical Faults
classes is represented by the GSPN models FT21 and FT22, respectively. Both the mod-
els inherit from model FT1, add a parameter (the parameter min-duration for model
FT21 and the parameter max-duration for model FT22) and maintain the same net as
FT1. A fault is classified permanent if it lasts more than min-duration, and it is classi-
fied temporary if it lasts less than max-duration, with the constraints, derived from the
note symbol of the CD of Figure 16(A), that min-duration is greater than max-duration.
The interaction of the models with the corresponding resource and error models (that
amounts to the labels associated to transitions) is also inherited from FT1.

With respect to the fault models proposed in [50], where permanent faults remain
always active while temporary faults once occurred after a certain amount of time even-
tually disappear, both the fault models FT21 and FT22 are characterized by a termination
state (i.e., place gone f t) and the represented fault classes are discriminated by the fault
duration.

Temporary faults can still be distinguished into intermittent and transient faults. In-
termittent faults, once occurred, are characterized by alternating periods in which they
are active, and they can be perceived by the system entity, and periods in which they are
latent and hence they do not cause any error. Transient faults, instead, disappear a cer-
tain amount of time after their activation; however, unlike generic temporary faults, they
are characterized by a complex mechanism of activation that depends on the condition
of the external environment.

The behavior of Transient Physical Faults class is represented by the GSPN model
FT31 in which a fault moves from the latent state to the active state with a different rate
depending on the environment conditions. Under normal condition, represented by the
place normal marked, transition lat-actN with rate parameter equal to latency rateN
will fire, while under “burst” condition, represented by the place burst marked, transi-
tion lat-actB with rate parameter equal to latency rateB will fire.

The behavior of Intermittent Physical Faults class is represented by the GSPN
model FT32, in which firing of transition act-lat (with rate parameter equal to per-
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sistence rate) brings the state of the fault from active to latent and, vice-versa, firing
of transition lat-act (with rate parameters equal to latency rate) changes the fault state
from latent to active.

GSPN models FT31 and FT32 inherit from FT22: for the structure, new parameters
have been added with respect to the parameter list of FT22 and for FT31 the parameter
fault rate is now not relevant (and it has been set to the default value of 1), since the fault
activation depends upon the two transitions lat-actN and lat-actB. From the behavioral
point of view the GSPN model FT32 strongly inherits from FT22, i.e., it preserves both
the projection and the protocol inheritance, while the GSPN model FT31 preserves only
the projection inheritance, that is to say, if any of the transitions act − lat, lat-actN, and
lat-actB is used in a synchronization with another model, then it may be the case that
FT31 is not able to act as FT22.

Finally, the sub-classes DevTemp of temporary physical faults and sub-classes of
permanent physical faults inherit the behavior of their super-classes and they have been
represented by the same GSPN models associated to the latter.

All the fault GSPN models described above can have more than one label for each
transition; in particular, transition f t prcv is characterized by two labels: one is used to
interact with the resource model affected by the fault and the other is used to interact
with the corresponding error model.

Error Models. Errors are deviations from the correct state of the system that may cause
a subsequent failure [44]; they are caused by faults affecting the resources of the system
and they are related to the services performed by the faulty resources. A classification
of errors is given by the CD of Figure 17(A), taken from [9], that considers only errors
caused by physical faults, and discriminate them depending on which type of resource
has been affected. The type of resources considered in DepAuDE are processing, mem-
ory, and communication.

The super-class Error of the hierarchy/logical view is modeled by the GSPN ER0

- shown in Figure 17(B). The class is characterized by two attributes that are mapped
in two results to be computed on ER0: error latency, the length of time between the
occurrence of an error and the appearance of the corresponding failure, and PE, the
probability of error. Note that for some results, as PE, it is already possible to give their
definitions, since their computation is based only on local information; the definition of
other results, as error latency, requires instead information on the whole system.

The GSPN model ER0 is characterized by four states: the error is not present (place
no err), the error is generated (place pot err), the error is occurred (place error) and the
error has been detected (detected). Places error and detected are used to define the result
PE as the probability that one of the places is marked. The error can be caused by either
a fault occurred in a resource or by the error propagation effect: the error generation
is represented by the firing of transition cause that is labeled so as to ensure synchro-
nization with caused fault or error model. The labels are derived from the associations
effect(Fault, Error) and association Eeffect(Error,Error) of the CD of Figure 17(A). In
general, ER0 contain as many transition “cause” (i.e., with input place no err and with
output place pot err) as the number of GSPN models representing potential causes of
the error. The occurrence of the error in the corresponding service is represented by the
firing of transition err occ, properly labeled to ensure synchronization with the service
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Fig. 17. GSPN component models of error classes

model. Transition det err represents error detection carried out by some other model,
synchronized through the label detection.

Test transitions err prop and err fail are instead interface transitions for an error
model and for a failure mode model, respectively.

Classes Processing Error, Memory Error, Communication Error, Runtime Errors,
Memory Violation, Corrupted Processing and Disordered Communication present the
same behavior of the super-class Error, so that GSPN model ER0 is reused to represent
the behavior of these classes also.

Late Processing and Late Communication classes are characterized by an input at-
tribute, delay, whose values indicate the delay caused in the execution of the corre-
sponding erroneous function. Their behavior is modeled by the GSPN ER21 where
delay has been added to their parameter list. Moreover, the model contains a pair of
causal connected transitions: err delay, that represents the delay caused by the error,
and end err that brings the error model to its initial state (no err). Timed transition
err delay is characterized by a rate equal to w(err delay) = 1/delay, immediate tran-
sition end err is, instead, an interface transition and has to be synchronized with the
service model in order to bring it from an erroneous state to a normal state. Protocol
inheritance is preserved for model ER21; indeed if transition err delay is not allowed to
fire the RG of ER21 is equal to the RG of ER0.

Finally, GSPN model ER22 has been associated to the Corrupted Communication
class characterized by the input attribute BER (Bit Error Rate). BER has been added
to the parameter list of ER22 and it has been assigned to the weight of the immediate
transition err. For model ER22 life cycle inheritance is preserved, when considering
transition err non observable and transitions no err and end err not allowed to fire.
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Failure Models. Failures are deviations of the service delivered by the system with
respect to the system intended function. The CD shown in Figure 18(A) associates to a
generic failure mode two metrics to be computed and verified: PF, i.e., the probability
of failure, and RF, rate of failure. The CD represents a classification of failures with re-
spect to the their impact on the system, that is whether their occurrences are considered
acceptable or not depending on the criticality level associated to the system process they
affect. The different failure mode assumptions are represented by the sub-classes: Halt-
ing Failure, Degrading Failure and Repairing Failure. Halting failures cause the system
activity not to be any longer perceptible by the user. Depending whether the absence of
system activity takes form of a frozen output or of silence, they are further classified
in passive failures and in silent failures, respectively. Degrading failures still allow the
system to provide a subset of its specified behavior. Repairing Failure requires instead
that faulty resources originating the failure be replaced or repaired before the system
activity continues. Repairing actions are undertaken during the failure treatment phase
and are performed by proper mechanisms (association address).

The failure hierarchy of Figure 18(A), defined in [9] can be exploited to construct
GSPN model components representing different failure modes. The main purpose of
GSPN models representing failure modes is to synthesize in a unique place the set
of (erroneous) states that have equivalent consequences on the system. These models
correspond to the failure mode layer described in [54] that allows to arrange an SPN
model in a manner suitable for the analysis of different levels of service degradation. In
Figure 18(B) two skeletons of GSPN models representing a generic failure mode and
a repairing failure mode, respectively, are depicted. The model F0 is characterized by
three main states: no fail, pot fail and fail, respectively meaning the absence of fail-
ure, the occurrence of the error conditions causing it and the failure occurrence. Several
error conditions may cause the occurrence of a failure: the firing of transition cond i
represents the occurrence of one of such conditions; since, in general, the failure oc-
currence is caused by a combination of errors, cond i is a multi-labeled transition with
labels derived from association effect(Error, Failure) for synchronization with the error
models. Transition fail occ has to be synchronized with a System Component model,
so that its label is derived from association affect(Failure, SystemComponent).

Concerning the result list, the GSPN model is characterized by two metrics derived
from the homonyms attributes of Failure class: PF , defined as the probability the place
fail is marked, and RF defined as the throughput of transition fail occ.

Model F1, representing a repairing failure mode, contains one transition more with
respect to F0: fail repair that is an interface transition to be synchronized with recon-
figuration mechanism models. Model F1 respects protocol inheritance.

7 A Methodological Approach to the Construction of Petri Nets
Models for Dependability in the Automation System Domain

The Petri Net component models and their organization into a three-layered structure
described in Section 5 constitute a first support in the construction of a Petri Net model
suitable to be analyzed through either numerical or simulation techniques. But a number
of points are still open: how does the modeler identifies, in the system being modeled,
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the resources operations, the services and the system components required by the PSR
approach? And while modeling a system that includes some FT mechanisms, where
should the mechanisms models be placed in the context of Figure 15? In this section we
try to give an answer to these questions by restricting the scope to a particular domain,
that of automation systems. A larger treatment of the topic can be found in [7, 4].

This work was developed in the EEC-IST project DepAuDE [26] as part of a meth-
odological effort to support the analyst from the early phases of the project (collection of
dependability requirements) down to the definition, validation and dependability evalu-
ation of fault tolerance strategies adopted for automation systems [9].

The DepAuDE methodology follows the approach of integrating different notations
during the dependability process as suggested by emerging standard like IEC 60300
[21]. In particular, UML Class Diagrams (CDs) and SPN are used in the methodology
with different roles, but the information contained in the CDs is exploited to drive the
SPN modeling process.

CDs are meant as a support for the requirements collection and/or for structuring
and/or reviewing for completeness already available requirements. A set of predefined
CDs for the automation system domain (called generic CD scheme) and guidelines
on how to produce from it the customized one that refers to the target application are
provided.

Stochastic Petri nets - in particular GSPN and SWN – are used to support depend-
ability design validation and evaluation through modeling. The methodology supports
the construction of PN evaluation scenarios. A PN scenario consists of a set of PN
model components and of their interactions, plus the set of model parameters and the
set of performance and validation properties of interest.

The methodology helps the analyst in the construction of a PN scenario by provid-
ing a set of predefined reusable PN models for some of the UML classes, a suggested
structure of interaction of the model components, guidelines on how to extract infor-
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mation from Class Diagrams, and in particular on the Class Diagram instantiated on
the specific application, automatic translation from UML State-Charts and Sequence
Diagrams into PN, and a suggested approach to the dependability analysis.

The issue of re-use of high level information available from the UML design has
been a major concern also for the European Esprit project HIDE [16], that has devised
an integrated environment supporting dependability analysis of UML-based system de-
sign from the early stages, based on the automatic generation of PN from a number
of UML diagrams that encode specific dependability aspects in a rather abstract form.
The goal being the evaluation from the early stages of the design the resulting model is
obviously rather abstract (since a limited amount of information is available), which is
an advantage from a computational point of view, but may be not sufficiently detailed
to allow also qualitative properties to be checked.
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Fig. 19. Scheme hierarchy

UML Class Diagrams. The CDs of the generic CD scheme of the DepAuDE method-
ology are grouped into the hierarchical structure of packages represented in Figure 19,
where each non-leaf package of the structure encapsulates a set of inner packages to-
gether with their definition dependency relationships. The scheme is therefore consti-
tuted by a set of CDs that describe the system in terms of automation components,
automation functions, dependability attributes, and timing requirements (left branch in
Figure 19), a set of CDs that describe the dependability model in terms of the FEF chain
(central branch), and a set of CDs devoted to the strategy model (right branch) that is
seen as a set of dependability actions/steps, that can be achieved through a number of
software “mechanisms”. The Fault Model, Error Model and Failure Model packages
contain, respectively, the hierarchy views of fault, errors and failures described in sub-
Section 6.3.

Class attributes are used to represent either parameters, whose values have to be
provided as input to the specifications, or measures to be computed or upper/lower
bounds whose values have to be provided as input to the specification and to be validated
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at later stages of the development. We have chosen to discriminate these different types
of usage of class attributes by prefixing the name of the attributes with a specific symbol
(“$” , “/” or “/$”, respectively).

Elements of a generic CD can be customized on a specific application with the help
of a set of guidelines [9]. In the customized CD the value of the class attributes and of
the association multiplicities have been set and new classes and associations are added.

The customized CD still refers to classes, and not to objects, but certain classes
and associations have been made more specific using information from the application.
We now illustrate a few Class Diagrams of the generic CD scheme, trimmed so as to
simplify explanation, while still, we hope, containing enough information for what will
be discussed later.
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Fig. 20. The CD Structure of Composition (a) and its instantiation to the running example (b)

Figure 20(a) describes a portion of the system: an automation site is a plant (op-
tional) together with one or more automation systems. An automation system is com-
posed by a set of automation functions, that can communicate among them, and by a set
of automation components that can be used to perform one of more automation func-
tions. An automation component controls zero or more plant components. An instanti-
ated version of the CD of Figure 20(a) will contain application specific information.

Let us consider, for example, a cyclic application that activates two concurrent pro-
cesses: each process reads a sample input from a plant, elaborates the future state, saves
the new state in memory and produces the new output for the plant. The memory units
can be affected by physical faults that may cause errors in the automation functions.
Communication units are instead assumed not affected by faults. To increase the de-
pendability of the automation system a fault-tolerance strategy has been devised con-
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sisting of error detection, error diagnosis and error recovery. The error detection step
uses a standard watchdog mechanism while error diagnosis and recovery steps are im-
plemented by a recovery mechanism. If the watchdog expires, it sends a notification
message to a software recovery mechanism, that provides to terminate the watchdog
and check the status of the automation system: if no error is present then it is a false
alarm, and the watchdog is simply reinitialized. If instead an error is present then a
recovery action is carried out. Measures to be computed are the availability of the au-
tomation functions and the probability of failure of the automation system.

Figure 20(b) shows an instantiated version of the CD depicted in Figure 20(a) to
the example: there are two types of automation components dealing with communica-
tion (ACCOM) and memory (ACMEM), three types of automation functions dealing with
asynchronous communication (ACFA), synchronous communication (ACFS), and mem-
ory (AFMEM), and a single type of automation system AS.

Classes ACCOM and ACMEM are characterized, respectively, by the input attributes
comm rate, representing the communication rate, and copy rate, representing the rate
of the copy operation. The values assigned to these attributes are exponential probability
distribution functions with parameter λ = 0.1. Class AFMEM is characterized, instead,
by a metric to be evaluated and verified against the requirements that is the mean avail-
ability of the automation functions performed by the memory components whose value
has to be included in the interval [0.98,0.999].
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Fig. 21. The generic FEF chain (a) and its instantiation to the running example (b)

Figure 21(a) is a trimming of the CD of the FEF chain. Once customized on a spe-
cific application it shows which faults cause which errors, how errors propagates, and
which (set of) errors cause a failure, that is to say a deviation from the service delivered
by the system. The diagram also connects each type of fault, error and failure with the
corresponding system components affected by it. The instantiated version is shown in
Figure 21(b): it contains only one type of faults (Physical Faults), a single type of error
(Memory Error) and a failure (Halting Failure). The instantiation of the affect relation-
ship relates the fault to the ACMEM component only, the error to function AFMEM , and
failure to AS. Values are set to the input attributes of Physical Fault and Memory Error
classes (i.e., the attributes prefixed with the “$” symbol), while the attribute PF (pre-
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fixed with the “/” symbol) emphasizes that the probability of failure of the automation
system is a measure of interest to be computed.

The CD description of a system contains a lot of useful information for the con-
struction of PN evaluation scenarios, in particular we have observed the following re-
lationships: (1) the package structure provides indication on the organization of PN
component models; (2) the aggregations provides information that allows to identify
PN components and the composition formulae; (3) binary general associations (asso-
ciations from now on) among classes indicate interactions and can therefore be used to
identify labels for PN model composition; (4) classes are rich of attributes that are use-
ful to set rate parameters (input and/or upper-lower bound attributes) and to define the
performance/dependability indices (output measures and upper-lower bound attribute
to be checked); (5) information on the FEF chain is fundamental to set the relationship
among the PN models of faults, errors, failures, and system components; (6) hierarchies
can indicate reuse of PN components through inheritance [65]; (7) the Strategy Model
package allows to identify which mechanisms are used for which fault, error, or failure
(dependability strategy).

Composition Scheme of PN Models. To use the PSR in the automation system domain
we need to identify the main PN models involved and their interactions. This identifica-
tion is again driven by the CDs. The organization of PN models into layers is described
by Figure 22. The package structure with the three branches of Figure 19 is reflected
in the organization into three columns of Figure 22, while to decide in which level to
place the various PN models we have considered the FEF chain first (Figure 21). Faults
are at the lowest level of the chain, and they have therefore been placed at the resource
level. Consequently also automation components (AC), that are affected by faults, have
been placed at the same level. With a similar reasoning errors and automation functions
(AF) have been placed at the service level, and failure models and automation system
(AS) have been placed at the process level.

This is depicted in Figure 22 by the set of boxes ACi for automation components,
FTj for the fault models, AFk for the automation functions, ERh for the error models,
AS for the automation system, and FAILn for the failure models.

The composition of automation components with faults requires a proper assign-
ment of labels to interface transitions for horizontal composition, that can be derived
from the associations affect(Fault, Automation Component) of the CD scheme in Fig-
ure 21.

The labels for the composition of automation functions with errors and for error
propagation are derived from the association affect(Error, Automation Function) and
Eeffect(Error, Error), from the CD of Figure 21.

The inter-level interaction between service and resource is given by the association
perform(Automation Component, Automation Function) of the CD of Figure 20 and by
the cause-effect association between faults and errors of Figure 21.

The labels for the composition of automation system with failure are derived from
the association affect(Failure, Automation System), while the propagation from error to
failure is based on the association effect(Error, Failure).

The software mechanisms are instead placed either at the service or at the process
level, depending on whether they address errors or failures.
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Observe that the relationship between software mechanisms and automation func-
tions is through the error models, although there are cases, like the Local Voter pre-
sented in Sub-Section 5.2, in which it seems more natural to have a direct relationship
between the mechanisms and the functions, but unfortunately, no information of the
subject is contained in the CDs, so that no general guidelines can be derived.

Getting an Executable PN Model. Once the basic structure of the PN models has
been identified it is necessary to complete them with a number of information related
to the specific application. To reach this goal we have identified a number of steps that
will be illustrated through an example.
Step 1. Select the concrete classes of the customized CD scheme amenable to a PN
model
The set of PN component models can be identified by examining the customized CD
scheme to select the classes that are relevant from a quantitative point of view. Good
candidates are classes of the customized CD scheme that contain attributes specifying
input parameters, metrics to be computed and/or to be verified.

If we assume a class level specification, then all GSPNs are initialized with a single
token, while in case of object level specification the identities of the objects come into
play. In the context of modeling of distributed object software, an in-depth treatment of
the specification level is reported in [67], where a formalism derived from Colored Petri
Nets (CPN) [38] has been defined. Having used GSPN for the class models, SWN [18]
is a natural choice at the object level to keep track of the object identities.
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Fig. 23. Example of analyzable PN model: the set of PN components

Example. The customized CD scheme allows the identification of the PN components
shown in Figure 23.

At the resource level, left to right, we have: the communication unit, the memory
units, and the physical fault models. For ACCOM and ACMEM we have reused the re-
source models of Figure 13 and of Figure 14, respectively, with transmission and copy
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as basic operations, while adding reset transitions in ACMEM . For FTPH the predefined
physical fault model FT0 of Figure 16 has been used (with reset).

At service level, left to right, there are: the synchronous communication function
used by the automation system to initialize the watchdog, the asynchronous commu-
nication function used by the automation system to send signals to the watchdog, the
memory automation functions, the errors affecting the memory automation functions,
and the recovery mechanism. Models ACFA and ACFS are simplified models of commu-
nication presented in [6]. AFMEM follows the basic skeleton of service model of Figure
14 with “reset” transitions. ERMEM is an error memory model obtained by refining the
PN model component ER0 of Figure 17. Model REC has been produced from the high
level design specification of the recovery mechanism.

At process level there are: the automation system, the halting failure mode of the au-
tomation system, and the watchdog mechanism. Model AS has been produced from the
high level design specification of the automation system. Model FAIL is a customiza-
tion of the predefined failure mode model F0 of Figure 18. WD is a simplification of the
watchdog model resulting from the automatic translation of the State-Chart specifica-
tion of the watchdog [11].

Colors have been used to keep track of the multiple copies of ACMEM , FTPH , and
ERMEM , as well as to model two parallel subprocesses of AS.

Step 2. Customize the composition rules using the associations of the customized CDs.
The names/rolenames of the binary general associations defined in the CDs have been
used to characterize the labels of the PN components in Figure 23.

If object level specification is assumed, and therefore SWN models are used, fur-
ther “control” SWN component models may be necessary, to do the right association
between colors, as, for example, in the case of AC and AF model, to associate to each
Automation Component the corresponding Automation Function.

Example. The associations named affect allow to define three synchronization labels:
ftmem, to synchronize the memory model and the faults, erraf, to synchronize the au-
tomation functions and the memory, and finally, fail, to synchronize the automation sys-
tem and the halting failure model. New labels are introduced for the interaction between
the recovery mechanism and the memory error model (detect, noerr) and between the
recovery mechanism and the automation functions model (recaf). We can then define
the sets of labels for the horizontal compositions of the resource level (Lres = { f tmem}),
of the service level (Lsrv = {erra f }, and L′

srv = {detect,noerr,reca f }), and the process
level (Lpr = { f ail}).

The resource layer model R, the service layer model S and process layer model P
are then obtained by applying the composition operator || over transition labels:

R =
(

ACCOM | |
/0

ACMEM

)
| |

Lres

FTPH ,

S =
{[(

ACFA | |
/0

ACFS

)
| |
/0

AFMEM

]
| |

Lsrv

ERMEM

}
| |

L′
srv

REC,

P =
(

AS | |
Lpr

FAIL
)

| |
/0

WD
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A similar procedure allows to identify the labels for the vertical composition of lay-
ers based on the associations perfom between automation components and automation
functions, and on the associations effect between physical faults and memory errors,
and between memory errors and halting failure. New labels are also added to repre-
sent: the interactions among the recovery mechanism model and the component models
laying at resource level and at process level, the interactions among the automation
system model and the automation (communication) functions models and, finally, the
interactions among the watchdog model and the automation communication functions
models.

The final PN model PSR is then obtained using the parallel composition of the
various levels upon the identified labels, according to the PSR methodology.

Step 3. Define the initial marking of the composed PN.
A complete definition of the initial marking is possible only when system design spec-
ification is available, by composing the initial marking of the components, that may
require information on the object identities.

Example. The initial marking is based on the assumptions that there is one commu-
nication unit, and that physical faults affects only one the first memory. The marking
parameter M0 has one token per color of the class C = C1 ∪C2 = {c1} ∪ {c2} and it is
used for ACMEM and AFMEM . The marking parameter M1, defined as the single color
c1, is used for FTPH ,ERMEM and FAIL.

Step 4. Initialize the rate/weight parameters of the PN composed model and define the
results.
The rate/ weight parameters and performance/ dependability indices should be defined
according to the values set to the input and output attributes of the customized classes.
The remaining ones are added and initialized by the modeler.

Example. From the customized CDs of Figure 20(b) and of Figure 21(b) we can identify
the following input parameters for the PN model: comm rate, copy rate, fault rate and
duration representing the communication rate, the rate of copy operation, the rate of the
fault occurrence and its duration, respectively.

The metrics to be evaluated and/or validated are specified by three attributes: avail-
ability, defined in class AFMEM of Figure 20(b), and PF, defined in the Halting Failure
class of Figure 21(b), specifying the probability of failure. These information extracted
from the CDs are only indications, no formal definition is associated to them, and they
have to be defined by the modeler.

Step 5. Perform the analysis.
To perform the analysis it may not be a straightforward task, since it may require a
modification of the PN model: as exemplified by the Local Voter mechanism in Sub-
Section 5.2 we point out that for certain types of indices it may be necessary to perform
a transient analysis in which the states representing a failure are made absorbing, while
if instead a recovery strategy is being evaluated it is likely that the model should be
made ergodic.

Example. We have used GreatSPN tool [52] to construct the PN component models de-
picted in Figure 23 and the program algebra [10] to carry out their composition. The
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reachability graph of the final SWN model contains 115 tangible markings, 778 vanish-
ing markings and 4 dead markings (failure of the automation system). The model can
be used for the computation of the probability of failure defined as the probability that
place fail becomes marked within time t, i.e., Pr{M[ f ail](x) = 1,x ≤ t}. The modified
ergodic model (in which a restart from failure has been modeled) is characterized by
103 tangible markings and 1051 vanishing markings. The ergodic model can be used
for the computation of the mean availability of the memory automation function that
can be affected by error that is defined as the probability that place error is empty.

8 Conclusions

In this paper we have introduced the quantitative evaluation of dependability based on
a probabilistic approach, following an order of presentation that somehow reflects also
be the historical development of the dependability field.

Starting from the dependability of simple systems, that can be expressed as rela-
tively simple formulas of the dependability of the elementary components of the sys-
tem, following a divide and conquer approach, we have then discussed the role of state
enumeration techniques for dependability, and in particular of state enumeration tech-
niques based on Continuous Time Markov Chain.

Since state enumeration is a low-level, error-prone activity, the researchers have
looked with interest into higher level formalisms as Petri nets, and in particular to whose
classes of Petri nets that have an underlying stochastic process semantics as either the
simple Markov Chain, like SPN, or as the more complex form of Markov Regenerative
Process, like Markov Regenerative SPN [19].

When building a model of complex systems for dependability, the interplay between
the system components and the FEF elements plays a central role, we have therefore
also presented a systematic, compositional approach to the construction of SPN models
for dependability. The approach has been exemplified with an example taken from the
automation system domain.
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We would like to thank Andras Horváth that has been the co-author of the work [10],
part of which has been reused in this paper, as well as the person who implemented the
program algebra for net-composition in the GreatSPN tool.

References

1. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with
Generalized Stochastic Petri Nets. J. Wiley, 1995.

2. M. Ajmone Marsan, A. Bobbio, and S. Donatelli. Petri Nets in performance analysis, an
introduction. In W. Reisig and G. Rozenberg, editors, Lectures in Petri Nets: basic models,
pages 211–256, Berlin, Germany, 1998. Springer Verlag. LNCS, Vol 1491.

3. R.E. Barlow and F. Proschan. Statistical Theory of Reliability and Life Testing. Holt, Rinehart
and Winston, New York, 1975.



176 Simona Bernardi, Andrea Bobbio, and Susanna Donatelli

4. S. Bernardi. Building Stochastic Petri Net models for the verification of complex software
systems. PhD thesis, Dipartimento di Informatica, Università di Torino, April 2003.
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A. Horváth. GreatSPN in the new millenium. Technical report, In Tools of Aachen 2001,
International MultiConference on Measurement, Modelling and Evaluation of Computer-
Communication System, 2001.

6. S. Bernardi and S. Donatelli. Performance Validation of Fault-Tolerance Software: A Com-
positional Approach. In Proc. of the International Conference on Dependable Systems and
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Abstract. Process algebras aim at defining algebraic calculi for con-
currency and communication between concurrent processes. This paper
describes some of the issues that would seem to be worth discussing when
process algebraic ideas are related to Petri net theoretical concepts.
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1 Introductory Remarks

Many research monographs and textbooks have been written on the subject of
process algebras (see, for instance, [3, 6, 19, 20, 24–26]), and even a comprehensive
handbook of 1342 pages was published three years ago [4]. Thus, even when the
topic is restricted to the relationship between process algebras and Petri nets,
there is a vast amount of work that cannot be described in short a tutorial.
We therefore chose to write an account of selected thoughts that might occur
to someone attempting to form a link between process algebras and Petri nets;
moreover, while aiming at an easy-to-be-followed presentation, we included sev-
eral pointers to the relevant papers and results. We will discuss a well-known
concrete process algebra (the reader should be aware that there are several of
them, just as there are several classes of Petri nets), and highlight some of the
key issues both in the design of such an algebra, and in its translation into Petri
nets.

Process algebras have been studied for about 25 years, but some ideas behind
them go back even further; indeed, even regular expressions can be viewed as a
very simple process algebra equivalent to finite state automata. First seeds for
what has by now become a standard approach to process algebra have been sown
by Robin Milner [24], based on his work on flow graphs, and Tony Hoare [18,
19], based on his ideas about designing concurrent programs. Also, at around the
same time, the relationship between the path notation, which originates from
operating systems design (Roy Campbell and Nico Habermann [8]), and Petri
nets has been pioneered by Peter Lauer and others [20]. Soon after that, research
groups in Amsterdam started to investigate an axiomatic approach to process
algebra [3].
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We here concentrate on the relationship between process algebras and Petri
nets which, in particular, could allow one to apply Petri-net-based analysis meth-
ods (such as the S-invariant method) in the process algebraic framework, and to
transfer concepts of concurrency and causality that are well-developed in Petri
net theory into the domain of process algebras. Apart from the already men-
tioned work on path expressions, some early influential research in this area has
been carried out by Ursula Goltz [17], Gerard Boudol and Ilaria Castellani [7],
Rob van Glabbeek and Frits Vaandrager [16], Ugo Montanari and his research
group in Pisa [11], and Ernst-Rüdiger Olderog [26]. Much of this work aimed
at giving a faithful translations for the existing process algebras, the majority
of which had been designed without Petri nets in mind. By contrast, but also
building upon this earlier work, the ‘box algebra’ approach of [6] on which this
paper is based, aimed at designing a ‘Petri nets-friendly’ process algebra.

2 Basic CCS

As a basis for our discussion, we have chosen the original Calculus of Commu-
nicating Systems by Robin Milner [24, 25], referred to as the (basic) CCS. The
word ‘basic’ here reflects the fact that there exist numerous extensions (e.g., [2,
9]) as well as interesting restrictions (e.g., [10]) of CCS and related process al-
gebras. CCS is action-based, which means that it is built upon a set of (atomic)
‘observable’ actions A = {a, â, b, b̂, c, ĉ, . . .} together with a distinct ‘unobserv-
able’ (or ‘silent’) action τ . Every observable action a is coupled with another
observable action, denoted by â and called its conjugate (and â has a as its
conjugate, i.e., a = ̂̂a). (Though Milner’s CCS uses over-barring, such as a, to
denote conjugates, we changed this notation to over-hatting in order to avoid
potential confusion with another over-barring, to be introduced later on.)

CCS provides a method for structuring a collection of actions in such a way
that some overall coordinated behaviour is described in order, e.g., to specify
the desired behaviour of some still-to-be-designed system, or to describe crucial
aspects of the behaviour of some existing system. Technically, this is achieved
by imposing a syntax on top of the set of actions, as follows:

E ::= nil E + E z.E E E E\a .

In the above, a ranges over A, and z over A∪{τ}. The syntax defines CCS process
expressions (or just processes) E, and it should be read in the usual Backus-Naur
style. Thus, for example, nil is a process, and if E and F are processes then so
is E + F . Within the syntax, symbols ‘+’ and ‘ ’, as well as constructs ‘z.’ and
‘\a’ denote process algebraic operators.
There is a single basic process nil without any operator at all which can be viewed,
in the usual way, as a nullary operator, or a constant. There is, furthermore,
an infinite family of unary operators, parameterised by actions (the prefixing
operators, z.). Another family of unary operators, written in postfix style, are
the restrictions \a (one for each a ∈ A). The only binary operators, written in
infix notation, are the choice ‘+’ and composition ‘ ’. To avoid an excessive
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use of the parentheses, it is assumed that prefixing binds more tightly than
choice, and that choice binds more tightly than composition; thus, for instance,
a.b.nil + c.nil d.nil stands for ((a.(b.nil)) + (c.nil)) (d.nil).

Process variables, such as X , are also considered to be basic processes, each
such variable being associated with a unique defining expression of the form
X

df= E. Variables provide support for different levels of abstraction within a
CCS specification, as well as for recursion: e.g., X with X df= a.X is a recursive
expression.

Every process has an associated set of behaviours. It is one of the main
objectives of formal semantics of a process algebra to make this notion precise.
The behaviour of process expressions is often given in terms of ‘can make a
move’ statements, which are similar to ‘an action can be executed’ statements in
general concurrent systems terminology, or ‘a transition can occur’ statements
in Petri net terminology (for example, the process a.nil can make move a, and
thereafter no further move). Referring to CCS syntactic constructs, we have that
the basic process nil can make no move at all; E + F behaves either like E or
like F ; z.E can make the move z and then behaves like E; E F behaves like
both E and F , together with some further (synchronised) activities which will be
described later; E\a behaves like E, except that the actions a and â are blocked;
and, finally, X behaves like the process E in the equation X df= E.

A straightforward attempt to capture the behaviour associated with a process
expression could be to emulate the approach taken when the language of a
regular expression is defined. However, this might lead to identifying processes
which may behave rather differently in certain contexts (see the discussion in
Section 4). To address this problem, CCS uses more refined scheme for describing
the possible moves of a process, namely that offered by structural operational
semantics (SOS), pioneered by Gordon Plotkin [28]. In SOS, the concept of
inference rules of formal logic is applied to processes, using the fact that if a
process E makes a move, then the ‘remaining’ behaviour of E after making this
move can be described by another process expression E′. For example, E =
a.nil + b.c.nil can make move b, and the remaining behaviour can be described
by process E′ = c.nil (note that the left-hand side branch of the + together
with the + itself, has disappeared because it was not selected, and that the b
has disappeared because it was executed). In general, we say that ‘E makes a

move z and becomes E′’, and write this formally as E
z

−−−−−→ E′. For processes,
then, the SOS rules have the following format: if some expression E can make a
move and become E′ (the rule’s premise), then some expression D (syntactically
related to E) can also make a move and become D′ (the rule’s conclusion). A
rule is divided by a horizontal bar, above which its premise, and below which its
conclusion are given. For example, the two rules for choice are:

E
z

−−−−−→ E′

E + F
z

−−−−−→ E′
and

F
z

−−−−−→ F ′

E + F
z

−−−−−→ F ′
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In this vein, one may go through the syntax providing suitable rule(s) for each
syntactic clause, i.e., for each operator (or family of operators). For example, in
case of restriction we have a single rule:

E
z

−−−−−→ E′ , z �= a , z �= â

E\a
z

−−−−−→ E′\a

Thus E\a can make a z-move if E can and z is different from a and â. It is also
worth noting that there are no rules at all for the process nil.

3 From Process Expressions to Petri Nets

We now will go through the basic CCS process algebra and discuss several of the
concepts contained in it, as well as some of the issues pertaining to its connection
to Petri nets. The discussion of infinite behaviour is deferred to the last section
of this paper.

Sequential Composition. The basic CCS means of generating sequential be-
haviour is through the prefixing operator. For instance, a.b.nil can ‘make an
a-move’, thereafter ‘make a b-move’, and then terminate:

a.b.nil
a−→ b.nil

b−→ nil.

It may be observed here that a.b.nil, b.nil and nil are expressions with different
structure, indicating that a CCS expression may be subjected to a structural
change through behaviour (in general, the structure and the behaviour of CCS
expressions are closely intertwined). Moreover, it is fairly clear that a Petri net
equivalent of a.b.nil should be something like the transition-labelled net shown
on the left-hand side of Figure 1. Note that we do need the labelling as one might
write a process such as a.a.nil, giving rise to two different transitions with the
same label a.

Fig. 1. Net for a.b.nil before and after the occurrence of a.

There is a conceptual discrepancy in thinking about structure and behaviour
in CCS and in Petri nets. After a has occurred in the net, the transition labelled
a is still visible in its structure (see the right-hand side of Figure 1), though it
cannot be activated anymore, whilst the expression a.b.nil changes to b.nil after
the occurrence of a, and thus the a is ‘lost’ (this way of viewing behaviour is
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actually quite particular to the standard SOS semantics rather than to process
algebra as such).

What would happen if we wished to put more complicated partial expressions
into sequence, rather than just two actions a and b? The CCS syntax tells us
that having a in sequence with something arbitrarily complicated is possible.
However, it explicitly disallows anything more complicated than just an action
to be written in front of the prefix operator symbol. For instance, writing (a+
b).nil is forbidden. Theoretically speaking, this is not too restrictive, because the
general sequential composition can be ‘emulated’, using in an essential way the
still-to-be-explained composition operator and restriction. Nevertheless, it may
be useful to have a more general sequential operation at one’s disposal, and there
are some process algebras with such an operator as a basic feature, e.g., [3].

Choice Composition. This seems to be a rather innocent operation. However,
as we will see, some care needs to be taken when it is applied in combination
with other constructs. Let us first see how a simple choice between a and b,
such as a.nil + b.nil, can be expressed in terms of Petri nets. We haven not yet
considered the nil by itself, but after looking at its role in the previous example,
it should indicate ‘the end of a net (or of net’s execution)’. We emphasised this
by naming the place to which nil corresponds x (for ‘exit’, as opposed to the
place where the initial token resides, which is called e, for ‘entry’).

Given a.nil+b.nil, should the corresponding net have only one end, or two, or
even three ends? All three possibilities are shown in Figure 2, and all of them can
be found in the literature. Moreover, when the choice is embedded in a context,
we might wish to model it as being an internal one, by which is meant that
the process performing the choice should be free to ‘make up its mind’ with-
out being hindered by any external influence. A good way of modelling internal
choice is shown on the right-hand side of Figure 2. The choice between a and b
is ‘pre-poned’ there, in the sense that it depends on a prior choice between two
silent τ actions (there are process algebras in which one may distinguish syntac-
tically between external and internal choice, such as TCSP [19]). However, such
a translation is inappropriate for CCS: Indeed, CCS has another expression cor-
responding to this net, τ.a.nil+ τ.b.nil, which needs to be distinguished carefully
(although we have not yet explained exactly why) from the original expression
a.nil + b.nil.

Now, which of the three possibilities (a/b/c) in Figure 2 is to be preferred as
a translation of a.nil + b.nil? Cases can be made for all of them: Figure 2(b) [11]
seems to be the closest Petri net correspondent of that expression, since there
are two nil’s in it and two x places in the net; Figure 2(c) has strong category
theoretical (if not categorical) arguments in its favour [33]; and Figure 2(a) [6]
treats choice as a forward/backward symmetric sequential construct (almost as
a nondeterministic if–fi statement in programming [12], or like a+b in a regular
expression). Moreover, the latter allows the net to be used as a building block
in the following sense. An expression such as (a + b); c where the semicolon
denotes sequential composition, would give, using Figure 2(a), the left-hand side
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Fig. 2. Nets for (a.nil)+ (b.nil): (a) one-ended, (b) two-ended, (c) three-ended, and (d)
with internal choice.

Fig. 3. Nets for (a + b); c constructed from Figure 2(a) and Figure 2(b).

of Figure 3. Figure 2(b) would not quite as easily fit such an extension; the net
shown on the right-hand side of Figure 3 is close to (a + b); c and has two x
places, but also contains a duplication of the c action which is not present in the
process expression.

Parallel Composition. Putting processes in parallel for performance reasons,
or for architectural reasons, has long been a challenge for theoreticians, as well
as for practitioners, because the behaviour of such compound processes seems
to be much more difficult to describe and to master than sequential behaviour.
For instance, if two parallel processes access common variables, one needs to be
able to control these accesses and their orderly interaction. Numerous special
programming constructs have been invented in order to manage this, and other
kinds of, interaction between parallel processes. One that plays a particularly
important role in process algebra is the concept of a handshake communication.
This is a form of a symmetric synchronisation, by which an action that is shared
between, say, n processes can be executed only if all n of them are ready to do
so. This is much like in Petri net theory, where a transition with n input places
can occur only if all of these places carry a token.

Basic CCS has a particular incarnation of the handshake, in that it is always
two-partnered (i.e., n=2), and it always results in an internal action. Moreover,
handshakes can occur only between a actions and their conjugates, â actions.
The idea is, quite literally, that two conjugates fit together like two hands about
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to engage in a handshake, and that the resulting τ synchronisation describes the
handshake itself. Let us have a look at the three SOS rules for CCS composition:

E
a

−−−−−→ E′

E F
a

−−−−−→ E′ F

F
a

−−−−−→ F ′

E F
a

−−−−−→ E F ′

E
a

−−−−−→ E′ , F
â

−−−−−→ F ′

E F
τ

−−−−−→ E′ F ′

First, note carefully the difference between the first two rules and the rules for
choice composition: the processes ‘remaining’ after move a still contain parts
of the original processes which had not been involved in the move, while in
the rule for choice these have disappeared. This models parallel (rather than
nondeterministically selected) behaviour. Second, note the appealing simplicity
of the third, handshake rule: if E can make an a-move and F can make an
â-move, then their composition E F can make a τ -move, creating as a new
process the composition of whatever remains from E and F after making their
respective moves.

For instance, what are the sequences of moves, or in technical terms, the
interleavings, that the process a.a.nil â.â.nil could make? If we applied only the
first two rules of , we would have move sequences aaââ, aâaâ, aââa, ââaa,
âaâa, âaaâ (and all their prefixes as well). But if we now also take the third
rule into account, there are still more behaviours of that expression, such as
τaâ. What happened here is that we let the first a on the left-hand side of
a.a.nil â.â.nil be synchronised with the first â on the right-hand side, and the
rest got executed in an unsynchronised way. Of course, τâa is also a possible
behaviour, and so are aâτ , âaτ and ττ . Still more behaviour is possible if we let
the left-hand side process execute its first a and then synchronise its second a
with the first â on the right-hand side, thus: aτâ. And, by symmetry, we may
have âτa. What we just witnessed suggests that a parallel composition can give
rise to a bewildering amount of behaviour. In fact, using only prefixing and
composition, it is possible to construct processes that give rise to exponentially
many interleavings (in terms of the size of an expression). What is so bewildering
about this (or perhaps, what so bewildered early researchers on the subject) is
not the sheer size of the set of potential interleavings, but the wide variety of
possible interferences of one process by another one at unpredictable points in
time, some of which may be quite unwanted in real applications. In practice, one
is interested in such a global point of view, though, in order to prove assertions
about the possible set of all behaviours. Of course, the rule does not really
help here, being (as all SOS rules are, and also as the transition rule in Petri nets
is) local in nature. However, such a rule is a solid formal foundation for further
applications of more advanced and global methods, just as the transition rule in
Petri nets is necessary for, e.g., the state equation, and the latter, for instance,
for the structural analysis of nets.

Other process algebras have different parallel operators and different action
synchronisation schemes. COSY and, more particularly, the path notation [8,
20], have top-level parallelism, which means that one may express a collection of
parallel processes and paths, inside which the parallel operator may not occur;
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i.e., no nesting of parallel composition is allowed. Synchronisation occurs through
equality of action names, that is, if an action a occurs in two or more different
processes (or, to be precise, paths), it may be executed only if all of them are
ready to do so. TCSP [19] also has synchronisation on common action names –
with some subtle differences to COSY – but, on the other hand, allows nested
parallelism. Hoare’s original CSP [18] can be characterised as a mixture of top-
level parallelism and conjugation-based two-way synchronisation. Conjugation is
syntactically expressed in CSP by !-actions (send actions) and ?-actions (receive
actions); see [5] for an account of its translation into Petri nets. The PBC [6]
generalises conjugation to n-way synchronisation, where n ≥ 2.

Let us now turn to the translation of processes using the composition operator
into Petri nets. Actually, it is not very hard to define such a translation. Given
E F , one first draws separately the nets for E and F and lays them side by side
(or, in technical terms, forms their disjoint union). In a second step, one collects
all pairs of transitions that are labelled by a in one of the components and by â
in the other component and inserts a common transition, labelled by τ , that acts
in the net of each component like the transition it originates from does. We need
to do this not just for a, â-pairs, but also for all other pairs of conjugates. For
the a.a.nil â.â.nil example, we actually have four matching a, â-pairs, because
there are two a’s on the left-hand side and two â’s on the right-hand side, and
any two of them can be matched. The construction thus yields the labelled Petri
net shown in Figure 4. Virtually all translations of CCS into Petri nets that exist
in the literature will yield this net; there is not really any alternative way of the
sort we discussed in the case of the choice operator.

Fig. 4. Net for a.a.nil â.â.nil.

Restriction. To analyse its effect, consider the process (b.a.nil)\a. It can make
a b-move, and then no further move, because the a has been restricted away. Note
carefully that the same is true for the process b.nil, but that there is still an im-
portant difference between these two processes: the latter ‘terminates properly’,
while the former ‘gets stuck’ (or, more technically, it deadlocks without reaching
a proper final state). This difference is not visible in terms of the behavioural
sequences of the two terms, unless we add some information about termination.

The Petri net of a restricted process E\a is simply obtained by omitting from
the net of E all a-labelled and all â-labelled transitions together with the adjacent
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arcs. Thus, the net corresponding to (b.a.nil)\a looks like that on the left-hand
side of Figure 5. On the right-hand side of Figure 5, the net corresponding to
b.nil is shown. The isolated x place on the left-hand side may appear superfluous,
but it (and the fact that place s is not an exit place) captures the fact that this
net cannot terminate properly, and thus describes the main distinction between
processes (b.(a.nil))\a and b.nil. It is therefore good to keep that place around,
or at least keep the information somewhere that place s is not an exit place.

Fig. 5. Nets for (b.a.nil)\a and b.nil.

Restriction is typically used in combination with composition , the main
idea being that a pair of conjugated actions is used in order to create a desired
synchronisation, after which the pair is no longer needed and can be restricted
away. For instance, we may consider the process ((a.(a.nil)) (â.(â.nil)))\a, com-
ing from the expression discussed in the last section. Restricting away the a’s
(and â’s) implies that only the τ -behaviour of that expression still remains pos-
sible; that is, it can make two τ moves, and that is all. Let us have a look at the
corresponding net in Figure 6 to check whether this is correctly reflected. Only
the first τ -transition can occur, and then the fourth, putting both tokens on
their respective x places (and thus terminating execution properly). Rightfully,
the second and third τ -transitions have become ‘dead’ (in the sense that they
cannot be executed anymore), since they were both associated with a prior exe-
cution of a or, respectively, of â, and both executions are no longer possible. One
might be tempted to delete them from the net. However, such an optimisation is
in general very hard to detect, and it is thus better not to incorporate it in any
basic constructions, but to add it, if desired, as an appendix to the systematic
construction.

Fig. 6. Net for (a.a.nil â.â.nil)\a.
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A similar argument as for the difference between (b.a.nil)\a and b.nil can
be used to justify why processes τ.a.nil + τ.b.nil and a.nil + b.nil should not be
treated as equivalent. For suppose that either is put into the context (•\a), that
is, suppose that the ‘hole’ in that expression (the bullet, ‘•’) is first replaced by
τ.a.nil + τ.b.nil and then by a.nil + b.nil. We obtain, respectively:

(τ.a.nil + τ.b.nil)\a and (a.nil + b.nil)\a .

The internal choice in the first of these expressions can be resolved in such a
way that the τ just in front of the a is selected, and after that, the entire expres-
sion can make no further move and is ‘deadlocked’, similarly to the expression
(b.(a.nil))\a after executing b. By contrast, in the second expression, no τ can
be selected, and the a cannot be selected either, because it is restricted away;
thus, the b remains executable, and after executing it, a final state has been
reached, so that no such deadlock is possible. Thus, the two expressions behave
differently in the same context, and one should, as a rule, be careful to dis-
tinguish them. Any formal semantics that does not distinguish two expressions
which behave differently in a given (desired) context is technically called not
fully abstract. More precisely, if a formal semantics distinguishes two expressions
whenever they behave differently in at least one context out of a predefined set
of contexts (and equates them if such a context cannot be found), then it is
called fully abstract (with respect to that set of contexts).

4 Algebraic Laws, and Bisimilarity

Looking at the two SOS rules for the choice operator, it is clear that processes
like E+F and F +E should be semantically the same. Now, if we looked at their
nets, such a conclusion would be easy to defend as the nets are just isomorphic.
However, no such notion of isomorphism suggests itself easily for expressions.
Here is another case: E\a and (E\a)\a. Clearly, restricting a two times in a
row will give the same result as restricting a just once; technically speaking,
restriction is idempotent. Yet the two expressions are syntactically quite different.
But if we consider their nets, then it is easy to see that they are again isomorphic,
since the outer restriction in (E\a)\a does not find any transitions to be removed
anymore. As another example, consider a.(b.nil+b.nil) and a.b.nil+a.b.nil. It seems
very reasonable that these two expressions could, or even should, be treated as
equivalent. Syntactically speaking, this could be achieved by something like a
distributivity law for prefixing (over choice). However, one needs to be careful,
because we do not want a general left-distributivity law to hold in the process
algebra context. The argument is supplied by the following two expressions:

a.(b.nil + c.nil) and a.b.nil + a.c.nil.

There is a context in which they behave differently, viz. (((• â.ĉ.nil )\a)\b)\c.
Put first a.(b.nil+c.nil) in place of the bullet and observe that there is no deadlock:
two τ ’s can be executed in succession, and the execution terminates normally.
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Then put a.b.nil+a.c.nil in place of the bullet and observe that now there can be
a deadlock. It arises when the â is synchronised with the a in front of the b, rather
than with the a in front of the c, and executed. If this is not seen immediately
from the SOS rules, we would encourage the reader to draw the two nets and
check that they differ in an additional τ -labelled transition in the second net,
which is the one creating the deadlock. We conclude that distributivity of prefix
over choice (from the left) is not, in general, a good idea. Still, it seems that we
ought to have some means of equating expressions, because there are just too
many of them around: It is easy to find more examples that one might intuitively
call equivalent, e.g., a.nil and a.nil + a.nil, or even (we are talking ‘interleaving’)
a.nil b.nil and a.b.nil + b.a.nil.

The discussion suggests that a behavioural, rather than a structural, or a syn-
tactic, equivalence relation is sought for. One of the fundamental contributions
of early CCS [24, 27] is the development of a very important notion of this kind,
called bisimulation equivalence, or just bisimulation. The basic idea is to relate
sets of states of the two processes that are subject to comparison, in such a way
that from two related states, if one of them can make a move, the other one can
make a similar move such that the new states are again related. By a ‘state’ of
a process, we mean any process that can be reached after a number of moves
(including the initial process which can be reached after zero moves). The set
of all reachable states can be viewed as the nodes of a directed graph, whose
arrows correspond to the moves from one state to another. This edge-labelled
graph is usually called the transition system (of the process). (The terminology
is due to [21].) If an initial state is present (as is usually the case), we may use a
special symbol for it – below, we use a circle which is not entirely black. These
notions are actually similar to the reachability graphs, which comprises the set
of reachable markings of a Petri net in graphical form.

Fig. 7. Transition systems for a.(b.nil + c.nil) and a.b.nil + a.c.nil.

Figure 7 explains why no bisimulation can be found between a.(b.nil + c.nil)
and a.b.nil + a.c.nil: On the right-hand side, neither state s′21 nor state s′22 al-
low both b and c actions to occur, and thus neither of them corresponds to
state s2. Intuitively, the moment of choice between b and c is pre-poned in
the process a.(b.nil) + a.(c.nil), choosing here between the first or the second
a already determines the choice between b and c. Note that, by contrast, a
bisimulation can be found between the two expressions a.((b.nil) + (b.nil)) and
a.(b.nil)+a.(b.nil). Their two transition systems are exactly the same as the ones
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shown in Figure 7, except that the c is on both sides replaced by a b. In that
case, {(s1, s′1), (s2, s

′
21), (s2, s

′
22), (s3, s

′
3), (s4, s

′
4)} is a bisimulation.

Because bisimulation is defined on transition systems, rather than on ex-
pressions or nets, it can be defined in a similar way for any formal model from
which a transition system can be derived. A transition system over a given set
of symbols Σ is a pair (S,→) such that S is some set of states (usually with
a designated initial state) and → is a set of triples (s, x, s̃), such that s and s̃
are states and x is a symbol from Σ. A triple (s, x, s̃) indicates that a move
from state s to state s̃ (not necessarily different from s) is possible by executing
symbol x. One can also write s x→ s̃ instead of (s, x, s̃) ∈→. For example, the
left-hand side of Figure 7 shows a transition system over Σ = {a, b, c} with four
states S = {s1, s2, s3, s4} and three triples: (s1, a, s2), (s2, b, s3) and (s2, c, s4).
Note that a transition-labelled Petri net gives rise to two transition systems: (i)
its reachability graph where the set of symbols is the set of transitions, and (ii)
the graph obtained from (i) by replacing each transition with its label (the set
of symbols is now the set of transition labels).

Let us have a look at the formal definition of bisimulation: Suppose (S1,→1)
and (S2,→2) are two transition systems with initial states s01 and s02, respec-
tively. Then a relation β ⊆ S1 × S2 is called a bisimulation if and only if the
initial states are related by β (i.e., (s01, s02) ∈ β), and whenever two states are
related, then the moves in (S1,→1) can be mirrored by moves in (S2,→2) and
vice versa, i.e., for each pair (s1, s2) ∈ β we have:

– If s1
z→ s′1, then there is s′2 ∈ S2 such that s2

z→ s′2 and (s′1, s
′
2) ∈ β.

– If s2
z→ s′2, then there is s′1 ∈ S1 such that s1

z→ s′1 and (s′1, s′2) ∈ β.

We have been careful to give the Σ in the definition of a transition system
a different name than A, even though one usually takes Σ = A or Σ = A∪{τ},
in the case of basic CCS. The resulting notion of bisimulation is called strong
bisimulation. Often, one wants to ‘neglect τ -moves’, whenever possible. For in-
stance, the processes a.τ.nil and a.nil are not strongly bisimilar, because the τ
is treated like a normal action. It is possible (and often desirable) to consider a
weaker notion of bisimulation that ignores internal τ -moves whenever this not
lead to a loss of vital semantical information. For instance, it would be too hasty
to equate a.nil+ b.nil and a.nil+ τ.b.nil, because executing the τ implies a ‘silent’
but firm commitment to executing b (rather than a) as the next action. A version
of bisimulation called weak bisimulation [25] arises out of the previous definition
thus: β is called a weak bisimulation between the two transition systems if and
only if the initial states are related by β, and whenever two states are related,
then the moves in (S1,→1) can be mirrored by (possibly empty) sequences in
(S2,→2) and vice versa, i.e., for each pair (s1, s2) ∈ β we have:

– If s1
z→ s′1, then there is s′2 ∈ S2 such that s2

w→ s′2 and (s′1, s
′
2) ∈ β, where:

w is a sequence of τ ’s if z = τ , and z surrounded by sequences of τ ’s if z �= τ ;
and s2

w→ s′2 means that s′2 is reached from s2 by successive executions of
the actions in w.
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– If s2
z→ s′2, then there is s′1 ∈ S1 such that s1

w→ s′1 and (s′1, s′2) ∈ β, where
w is similar as above.

Let us write E ∼= E′ and E ∼=w E′ if E and E′ are strongly bisimilar and,
respectively, weakly bisimilar, i.e., if there exists a strong (weak, respectively)
bisimulation between their transition systems. It is fairly clear that these rela-
tions are indeed equivalence relations, i.e., they are reflexive, symmetric, and
associative. Obviously, a strong bisimulation is also a weak bisimulation, so that
E ∼= E′ implies E ∼=w E

′ (i.e., ∼= ⊆ ∼=w). For instance, a.b.nil and a.τ.b.nil are
weakly bisimilar (when checking this be aware that the empty sequence is also
a sequence), since the two intermediate states in the latter can be related to the
single intermediate state of the former, but a.nil+ b.nil and a.nil+ τ.b.nil are not.

Strong and weak bisimilarity of process expressions are actually quite strong
equivalence notions, short of actual syntactic equality of process terms. There are
also much weaker notions of equality between processes. A particularly important
one is trace equality, defined as follows: E and E′ are trace-equivalent if the
set of all sequences of possible moves of E and E′ (i.e., their interleavings)
coincide. It is easy to prove that whenever E and E′ are (strongly or weakly)
bisimilar, then E and E′ are also trace equivalent. However, a.(b.nil + c.nil) and
a.b.nil+a.c.nil are trace equivalent without being bisimilar. Between bisimulation
and trace equality, there is a spectrum of interesting equivalence notions, as
described in [14]. Although bisimulation is a strong equivalence notion, there are
still stronger ones. A next to useless one, already mentioned, is syntactic equality.
Another one is transition system isomorphism, defined as follows: E and E′ are
ts-isomorphic if there exists an isomorphism between their transition systems.
For instance, E+F and F+E are ts-isomorphic, but a.a.nil and a.nil a.nil are not
(but they are bisimilar). There also are desirable identifications that require only
a slight strengthening of the notion of bisimulation. For instance, one might wish
to distinguish (b.a.nil)\a and b.nil, because (as discussed earlier on) the latter,
but not the former, terminates properly; and yet, they are (strongly and weakly)
bisimilar.

Now that we have defined strong and weak bisimilarity and sketched their
characteristics, some real calculations can be started, in particular, we may now
set out to prove a host of equivalences. For example, the following algebraic
properties of the choice operator become actually provable:

E + nil ∼= E (nil is neutral w.r.t. choice, cf. the next line)
E + F ∼= F + E (choice is symmetric)
(E + F ) +G ∼= E + (F +G) (choice is associative),

for all E, F , and G. Similarly, the composition operator is symmetric, as-
sociative, and has nil as a neutral element, with respect to strong bisimulation.
The associativity of requires a trifle more thought than the other properties.
It holds because of the careful design of basic CCS. In many practical cases, a
composition of two processes is immediately followed by restriction, such as in
(E F )\a. Suppose that we had defined in such a way that it included restric-
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tion. Then we would have lost associativity. To see this, compare the following
two expressions:

(((a.nil a.b.nil)\a) â.nil)\a and (a.nil ((a.b.nil â.nil)\a))\a .

The expression on the left-hand side is bisimilar to nil, while the expression on
the right-hand side can make a τ -move followed by a b-move, and therefore, as-
sociativity (of the hypothetical composition operator) does not hold. The reason
why such an example cannot occur for the basic CCS composition operator, is
that all conjugate pairs are still around after synchronisation, unless they are
explicitly restricted away by a different operator.

Restriction, too, has several useful algebraic properties, such as:

(E\a)\b ∼= (E\b)\a (restriction is symmetric)
(E + F )\a ∼= (E\a) + (F\a) (restriction distributive over choice)

and more (for instance, the reader might wish to find out under which condi-
tion(s) restriction distributes over composition).

We also have some congruence properties, that is, we may prove that ∼= is
preserved under some operations. Just as one particular example, the following
holds true:

E ∼= E′ =⇒ E F ∼= E′ F ,

for all processes E, E′ and F . There are many more algebraic properties of this
kind, but this is not the right place to list them all – well, if ‘listing them all’ is at
all possible. Suppose that we had a finite set of such properties, such that for any
two expressions E and E′, if E and E′ are bisimilar, then this can be proved
using only those properties. If such a set could be found, then we would call
bisimilarity finitely axiomatisable. However, it has been shown that bisimilarity
is not finitely axiomatisable for process algebras including basic CCS [30]. Thus,
the list of ‘interesting algebraic properties’ analogous to the above ones, has to
be virtually endless. Let us just list two of them. The first one gives a general
property for weak bisimulation:

a.(E + τ.F ) + a.F ∼=w a.(E + τ.F ) ,

which is taken from [25]. It is a good exercise to prove this for simple E and F ,
for instance b.nil and c.nil, and also to check why ∼=w cannot be replaced here by
the stronger ∼=. Another property is the expansion property. It allows compos-
ite expressions to be ‘developed’ into large sums (comprising the possible ‘first
actions’ that can be executed in the composite expression followed by smaller
composite expressions). We give here only an application of this property:

a.nil â.nil
∼= a.(nil â.nil) + â.(a.nil nil) + τ.(nil nil)
∼= a.â.(nil nil) + â.a.(nil nil) + τ.(nil nil)
∼= a.â.nil + â.a.nil + τ.nil .
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In this chain of bisimilarities, the first two come from the expansion property,
and the last one from nil nil ∼= nil. We have managed to reduce an expression
with operator into one without. The expansion property can always be used in
this way, showing that (at least with respect to bisimulation as defined above)
the operator is redundant for recursion-free expressions1. This is strongly
related to the fact that, so far, we only consider interleaving semantics. In fact,
the validity of the expansion property can be viewed as a direct formalisation of
interleaving (concurrency can be replaced by nondeterministic interleaving).

We have called the above equalities ‘properties’ rather than ‘laws’, because
they are consequences of the definitions, rather than being postulated. It is
possible to turn the approach upside down, as exemplified by [3]. Let us start
with just the set A of actions (and possibly τ) and simply postulate a set of
reasonable algebraic equations for a set of operators that are interesting in that
they make sense for a process algebra, such as ‘+’ for choice (as before) and ‘;’ for
sequential composition. We quote the first five postulates (also called axioms)
from [3]:

p+ q = q + p (p+ q) + r = p+ (q + r) p+ p = p
(p+ q); r = p; r + q; r (p; q); r = p; (q; r) .

The axioms in the first row are already known from basic CCS’s choice operator,
except that here, p, q and r range over an unknown ‘set of processes’, and the
equality is not a concrete one, but a postulated one (which may, or may not2,
later be substituted by a concrete one). The next one is the ‘wrong’ distributivity,
or rather the ‘right’ one, both by nature and since it can safely be assumed to
hold (as opposed to left distributivity, which was rejected earlier). Note that it
cannot even be formulated in basic CCS, since a compound process such as p+q
cannot be placed in front of sequential composition there. For the same reason,
associativity of sequential composition (the last one in the above list of axioms)
cannot be formulated in basic CCS. Thus, it is already clear that with the above
axioms, one aims at a process algebra that it somewhat different from basic CCS.
Eventually, through the development and after adding more and more axioms,
processes satisfying these axioms can be constructed via terms and graphs as
transition systems, i.e.: transition systems are a model of those equations, after
the appropriate operations have been defined on them and bisimilarity is taken
as equality.

What is the advantage of postulating axioms and looking for models that
satisfy them, over defining a particular model such as basic CCS and prov-
ing properties about it? Well, sometimes one wishes to be somewhat at liberty
with the adopted axioms and, in particular, wants to investigate their interplay.
Searching for interesting models and proving that they satisfy the axioms could,

1 However, the practical use of this insight is very limited indeed; for example, [3]
gives the expansion of (a.a.a.nil b.b.b.nil) c.c.c.nil. It takes two full pages in small
print!

2 For instance, we might be as careless as to postulate contradictory laws.
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however, be a none too trivial matter. There are also other angles by which pro-
cess algebras can be viewed and classified. For instance, one might be interested
in categorising them in terms of different SOS semantics formats [1]. Another
approach is parametric, in the sense that one considers a whole class of concrete
process algebras and proves properties that hold for each one. We will turn to
one of these approaches in the next section.

5 B.TOYA: A Basic Toy Algebra

We are now prepared to consider process algebras with operations that slightly
deviate from, or generalise, those of basic CCS. We’ll discuss another concrete
algebra and its semantics, which are designed specifically with their relation-
ship to Petri nets in mind. Inevitably, through such a relationship, we need to
consider Petri nets as composable entities, and the intended translation will be
compositional, in the sense that the net of a composite process is the composition
of the nets associated with the composed processes.

Let us start by decomposing the basic CCS composition operator. As de-
scribed above, it consists of a first step (corresponding to forming the disjoint
union of Petri nets) and a second step (calculating the synchronisations of what-
ever conjugate pairs can be found in the constituent processes, or respectively,
their nets). Now suppose that we separated disjoint union from synchronisation.
In CCS, composition forces synchronisation for all pairs a, â, b, b̂, etc., in a single
step. By analogy to the unary restriction operator, let us contemplate a unary
operator (parametrised by a and written in postfix style) that effects synchroni-
sation just on pairs a, â. Let us denote that operator sy a, and let us use rs a,
instead of the previous \a, to denote restriction. Suppose that we can prove the
following properties for the sy operator:

E sy a ∼= E sy â (insensitivity to conjugation)
(E sy a) sy a ∼= E sy a (idempotence)
(E sy a) sy b ∼= (E sy b) sy a (symmetry),

with some (strong) equivalence ∼=. This would, in fact, make synchronisation
algebraically quite similar to restriction (though almost ‘opposite’ in meaning),
since restriction satisfies the same properties as well. The three properties allow
us, by the way, to extend both operators uniquely to finite sets B of action
names, sy B and rs B, and even to B = A, i.e., the entire set of action names.
Using sy A then comes quite close to the original CCS intention behind the
(second step in the) composition operator.

The point of the last paragraph was not to advertise yet another synchroni-
sation operator, but to argue that the set of (elementary) manipulations in basic
CCS (and, as it turns out, in similar concrete process algebras as well) can be
divided – in terms of the nets associated with expressions – into two classes:

– Those manipulating places. Examples are choice, prefixing (or, more gener-
ally, sequential composition), and disjoint parallel composition (i.e., the first
step in CCS’s operator).
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– Those manipulating transitions. Examples are restriction and synchronisa-
tion (i.e., the second step in CCS’s operator).

Let us first have a look at the latter class. Clearly, transitions will be manipulated
depending on their labels. In case of restriction rs a, for example, all transitions
labelled a or â are simply removed. In case of synchronisation sy a, all transitions
are left as they are, but some new ones are added, which can be viewed as the
sums of two old ones (one labelled by a, the other by â).

The above suggests to search for a uniform and general way of describing
these transition-(label-)based operations all at once. In [6], general relabellings
were introduced for this purpose. The idea is that a set of transitions (by virtue
of their labels) can be specified to give rise to a new transition, which is the
net-theoretic sum of the old ones. Because different transitions may have the
same label, we need to consider multisets of labels as the arguments of general
relabelling. Therefore, a general relabelling ρ is defined as a relation ρ ⊆
mult(Σ) × Σ, where in case of basic CCS, Σ could be A ∪ {τ}, and mult(Σ)
denotes the set of multisets whose elements are in Σ. As an example, if we
wished to describe restriction rs a to have the same effect as restriction \a in
basic CCS, we could consider:

ρ rs a = { ({z}, z) | z ∈ A\{a, â} }.

That is, all transitions with labels not in {a, â} are left intact, while those with
label a or â have no entry in ρ rs a and are therefore omitted. As another example,
synchronisation sy a can be described by:

ρ sy a = { ({z}, z) | z ∈ A∪{τ} } ∪ {({a, â}, τ)}.

That is, all transitions are left intact, but some new τ -labelled ones are added,
as they arise from pairs of transitions, of which one is labelled by a and the other
by â.

For the sake of using the concept of general relabelling in a slightly non-
standard way, let us design a ‘toy’ process algebra with a unary synchronisation
operator that is parametrised by three action names, y, y′, z ∈ Σ, and that
takes any pair y, y′, creates a synchronised action z out of them (like previously
the τ out of a and â), and deletes all the y’s and y′’s afterwards. Denote this
operator by •[y, y′ → z]. Furthermore, in our toy algebra, we wish to have for-
ward/backward symmetric choice, sequential, and parallel operators, the latter
meaning disjoint parallelism. Basic TOYA is thus defined as follows (we assume
y, y′, z ∈ Σ):

B.TOYA : E ::= z E[y, y′ → z] E + E E;E E ‖E ,

where we have chosen the ‘ ‖ ’ symbol for parallel composition, which is dif-
ferent from the composition in CCS, and the semicolon to indicate sequential
composition, which is more general than prefixing in CCS.

By calling the operators forward/backward symmetric, we mean that their
(intended) Petri nets should look symmetric, whether viewed from the entry
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Fig. 8. Nets for ((a; b) ‖ (c; d)) and ((a; b) ‖ (c; d))[b, c → b].

places or seen from the exit places (in Figure 2, only the nets shown on the
left-hand side and on the right-hand side are forward/backward symmetric, the
others are not). For instance, consider the expression:

((a; b) ‖ (c; d))[b, c → b].

Its net before applying the •[b, c→ b] operator is shown on the left-hand side of
Figure 8, and the net after applying it is shown on the right-hand side of the
figure. Consider, by contrast, the expression:

((a; b) + (c; d))[b, c → b]

which is like the previous one, except that the ‖ has been replaced by a choice
operator. Its net is shown on the right-hand side of Figure 9. Observe that it is
intuitively correct that the b action in the middle can never occur, because the
b in (a; b) requires a to occur first, while executing a disables c, which would be
needed for the (resulting) b to occur.

Fig. 9. Nets for (a; b) + (c; d) and ((a; b) + (c; d))[b, c → b].

Let us have a look at the net translation of B.TOYA expressions in which
the parallel operator is nested, such as (a ‖ b) + (c ‖ d) and (a ‖ b); (c ‖ d). In the
former, as soon as a is chosen, neither c nor d can be chosen anymore. In the
latter, c or d have to wait until both a and b have been completed. It is well-
known how this can be achieved by means of Petri nets, and the two translations
are shown in Figure 10. Both of these translations involve manipulations on the
e and x places of the constituent nets, known as place multiplication. On the left-
hand side of Figure 10, the e places of the first constituent, (a ‖ b), are multiplied
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with the e places of the second constituent, (c ‖ d), and the same is done (for
reasons of forward/backward symmetry) with their x places. On the right-hand
side of Figure 10, the x places of the first constituent are multiplied with the e
places of the second – as befits a sequential composition.

Fig. 10. Nets for (a ‖ b) + (c ‖ d) and (a ‖ b); (c ‖ d).

A systematic way of unifying place multiplication and its use in the Petri net
semantics of process algebras is to use transition refinement [15]. In transition
refinement, a transition in a Petri net is replaced by a whole (sub)net (i.e., a
net which, after refinement, becomes a subnet). If the net by which transition t
is replaced (called the refining net), carries e and x tags on some of its places,
then one can combine the former with the input places of t, and the latter
with the output places of t, pairwise, to create appropriate new places by place
multiplication. If care is exercised, then properties of the resulting refined net can
be inferred from properties of the refining net and the net in which t is embedded.
In particular, the S-invariants of the refined net can be calculated from those of
the original net and those of the refining net [6]3. Moreover, transition refinement
is symmetric, i.e., refining the first transition t1 and then t2 is the same as refining
the two transitions in the other order. Hence one may employ, without ambiguity,
a simultaneous refinement of a set of transitions. And finally, for a vast class of
cases, the safeness (1-boundedness) of the resulting net can be inferred from the
safeness of the original net and the safeness of the refining nets.

Let us see how simultaneous transition refinement can help in unifying the
treatment of choice and sequential composition, and also of disjoint concurrent
composition. Figure 11 shows three nets which correspond to the operations
just mentioned. Let us look first at the net for choice, on the left-hand side of
Figure 11: Refining the transition labelled ρ1 by the net corresponding to (a ‖ b),
and simultaneously refining the transition labelled ρ2 by the net corresponding
to (c ‖ d), yields the net shown on the left-hand side of Figure 10. Let us then
consider the net for sequence in the middle of Figure 11: Refining the transition
labelled ρ1 by the net corresponding to (a ‖ b), and simultaneously the transition

3 This result is due to R. Devillers.
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labelled ρ2 by the net corresponding to (c ‖ d), yields the net shown on the right-
hand side of Figure 10.

Thus, the two operations can quite similarly be described by simultaneous
transition refinement. They are distinguished only by the original Petri net to
which transition refinement is applied. Disjoint concurrent composition can also
be described by simultaneous transition refinement, with the only distinction
that the to-be-refined-net is the one shown on the right-hand side of Figure 11.
Thus, these three nets can be viewed as binary operator nets : They each take
two nets as arguments and create a new net out of them through simultaneous
transition refinement.

Fig. 11. Operator nets for choice, sequence and parallel composition.

Actually, general relabellings can be integrated seamlessly into this idea of
simultaneous transition refinement. For, suppose that every transition in an op-
erator net is labelled by a general relabelling ρ. Then one can define simultaneous
refinement in such a way that during its application, the respective relabellings
are also carried out. In Figure 11, we have already provided every transition
with a general relabelling ρi (i = 1, 2), but since each of these operations does
not create any new transitions, nor destroy old ones, every ρi should be defined
as the ‘identity’,

ρi = {({z}, z) | z ∈ Σ},

which leaves every transition intact, and unmodified. An operator net for the
unary operation [y, y′ → z] has one transition and it carries, by contrast, the
following general relabelling:

ρ[y,y′→z] = {({v}, v) | v ∈ Σ \ {y, y′}} ∪ {({y, y′}, z)} ,

as shown on the left-hand side Figure 12. Finally, we need a standard Petri net
for each of the constants of the algebra, i.e., for an action z ∈ Σ. It is shown on
the right-hand side of Figure 12.

Fig. 12. Operator net for E[y, y′ → z], and Petri net for constant z.
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As an example, we consider the systematic derivation of the net correspond-
ing to the expression ((a; b) ‖ (c; d))[b, c → b], cf. Figure 8. To get this net, we
will proceed uniformly by structural induction: first, we create four nets for a, b,
c, d (using four times the right-hand side of Figure 12). Then, we use simultane-
ous refinement twice on the operator net for sequential composition, to get nets
for (a; b) and for (c; d), respectively. We use these two to simultaneously refine
the operator net for parallel composition and derive a net for ((a; b) ‖ (c; d)).
Finally, we refine the net shown on the left-hand side of Figure 12 by the latter
(which involves an application of ρ[y,y′→z]), to get the end result shown on the
right-hand side Figure 8.

This approach can be called parametric, because we could, if we so wished,
consider many other operators of the algebra, not just the ones shown in Fig-
ures 11 and 12. However, it is surely not a very good idea to use just any Petri
net in the role of an operator net. In particular, we wish to still be able to define
decent SOS rules for the process algebra(s) so obtained.

6 SOS Rules for B.TOYA

The standard SOS approach does not match exactly the idea of marking changes
in a Petri net, because a net’s structure is not changed by transition occurrences.
However, it is possible to modify SOS in such a way that it does not affect the
underlying structure of a process algebraic expression. To this end, we may
introduce markings into process algebraic expressions. A (perhaps deceptively)
simple (but, as we will see, sufficient) way of doing this is by overbarring and/or
underbarring subexpressions. For example, we may write a to describe the fact
that a token is present before a, using which, a may be executed. Similarly, a
can be used to describe the fact that a token is present after a and it may have
arrived there by executing a (although it might have arrived there in some other
way).

Let us look at all possible over- and underbarrings of all subexpressions
of a simple expression such as a; b, i.e.: a; b, a; b, a; b a; b, a; b and a; b (there
are no other syntactic possibilities). But these are more than enough: The first
describes the initial marking of the entire expression a; b. The second describes
the initial marking of its first part, a. The third describes the intermediate
marking reached after executing a. The fourth describes the initial marking of its
second part, b. The fifth and sixth describe the marking reached after executing
b, and the marking reached after executing the entire expression, respectively.
These expressions (that arise from B.TOYA expressions by over- or underbarring
subexpressions) will be called dynamic expressions (as opposed to non-barred
ones, which will be called static).

Clearly, due to the nature of sequential composition, some of the above should
be identified, because they correspond to the same marking in the associated
net: a; b ≡ a; b, a; b ≡ a; b and a; b ≡ a; b. We use here the symbol ≡
to mean (loosely speaking): ‘giving rise, in the intended semantics, to the same
marked Petri net’. Let us have a closer look at a; b ≡ b; a: Both dynamic
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expressions correspond to the intermediate marking reached after executing the
transition labelled ρ1 (which is the one corresponding to a in the expression
a; b) in the operator net for sequential composition, see Figure 11 (middle). In
general, simply by looking at the operator net (and not worrying about how
arbitrarily complex a concrete sequentially composed expression may become
after refinement), we can find all the identifications to be made by ≡ . Before
we give the list of identifications for B.TOYA, we extend the syntax to include
dynamic expressions. We denote them by G and H , rather than D, E or F ,
which continue to stand for static expressions:

DB.TOYA : G ::= E E G[y, y′ → z] G+ E E +G

G;E E;G G ‖H.

Note how the fact that choice is distinguished from concurrent composition is
reflected in this syntax: in a dynamic expression, only one of the two sides
of a choice may be dynamic, while both sides of a concurrent composition are
dynamic. Here are the general identifications of DB.TOYA expressions, as derived
from the corresponding operator nets:

(1) (a) E[y, y′ → z] ≡ E[y, y′ → z] , (b) E[y, y′ → z] ≡ E[y, y′ → z]

(2) (a) E + F ≡ E + F ≡ E + F , (b) E + F ≡ E + F ≡ E + F

(3) (a) E;F ≡ E;F , (b) E;F ≡ E;F , (c) E;F ≡ E;F

(4) (a) E ‖F ≡ E ‖F , (b) E ‖F ≡ E ‖F .

Line (3) is the general version of what has already been explained on an ex-
ample. Line (2a) states that the initial marking of a choice initialises both of
its constituents (but only one of them at the same time). Line (4a) states, by
contrast, that the initial marking of a concurrent composition initialises both of
its constituents at the same time. The other identifications have similar justifi-
cations.

We need a general context rule: suppose that C(•) is some valid dynamic
context, i.e., that in place of the • some dynamic expression G could be written,
such that the resulting string C(G) is again a valid dynamic expression. Then,

(CR) If G ≡ H , then C(G) ≡ C(H) .

To mimic the marking changes in the (intended) Petri net semantics, we need
an equivalent of the Petri net transition rule in terms of dynamic expressions.
Let us generalise this by defining concurrent occurrences, i.e., steps, of actions.
Thus, for instance, in Figure 10, on the left-hand side, a step {a, b} can occur,
since a and b are concurrently enabled, and, for similar reasons, a step {c, d},
but also a step {a} or a step {b} (or also the empty step, making no marking
change), but not, of course, a step {a, c}. The rules are provided by the next list:
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(α) a
{a}

−−−−−→ a (A)
G

γ+k·{y,y′}
−−−−−−−−→ H , k∈N

G[y, y′ → z]
γ+k·{z}
−−−−−−−−→ H [y, y′ → z]

(B) (1)
G

γ
−−−−−→ H

G+ E
γ

−−−−−→ H + E
(2)

G
γ

−−−−−→ H

E +G
γ

−−−−−→ E +H

(C) (1)
G

γ
−−−−−→ H

G;E
γ

−−−−−→ H ;E
(2)

G
γ

−−−−−→ H

E;G
γ

−−−−−→ E;H

(D)
G

γ
−−−−−→ G′ , H

δ
−−−−−→ H ′

G ‖H
γ+δ

−−−−−→ G′ ‖H ′
,

where we write
γ

−−−−−→ for a step γ ∈ mult(Σ), and γ and δ are, in general,
multisets of actions4. Also, k·{y, y′} denotes the multiset where y and y′ have
multiplicity k (and all other actions multiplicity 0). Note that (α) is the only rule
which allows something (namely, a) to actually ‘happen’. All other rules are only
‘context rules’, in the sense that they allow to infer some global occurrence from
something that happens locally. This is reinforced by the observation that, in
fact, the rules for choice and for sequential composition, (B) and (C), are exactly
the same, differing only in the operator used. In fact, sequence and choice are
distinguished only by their different ≡ relations in lines (2) and (3). Concurrent
composition and synchronisation [y, y′ → z] again have the same context rule,
and are distinguished only by their different shape in terms of the syntax of
DB.TOYA.

The rule for choice may be contrasted with the corresponding rule for basic
CCS, given in section 2. The main difference is (and that is, of course, what
was desired) that the underlying structure of a dynamic expression (that is, the
structure obtained by removing all over- and underbars) does not change during
the execution of a choice.

Let us see how one would derive the step sequence
{a}{b}

−−−−−−−−→, which is (or
should be, by inspecting the intended Petri net semantics shown on the right-
hand side Figure 8) derivable as a valid execution from the initial state of the
expression:

((a; b) ‖ (c; d))[b, c → b] .

In the derivation that follows, we list on the right-hand side the rules used in
each derivation step.

((a; b) ‖ (c; d))[b, c → b] ≡ ((a; b) ‖ (c; d))[b, c→ b] ( 1a )

≡ ((a; b) ‖ (c; d))[b, c→ b] ( 4a, CR )

≡ ((a; b) ‖ (c; d))[b, c → b] ( 2·3a, CR )

4 They have to be multisets, rather than a sets, since two transitions with the same
label could occur concurrently.
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{a}
−−−−−→ ((a; b) ‖ (c; d))[b, c → b] ( α, C1, D, A )

≡ ((a; b) ‖ (c; d))[b, c → b] ( 3b, CR )

{b}
−−−−−→ ((a; b) ‖ (c; d))[b, c → b] ( 2·α, C2, C1, D, A )

· · ·

In the line with
{a}

−−−−−→, rule (D) has been applied with γ = {a} and δ = ∅, and

rule (A) with γ = {a} and k = 0. In the line with
{b}

−−−−−→, rule (D) has been
applied with γ = {b} and δ = {b}, and rule (A) with γ = ∅ and k = 1.

For historic (and also self-explanatory) reasons, semantics such as these SOS
rules are called operational, and semantics such as given by the Petri net trans-
lation (through operator nets and simultaneous transition refinement, cf. section
5) are called denotational, and it is desirable to prove an equivalence between
them (see, e.g., [26]). In the case of B.TOYA, we have a strong equivalence: con-
sistency, i.e., every step sequence derivable by the SOS rules can also be derived
in the net by means of the transition rule, and completeness, i.e., for every step
sequence derivable in the net, there is some possibility of deriving it from the
SOS rules. In proving these equivalence properties, it is essential that all operator
nets satisfy certain appealing and desirable properties (for instance, 1-safeness,
but also, a special property called factorisability [6]), and it is also essential that
the relationship between the process algebra on the one hand, and the Petri nets
on the other hand, is tight and one-to-one. In particular, it may be dangerous
to use intermediate τ transitions too liberally. For instance, the translation of
choice shown on the right-hand side of Figure 2 has to be rejected.

7 Recursion

From the theory of computability, it is known that Turing machines can be
simulated by 2-stack pushdown automata. Using basic CCS with recursion, an
arbitrary number of stacks can be modelled. Thus – and this is how an argu-
ment in [25] goes – basic CCS with recursion is Turing-powerful. Therefore, it
is impossible to find finite 1-safe (basic, i.e., place/transition) Petri nets corre-
sponding to basic CCS expressions in general, since such nets have the computing
power of finite automata. Even when the restriction to 1-safeness is lifted, we
will not be able to find a translation to finite nets, because finite, unbounded
place/transition nets are still not Turing-powerful, even though their computing
power extends beyond that of finite automata [29]. If a finite Petri net transla-
tion is desired, one needs to use high-level Petri nets. A translation of basic CCS
and TCSP into finite high-level nets has been described in [32].

In this section, we will show what may happen if the finiteness restriction,
rather than the 1-boundedness restriction, is lifted, i.e., we will search for a
translation of basic CCS with recursion into (possibly infinite) nets. And we will
strive to keep the other restriction, 1-safeness, intact. Actually, rather than basic
CCS, we will consider B.TOYA, augmented by a facility to express recursion:
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R.TOYA : E ::= a E[y, y′ → z] E + F E;F E ‖F X ,

where every variable X is, by definition (and as in basic CCS), associated with
a defining equation X df= E. In such a defining equation, E is called the body.
Since basic CCS can essentially be expressed in R.TOYA, save for the differences
in synchronisation and parallel composition discussed above, the explanation of
R.TOYA below could (albeit with some effort) be carried over to basic CCS.
With the X df= E device, we can write mutually recursive systems of equations,
such as X1

df= a;X2 & X2
df= X2 ‖X1. However, there are standard (well, almost

standard) ways of reducing the number of equations in such systems, and we
will concentrate, in the following, on just a single variable, X , and its unique
defining equation, X df= E.

For instance, let us consider the equation X df= a;X , with body a;X . Clearly,
we should be able to derive sequences of a-moves of arbitrary length from the
initial state ofX , but how can this be done formally? Well, let us start as follows:

X
∅−→ a;X ≡ a;X a−→ a;X ≡ a;X.

In this derivation, all steps except the first one are applications of ideas already
mentioned. The second and the last one, for instance, are applications of rules
(3a) and (3b), which belong to the operator net for sequential composition. The

first step, X ∅−→ a;X, is an application of the recursion principle, which states
the following:

In any dynamic context, a recursion variable X may be (syntactically)
rewritten by the associated body E of its defining equation X df= E.

A dynamic context, here, is any C(•) such that, when R.TOYA expressions X
and E are inserted into the place of the bullet, C(X) and C(E) yield dynamic

expressions5. The relation of ‘rewriting’ is here formally denoted by ∅−→, because
in the (intended) Petri net semantics, this should be considered as an empty
step, i.e., a non-move or a non-change6. In the first step of the derivation shown
above, we have the context (•) with the bullet replaced by X , and the recursion
principle allows us to rewrite X to the body E, that is, to a;X , and thus, in the
given context, to a;X.

Well, the same recursion principle may be applied at the end of the previous
derivation, the context being a; (•), and we will get as a result that another a
can occur, thus:

a;X ∅−→ a; a;X ≡ a; (a;X) a−→ a; (a;X) ≡ a; (a;X) ,

and the recursion principle can again be applied at this point. Clearly, the process
may be repeated indefinitely, and so we may derive an infinite sequence of a-
moves from X.
5 Dynamic R.TOYA expressions are defined similarly to dynamic B.TOYA expressions.
6 This is to be distinguished from an actual move, however ‘silent’ it may be. For

instance, a τ -move would, as a step containing only one move, be written as
{τ}−→.
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Let us have a look at another, not so obvious, example: X df= a+ (X ; a). We
claim that from X, two a-moves can be made in succession. Here is a derivation:

X
∅→ a+ (X ; a) ≡2 a+ (X ; a) ∅→ a+ (a+ (X ; a); a) ≡ a+ ((a+ (X ; a)); a)

a→ a+ ((a+ (X ; a)); a) ≡2 a+ ((a+ (X ; a)); a) a→ a+ ((a+ (X ; a)); a)

where ≡2 abbreviates ‘two ≡-steps’. Looking carefully at this derivation reveals
that, (i), a sequence of a-moves of any arbitrary finite length can be derived
from X, but also: (ii), no infinite sequence of a-moves can be derived from X , in
contrast to the previous example. Property (i) can easily be seen by observing
that the above derivation can be made longer by repeating some intermediate
applications of the recursion principle, and (ii) is true because in order for any
move to be made at all from X, the first a in a+ (X ; a) has to be chosen first.
Or, put differently, the above derivation cannot be extended at its tail, as the
previous one could (we may continue to replace X in the dynamic expression
a + ((a + (X ; a)); a) by its body a + (X ; a), but we may never derive another
move from it, because the underbar can never be ‘promoted’ to an overbar).

Now let us discuss a perhaps weird example: X df= X . Surely, the recursion
principle lets us rewrite X indefinitely often into X, but the expression does
not change and no actual move will ever result from this, not even a tiny little
τ -move. This is particularly strange when we consider what could be the Petri
net associated with such an X . Apparently, any Petri net satisfies an equation
such as X = X , under any arbitrary (reasonable) notion of equality. However,
consider any Petri net that has some transition that can occur. A move of such
a transition cannot be derived from the above recursion principle alone, and
thus, a reasonable principle of economy7 allows us to exclude such nets from
consideration as the semantics of X df= X . This creates a huge simplification: we
will admit as solutions of X df= X only such Petri nets that have no activated
transitions, and, by extension of the principle of economy, as solutions of a
general equation X df= E only those nets with ‘minimalistic’ behaviour8. Of
course, a ‘most minimal’ Petri net with no activated transitions, is one which
has no transitions at all. Nevertheless, our nets should have at least an e-labelled
place and an x-labelled place, because otherwise they cannot easily be used as
building blocks for larger nets. Thus, in the end, the Petri net corresponding to
X

df= X has, by definition (and by the principle of economy, applied to places
as well), exactly two places (one e-labelled and the other x-labelled), and no
transition.

How, then, should the Petri nets associated with the other examples, X df=
a;X and X df= a + (X ; a), look like? First of all, it is a good idea to construct
nets for their bodies, with X treated as a simple transition. Figure 13 shows,
on its left-hand side, the net corresponding to the body, i.e. a;X , of X df= a;X .

7 Which states, more precisely, that the recursion principle is the only means, in addi-
tion to the rules for the other operators, of deriving moves for a recursive equation.

8 This notion, which we slightly ironised here, can actually be made quite precise.
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Fig. 13. Nets for X
df
= a; X: the body and solution.

As one can see, it has been constructed just in the same way as other previous
examples. However, it is drawn in a slightly twisted way. Why? Well, look at
what happens if we refine the X transition by the net shown on the right-hand
side, identifying the place called s with the e-labelled place of the right-hand
side, and also identifying the two x-labelled places: we will get back ‘the same’
net as already shown on the right-hand side. The refinement into X just serves
as a prolongation of the net to the left, or, seen in another way, ‘pushes’ the
chain of a-labelled transitions one position further to the right, without changing
anything about the structure. Actually, it is possible (and done in [6]) to define
the refinement operator in such a way that we may omit the apostrophes around
‘the same’ above: exactly the same net arises when the right-hand side net is
refined into the X on the left-hand side: visually and formally, the net shown on
the right-hand side is a solution of X df= a;X , with df= replaced by actual equality,
and it is thus a fixpoint of the (Petri net) mapping f(X) = a;X .

Fig. 14. Nets for X
df
= a + (X; a): the body and solution.

Exactly the same happens, in fact, in the other example, shown in Figure 14.
Note that this net exhibits precisely the same behaviour as the one we derived
from the expression X df= a+(X ; a) by SOS arguments: an arbitrarily long finite
chain of a-moves is possible, but no infinite one. These two examples can be
generalised: refinement works in all cases of recursion expressible in R.TOYA,
and yields solutions with exactly the same step sequences as derivable from the
SOS rules9. Most meaningful recursions will, in some way, be guarded, that is,
be such that recursion variables do not occur immediately at the beginning of
an execution of the right-hand side of a defining equation (thus, a;X is guarded
while a+(X ; a) is not). Without guards, however, more strange cases need to be
9 Actually, one can prove strong (in the sense that not only moves, but steps, are

considered) transition system isomorphism.
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considered, for instance X df= (a ‖ b) +X . A little reflection shows that it should
have an uncountably large solution – but does it also have countable solutions?
With guards, however, one will usually have the unique solution property (see,
e.g., [3]), and this is also true in ‘minimal’ Petri net models.

The recursion principle is present, in one form or another, in most process
algebras. For instance, basic CCS recursion is explained in [25] thus10:

The recursion rule for X df= E says, informally, that any action which
may be inferred for the body E, ‘unwound’ once (by substituting itself
for its bound variable) may be inferred for X itself.

In [3], a model for a (guardedly) recursive equation is explicitly constructed by
repeatedly substituting the body, E, of X df= E into X ’s that (re)appear on the
right-hand side, to get better and better approximations of the solution which
is taken as a (projective) limit of these approximations.

8 Concluding Remarks

We have discussed some of the issues arising in giving Petri net semantics to
process algebras, as well as some of the issues arising in process algebra in gen-
eral, not specifically in the context of Petri nets. Why should one want to define
a translation from process algebra to Petri nets? Generally speaking, this may
be useful as soon as one wishes to attempt exploiting Petri-net based techniques
and/or concepts for the analysis and/or the design of process-algebra based sys-
tems. In [24], a translation from a concurrent language (close to the ones in
actual use) into basic CCS was given. The PEP system (Programming Environ-
ment based on Petri nets [31]) uses a similar translation, as well as a translation
from concurrent programs (and inputs described in other concurrent systems
notations) into M-nets ([23], a process algebra with a high-level Petri net se-
mantics), and from there into low-level (basic) nets like the ones considered in
this paper, and further into their unfoldings [22]. Travelling back and forth on
this chain of translations, unfolding-based (and more generally, Petri-net based)
verification methods (e.g., [13]), can be applied to concurrent programs.

Finally, we would like to discuss very briefly an approach which is directly
opposite to that presented in this paper. Roughly speaking, one might be inter-
ested how can a process algebraic expression be derived from a given Petri net?
A first point to note is that such an expression (if any) is not likely to be unique,
and there may even be several systematic constructions which yield different
results. For instance, in B.TOYA one may write two very dissimilar expressions

(a ‖ b); τ ; (a ‖ b) and ((a; (c; a)) ‖ (b; (ĉ; b))) sy c rs c

which have the same Petri net semantics. Another point to note is that a Petri
net is not, in general, structured. Thus, outside information has to be used when

10 Page 57. This is not a literal quote, but hopefully conveys the intended meaning.
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searching for a good translation into a process algebra. Having said that, in
special cases, systematic constructions can be given. For instance, if the Petri
net is 1-bounded and covered by S-components, then, using COSY, a translation
of such a net into a path expression (and further into an expression of CCS or
of TCSP) may be devised. And, if a Petri net is such that every place has only
one input arc, other systematic translations can also be found.
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Abstract. The correct operation of communication and co-operation
protocols, including signalling systems in various networks, is essential for
the reliability of the many distributed systems that facilitate our global
economy. This paper presents a methodology for the formal specifica-
tion, analysis and verification of protocols based on the use of Coloured
Petri nets and automata theory. The methodology is illustrated using
two case studies. The first belongs to the category of data transfer pro-
tocols, called Stop-and-Wait Protocols, while the second investigates the
connection management part of the Internet’s Transmission Control Pro-
tocol (TCP). Stop-and-Wait protocols (SWP) incorporate retransmission
strategies to recover from data transmission errors that occur on noisy
transmission media. Although relatively simple, their basic mechanisms
are important for practical protocols such as the data transfer procedures
of TCP. The SWP case study is quite detailed. It considers a class of pro-
tocols characterized by two parameters: the maximum sequence number
(MaxSeqNo) and the maximum number of retransmissions (MaxRetrans).
We investigate the operation of the protocol over (lossy) in-sequence
(FIFO) channels, and then over (lossy) re-ordering media, such as that
provided by the Internet Protocol. Four properties are considered: the
bound on the number of messages that can be in the communication
channels; whether or not the protocol provides the expected service of
alternating sends and receives; (unknowing) loss of messages (i.e. data
sent but not received, and not detected as lost by the protocol); and the
acceptance of duplicates as new messages. The model is analysed using
a combination of hand proofs and automatic techniques. A new result
for the bound of the channels (2MaxRetrans+1) is proved for FIFO chan-
nels. It is further shown that for re-ordering channels, the channels are
unbounded, loss and duplication can occur, and that the SWP does not
provide the expected service. We discuss the relevance of these results
to the Transmission Control Protocol and indicate the limitations of our
approach and the need for further work. The second case study (TCP)
illustrates the use of hierarchies to provide a compact and readable CPN
model for a complex protocol. We advocate an incremental approach to
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both modelling and analysis. The importance of stating the assumptions
involved is emphasised and we illustrate how they affect the abstractions
that can be made to simplify the model. The incremental approach to
analysis allows us to validate the model against the TCP definition and
to show how errors in the connection establishment procedures can be
found. Finally we provide some observations and tips on the how the
methodology can be used based on many years of experience. The em-
phasis of the paper is on providing a tutorial style introduction to the
methodology, examining case studies in depth, rather than breadth, and
giving some insight into the process while noting its limitations.

1 Introduction

The global economy is becoming more and more dependent on distributed sys-
tems. An important example is the Internet which connects millions of computers
all over the world via the interconnection of thousands of networks. It provides
the infrastructure for the world wide web and email and the development of new
information services such as electronic commerce, GRID computing, web services
and mobile data services. At the heart of distributed systems are the commu-
nication and co-operation protocols that ensure that the required services are
provided to their users. It is thus vitally important that these protocols operate
correctly.

A protocol needs to satisfy a set of properties defined for the communication
service it is meant to provide (e.g. data is neither lost nor duplicated and arrives
in sequence, and there are no deadlocks). Proving that a protocol satisfies its
required properties is known as protocol verification. Protocol verification [40,70]
is a difficult problem due to inherent complexity [77].

This paper summarises a protocol verification methodology set in the context
of the broader field of protocol engineering [9]. The paper does not attempt to
compare the merits of this approach with other approaches. For a comparison of
the main techniques for protocol specification and analysis, including the Petri
net approach, the reader is referred to a recent survey by Babich and Deotto [4].

Coloured Petri Nets [48–50,53] have been used successfully for the modelling
and analysis of a wide range of concurrent and distributed systems [50] includ-
ing communication systems and protocols [11, 14, 23, 24, 31, 32, 51, 83]. Thus the
methodology uses Coloured Petri Nets for the specification of protocol behaviour.

In order to prove that the protocol specification satisfies the requirements of
its users, a higher level specification, known as the service specification is also
modelled with Coloured Petri Nets (CPNs). We then wish to prove that the
protocol specification is a refinement of the service specification, in that it com-
plies with the sequencing constraints on user observable events (known as service
primitives) that are embodied in the service specification. These constraints can
be expressed as the service language: the set of sequences of service primitives at
each of the user interfaces. In principle, the service language can be derived from
the CPN service specification by generating its occurrence graph (reachability
graph, state space), converting it to an automaton by nominating halt states and
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labelling events that are not observable (by users) as empty, and then reducing
this automaton to its minimised deterministic form using standard automata
reduction techniques.

We can follow the same approach with the protocol specification, masking
out internal events such as retransmissions, to obtain the protocol language:
the set of sequences of service primitives generated by the protocol. We then
compare the protocol and service languages. If they are the same, then we can
say that the protocol specification satisfies the service sequence constraints. If
the protocol language is a subset of the service language, then the protocol
satisfies the constraints, but may not provide all the desired features of the
service. Finally if the protocol language is not a subset of the service language,
then it contains sequences that are erroneous (if the service language has been
defined correctly).

We are also interested in other behaviour of the protocol, such as whether
or not it will deadlock or livelock in various circumstances. In general, we need
to define (a priori) a set of properties that the protocol needs to fulfill, such as
correct termination or transparent delivery of data. These properties can be ex-
pressed in some language (often a temporal logic) and model checking techniques
used over the occurrence graph (OG) to prove their existence or otherwise. Thus
our methodology comprises two parts: the first checks sequencing constraints
are satisfied at the user interface; the second proves general properties (such as
boundedness or absence of deadlock) and specific protocol properties by hand
proofs on the CPN model or by investigating the occurrence graph.

After presenting the methodology in some detail in Section 2, this paper for-
malises the methodology in Section 3 and illustrates it with two case studies.
The first of these is concerned with data transfer procedures and comprises the
class of Stop-and-Wait protocols [73] (see Sections 4 to 8). This is motivated by
their basic mechanisms being important for practical protocols such as the In-
ternet’s Transmission Control Protocol (TCP). The second case study (Sections
9 to 12) investigates the connection management part of protocols, using the
rather complex 3-way handshake of TCP. The paper also attempts to provide
some guidelines for modelling and analysing protocols using high-level Petri net
techniques based on twenty-five years experience of the first author and the work
of his colleagues and students. The paper does not aim to be complete, it does
however aim to give some insight and detailed illustrations of a Coloured Petri
Net approach to protocol verification.

2 Protocol Verification Methodology

Our first attempts to develop a protocol verification methodology were published
in [19]. Since then we have used it with some success to verify that industrial
scale protocols do or do not meet their service specifications [34–37, 39, 55, 58,
59, 74, 78, 80].
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The main steps of the methodology are:

1. Service specification: specify the service to be provided to the users of the
protocol under investigation;

2. Protocol specification: specify a protocol entity for each party involved in
communication;

3. Underlying service specification: specify the characteristics of the commu-
nication medium by which the different protocol entities communicate, by
defining the communication service provided by the underlying service in the
protocol architecture;

4. Composite specification: combine the protocol specification with the speci-
fication of the medium to obtain a composite specification of the protocol
entities communicating over the underlying service;

5. Analysis: analyse the composite specification using reachability analysis
and/or theorem proving to investigate desired properties of the system; and

6. Comparison: compare the service specification with the composite specifi-
cation to see if the composite specification is a faithful refinement of the
service.

2.1 Service Specification

This first step of the methodology has led to the development of formal service
specifications using high-level nets for a number of protocols. The first of these
was for the ISO Open Systems Interconnection (OSI) Transport Service [7]. The
OSI standardisation effort had strongly supported the notion of service speci-
fication and promulgated guidelines for their development, known as the OSI
service conventions [46]. This has greatly assisted the development of formal ser-
vice specifications. In the case of OSI and other protocol development forums,
such as ITU-T [41] and the Wireless Application Protocol Forum [81], this has
led to the inclusion of service definitions as an integral part of developing pro-
tocol specifications. In contrast, this has not been the case in the development
of Internet drafts and Request for Comments (RFCs) used in the Internet com-
munity.

Integral to the development of service specifications is the notion of a service
primitive. A service primitive represents an interaction between the user of the
service (often another protocol entity in a higher layer) and the provider of the
service (i.e. the protocol operating over its underlying service). It corresponds to
some feature of the service, such as a request by a user to establish or release a
connection or to transfer data, or an indication by the provider that a connection
has been requested by a remote user. Primitives are meant to be implementation
independent, allowing them to be implemented in various ways such as message
passing or procedure calls. They are also considered to be atomic events in service
specifications, and are readily modelled by labelling transitions in a Coloured
Petri net with the name of the primitive.

In an attempt to verify industrial protocols we have recently developed a
number of service specifications. These have included the Wireless Application
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Protocol (WAP) transaction layer [35] and the capability exchange signalling
(CES) protocol of ITU-T recommendation H.245 [56], where the service defini-
tions exist in the standards documents. We have also attempted to create service
specifications for Internet Request for Comments such as the Resource Reserva-
tion Protocol (RSVP) [78,79],the Internet Open Trading Protocol (IOTP) [58,60]
and the Internet’s Transmission Control Protocol (TCP) [15,16]. We have found
that the specification of services has ranged from relatively straightforward
(WAP) to requiring significant ingenuity.

Although the CES protocol and service are very simple, ensuring that the ser-
vice specification properly reflected the sequences of service primitives required
complex synchronisation mechanisms [56]. The work for RSVP and IOTP was
much more complicated, firstly due to the complex nature of the protocols and
secondly that no service definitions had been written as part of the standard-
isation process. With IOTP there was the added complexity of catering for 4
interfaces, due to there being 4 user roles (Consumer, Merchant, Payment Han-
dler and Delivery Handler). This complexity has led to the development of local
automata which express the sequencing constraints at each one of the interfaces
separately, before trying to define the global sequences by converting the au-
tomata into Coloured Petri nets (CPNs) and synchronising them via queues.
We considered that attempting to directly build the correct CPN (covering all
interfaces at once) would be too error prone, and that a divide and conquer
approach of specifying local interface sequences first, as is done in the service
conventions, would be an easier task. This has led to defining a validation step
when specifying services this way. The validation step comprises proving that
the CPN service specification does conform to the local sequences as defined
by the local automata. This is done using reachability analysis and automata
reduction techniques [5]. Interested readers can consult [60] for the details. For
complex service specifications (such as IOTP), this validation step has proved
to be of significant value, as now an iterative approach is used to remove errors
from the CPN specification of the service.

Our experience with both the CES protocol and TCP has shown that the
reachability graph for many service specifications is not finite. This is due to the
service provider (e.g. the Internet) having an unknown storage capacity (number
of buffers) and that the service allows an arbitrary number of service data units
to be accepted by the service provider, before they are delivered to a peer user.
This has important ramifications for our comparison step, which we shall return
to below in section 2.3.

2.2 Protocol, Underlying Service and Composite Specifications

Currently we tend to consider steps 2 to 4 together, whereas step 1 is quite
independent, and could be performed by a separate member of the protocol
verification team, concurrently with steps 2 to 4. The reasons for considering
these 3 steps together are that:

– it is important that the level of abstraction used for modelling the underlying
service and the protocol entities is the same;
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– for verification, the precise architectural location where the underlying ser-
vice is considered, may not correspond to a strict layer boundary; and

– separate specifications for the protocol and underlying service tend to gen-
erate a larger state space when combined, due to there being ways of opti-
mising the specification at the boundaries when the composite specification
is considered.

Regarding the first point, normally we consider protocol data units (packets)
as being transferred through the underlying medium, rather than service data
units.

We illustrate the second point by considering how to model the error detec-
tion mechanism in protocols that need to recover from transmission errors. To
detect transmission errors, packets contain redundant bits known as a checksum.
The operation of checksums is very well known and either does not need to be
verified or can be verified separately. We thus can assume that the checksum
works correctly and then use a non-deterministic approach to model the effect
of the checksum: a packet is accepted as correct (passes the checksum) or is dis-
carded (fails the checksum). The effect is that one possible action is to discard
(or lose) the packet. The processing of a checksum is an operation that occurs
on the contents of the whole packet, and thus it is done before the details of the
main protocol mechanisms are considered. Thus checksum processing, although
part of the protocol, can be considered as a preliminary layer that can be com-
bined with the characteristics of the medium (underlying service). This loss of
a packet (due to the checksum) can then be combined with a lossy medium -
such as that provided by the Internet Protocol (IP) [61] - where packets can be
dropped at routers due to congestion. Hence we only need to model the loss of
a packet once. It may be due to a bit error, or due to congestion, but from the
point of view of the major protocol mechanisms, it does not matter. Thus when
modelling a transport protocol such as TCP, we only model above the checksum
procedures of TCP, and hence the boundary for verification is not strictly at the
TCP and Internet Protocol boundary.

When using hierarchical CPNs it is natural to model the medium (under-
lying service) between protocol entities as a hierarchical substitution transition
as in [53]. This makes a lot of sense from a specification point of view, as the
details of the operation of the medium can be hidden and specified separately.
Further, the medium can be changed separately as we change our view of its
characteristics. However, this can have a penalty when considering verification
and state space explosion. The use of a substitution transition requires that
there is both an input place (perhaps representing a sending entity buffer) and
an output place (representing a receiving entity buffer). This can lead to a com-
binatorial explosion of states of the buffers in both directions of information
flow in the medium. To avoid this component of combinatorial state space ex-
plosion, we can often provide a coarser model, where the storage of the sending
buffer, the medium and the receiving buffer are combined and modelled by one
place. Thus we do not model any of the details of transferring packets from one
buffer to another, which is not relevant to most protocol mechanisms, and hence
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avoid these different buffer states and the consequential state space explosion
that results. However, this does mean that we can not hide the medium in the
specification using hierarchical CPNs, as no hierarchical place is provided. Thus
it is important to keep in mind sources of state space explosion when creating a
model that is to be verified using model checking approaches.

2.3 Analysis and Comparison

The methodology in [19] proposed to concentrate on comparing sequences of
service primitive events at each of the interfaces, between the service specification
and the composite specification. It was assumed that other properties, such as
absence of deadlock or livelock, or boundedness properties could be decided by
querying the reachability graph.

Deadlocks can be determined by examining the dead markings of the reach-
ability graph of the composite specification, to see if they are desired or not.
(Dead markings correspond to the leaf nodes of the reachability graph.) Desired
dead markings correspond to required terminal states, such as in a connection
establishment protocol, where both protocol entities perform an initialisation
sequence (for example to synchronise sequence numbers or to set flow control
window sizes) before data is transferred. The connection establishment protocol
needs to place each protocol entity in the data transfer state, and have no packets
left in the underlying medium. This would be a dead marking corresponding to
the desired terminal state of correct establishment. Dead markings that are not
desired, we then call deadlocks. These may correspond to unspecified receptions,
where a packet is left in the medium because the protocol does not define a pro-
cedure for processing the packet in some circumstances, or to when the different
protocol entities are not synchronised (e.g. one is established, while the other is
closed).

Livelocks occur when the protocol entities are involved in the exchange of
control information (such as a reset) but no progress is made with respect to
the aim of the protocol, which is to transfer data (for example), and that there
is no way out of this cyclic behaviour. Livelocks can be detected by calculat-
ing the strongly connected components (SCC) of the reachability graph. Each
terminal SCC can then be examined. It may be a dead marking or it may be
a component that involves cycles. Each of these cycles needs to be checked to
see if it is desired or not. In a data transfer protocol, the main loop sending
and receiving data is an expected component. However, other components may
not be desired (such as each end constantly sending each other resets) and they
would be considered to be livelocks. Non-terminal SCCs that contain cycles are
not livelocks, but may correspond to tempo blocking behaviour, such as repeated
loss and retransmission. The difference is that there is always the possibility of
escaping from this cyclic behaviour.

Also of interest are bounds on the maximum number of messages in the com-
munication channels, as this may affect buffer and network dimensioning or the
need for congestion control procedures. These properties are generic for proto-
cols. There may also be many other properties that are specific to a particular
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protocol that we wish to prove, and this can be done using a model checking
approach on the reachability graph.

Given that we can determine divergent behaviour (deadlocks and livelocks)
from the reachability graph of the composite specification, it is not important if
this information is lost when comparing the service and composite specifications.
Once we have determined the presence or absence of deadlocks or livelocks in
our protocol we are interested in whether or not the sequences of primitives that
occur in the composite specification are compatible with the service specification.
Thus we can use the notion of language equivalence1 or language inclusion to
check this compatibility. We refer to the set of sequences of service primitives
that occur in the service specification as the service language and similarly, those
that occur in the composite specification as the protocol language.

If the protocol language is the same as the service language, then the proto-
col is a faithful refinement of the service specification. If the protocol language
is included in the service language, then we may be able to define conditions
under which the protocol is also a faithful refinement, for example, if there are
some options which the protocol does not include, or some concurrent behaviour
that is acceptable but not essential, see [58,59]. It may also be the case that the
protocol does not implement an essential part of the service, in which case the
protocol needs to be revised to include it (for example, it is unlikely that the
empty set would be an acceptable subset of service primitive sequences!). How-
ever, if the protocol language is not a subset of the service language, then there
is at least one sequence in the protocol that does not exist in the service speci-
fication. This means that there is an error, either in the service specification or
in the protocol specification. If the error is in the service specification, then it is
normally readily fixed by inspecting the sequences and understanding how they
occur. If it is in the protocol specification (which is more usually the case) then
the sequence of service primitives needs to be traced back to protocol behaviour
(in the reachability graph) to see how the sequence was generated, normally a
more difficult task, as there are usually many more epsilon transitions in the
protocol specification.

Obtaining the Service Language. The service language is obtained from
the service specification by generating its occurrence graph and using automata
reduction techniques [5]. Normally, transitions in the service specification are
labelled by service primitive names, except for some transitions that may only
relate to synchronisation transitions or garbage collection. Once the OG is gen-
erated, it contains all sequences of transitions that can occur in the CPN for
the initial marking. To obtain the service language, any non-primitive transition
is mapped to an internal transition (epsilon transition), and acceptance (halt)
1 There are many other equivalence notions defined in the literature (155 reported in

1993 by van Glabbeek) [77], including observational, failures, testing and Valmari’s
Chaos-Free Failures Divergences (CFFD). The problem with language equivalence
is that progress properties, such as the absence of deadlock and livelock are not pre-
served. However, since these properties can be obtained directly from the protocol’s
state space [49] language equivalence is sufficient.
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states are designated. Designation of halt states may not be trivial and requires
some experience of protocols on the part of the verifier. In connection manage-
ment and transaction protocol services halt states will often correspond to dead
markings, while in data transfer services there may only be one halt state corre-
sponding to the initial marking. The OG can then be considered as a Finite State
Automaton (FSA), that encodes a language. This FSA is then transformed into
an equivalent deterministic and minimum FSA that preserves the sequences of
primitives while removing the epsilon transitions. This uses 5 algorithms and is
implemented in tools such as FSM from AT&T [33]. This minimum deterministic
FSA is the service language.

Obtaining the Protocol Language. We use the same procedure to obtain the
protocol language from the composite specification. An important difference is
that the service specification has been created with service primitives in mind. In
the composite specification, there may be few guidelines as to which transitions
correspond to service primitives, because the protocol may have been developed
without a service specification, as is the case for Internet protocols. In this case,
significant judgement is required to label transitions correctly. It is worse than
that because if the protocol is modelled first (a natural way to proceed to get
a good understanding of the protocol before trying to retrofit its service), it
may be that decisions have been made in the protocol model which mean that
for a particular transition, a service primitive will only correspond to some of
its modes and not others. Thus the creation of the FSA corresponding to the
OG needs to map transition modes (rather than transitions) to primitives or
epsilons.

Comparing Languages. Languages can be compared if they are represented
by deterministic automata. We use the FSM tool to obtain the difference between
the service language and the protocol language and vice versa. For details of how
this is done see [34, 58, 78].

Infinite State Systems. We have assumed in this section that the systems
we are dealing with are finite state and for physical systems, this seems to be a
reasonable assumption. Unfortunately, there are times when we do not know the
range of a parameter, even though we may be sure it is finite. An example of this
is the storage capacity of the Internet. In this case, we would like our results to
be general, that is, to apply to any arbitrary value of the storage capacity. Our
approach to this problem [17,56] has been to introduce a parameter representing
the storage of the Internet (as the length of a queue) into the model. We can
then obtain results for small values of this capacity using standard reachability
analysis. In the case of the CES protocol service, we find that the OG grows
linearly with the length of the queue [56]. We can thus derive recursive formulae
for the OG for any value of the length of the queue. Further, we have been able
to show that the corresponding deterministic automaton (DFSA) also grows
linearly in the size of the queue and have derived a recursive formula for it [57].
The hope is that we shall be able to derive a similar recursive formula for the
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Fig. 1. Protocol verification methodology.

protocol language DFSA and then be able to extend language comparison to
recursive FSAs. In the case of TCP [17], we have been able to show that the
OG of the service grows exponentially with the size of the queue and have been
able to derive expressions for the nodes and arcs of the OG directly, without the
need for recursive formulae.

2.4 Summary

The verification methodology is summarised in Fig. 1. The dashed box on the
right shows the procedures for verifying properties of a protocol. We start with
the protocol definition (often provided by an international standard) and model
it with CPNs. From the CPN model, we use a software package for CPNs called
Design/CPN [29] to generate its OG. By analysing the OG we can obtain infor-
mation about the dynamic behaviour and properties of the protocol. This may be
proving correct termination (e.g. absence of deadlock and livelock), investigating
boundedness properties and message sequences, or more specific properties that
could be written in a temporal logic or other technique suitable for querying
OGs.

The dashed box on the left of Fig. 1 illustrates the steps required to verify
a protocol against its service language [19]. We do this by comparing the se-
quences of service primitives that occur as a result of the protocol’s operation
(the protocol language), with the sequences specified in the service specification
(the service language). We firstly create a CPN model of the service specification,
in which service primitives are associated with CPN transitions. The OG of the
CPN model is calculated. The OG includes all the possible occurrence sequences
of CPN transitions. The CPN model may include transitions that do not model
service primitives, but rather internal events of the service provider required to
ensure correct operation. We need to eliminate these internal transitions while
preserving service primitive sequences. To do this, we treat the OG as a FSA
and use standard FSA reduction techniques [5]. This minimised and determinis-
tic FSA embodies the service language. In a similar way, we generate the protocol
language. These are compared to see if all the sequences of service primitives in
the protocol language are sequences specified in the service language, to discover
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if there are any inconsistencies between the protocol definition and the service
definition. The automata reductions and comparison algorithms are automated
in tools such as FSM [33].

3 Definitions

3.1 High-Level Petri Nets

We use Coloured Petri nets and Design/CPN for the specification of protocols
and services, and refer readers to [48–50, 53] for an introduction to CPNs and
their definitions. However, for some of the proofs in this paper, it is useful to use
the definition of the High-level Petri Net (HLPNs) semantic model presented in
clause 5 of international standard ISO/IEC 15909-1 [44]. It is drawn from similar
work published in [8, 10] and earlier work in [47].

In order to be self-contained, we begin by presenting definitions concerning
multisets and vectors, followed by the semantic model from [44]. We then define
occurrence sequences for high-level nets and provide some propositions that we
require in the analysis of the Stop-and-Wait protocol.

Multisets

Definition 1. A multiset, B : A → N, is a function that associates a natural
number, known as the multiplicity, with each of the elements of a non-empty
basis set, A.

The multiplicity of a ∈ A in B, is given by B(a). The set of all multisets over A
is denoted by μA.

Multiset Operations

Definition 2. Equality:
Two multisets, B1, B2 ∈ μA, are equal, B1 = B2, iff ∀a ∈ A,B1(a) = B2(a).

Definition 3. Comparison:
B1 is less than or equal to B2, B1 ≤ B2, iff ∀a ∈ A,B1(a) ≤ B2(a) and
B1 is greater than or equal to B2, B1 ≥ B2, iff ∀a ∈ A,B1(a) ≥ B2(a).

We define addition and subtraction on multisets B1, B2 ∈ μA as follows.

Definition 4. Addition and Subtraction:
B = B1 +B2 iff B(a) = B1(a) +B2(a)
B = B1 −B2 iff B(a) = B1(a) −B2(a) if B1(a) ≥ B2(a)

There are times when we wish to subtract one multiset from another when
the above restriction on multiset subtraction does not apply. We then need to
consider multisets as vectors.
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Vectors

Definition 5. A vector V over a basis set A is a function V : A → Z where Z
is the set of integers.

The set of all vectors over A is denoted by νA. Subtraction is a closed operation
for vectors, defined componentwise as follows.

Definition 6. Vector Subtraction:
For V 1, V 2 ∈ νA, V = V 1 − V 2 iff ∀a ∈ A, V (a) = V 1(a) − V 2(a).

High-Level Petri Net

We now define a High-level Petri net (HLPN) [8, 44].

Definition 7. HLPN = (P, T,D;Type, Pre, Post,M0) where

– P is a finite set of Places.
– T is a finite set of Transitions, disjoint from P (P ∩ T = ∅).
– D is a non-empty finite set of non-empty domains where each element of D

is called a type.
– Type : P ∪ T −→ D is a function used to assign types to places and to

determine transition modes.
– Pre, Post : TM −→ μPLACE are the pre and post mappings with

• TM = {(t,m)|t ∈ T,m ∈ Type(t)}, the set of transition modes; and
• PLACE = {(p, g)|p ∈ P, g ∈ Type(p)}, the set of elementary places.

– M0 ∈ μPLACE is a multiset called the initial marking of the net.

Marking of a HLPN

Definition 8. A Marking of the HLPN is a multiset, M ∈ μPLACE.

Enabling of Transition Modes

Definition 9. A single transition mode, tm ∈ TM , is enabled at a marking M
iff Pre(tm) ≤ M .

We can also define the concurrent enabling of a finite multiset of transition modes
(see [10, 44]) but this is not required for this paper.

Transition Rule

Definition 10. The transition rule for a single transition mode tm ∈ TM en-
abled at a marking M is given by

M ′ =M − Pre(tm) + Post(tm)

where an occurrence of tm results in the new marking M ′.

The occurrence of a single transition mode tm ∈ TM in marking M is denoted
by M [tm〉M ′ or M tm−→M ′.
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Occurrence Sequences and Reachability
In addition to that defined in [44], we define the following in relation to occur-
rence sequences.

Definition 11. LetM be a marking of the HLPN. A finite sequence of transition
modes, tm1, tm2, . . . , tmk ∈ TM, k ∈ N+, is called a finite occurrence sequence
able to occur from M , if there are markings M1,M2, . . . ,Mk such that

M
tm1−→M1

tm2−→M2 . . .
tmk−→Mk

We denote a finite occurrence sequence by σk = tm1tm2 . . . tmk and writeM σk−→
Mk.

Definition 12. A marking M ′ is reachable from a marking M if there is a
finite occurrence sequence σk leading from M to M ′, i.e. M σk−→M ′.

Definition 13. An infinite sequence of transition modes, σ = tm1tm2tm3 . . . is
called an infinite occurrence sequence, able to occur from a marking M , if there
are markings M1,M2, . . . such that

M
tm1−→M1

tm2−→M2
tm3−→ . . .

Following directly from these definitions are Propositions 1 and 2. They are
HLPN extensions of the propositions given in [28] and are used in the proof of
Theorem 4 in Section 6.

Proposition 1. An infinite occurrence sequence σ of transition modes can occur
from a marking M if and only if every finite prefix of σ can also occur from M .

Proposition 2. IfM and L are markings of a HLPN and for a finite occurrence
sequence σk, M σk−→M ′ and L σk−→ L′ then (using vector subtraction) M ′−M =
L′ − L.

The following proposition is useful for proving that a finite occurrence sequence
of transition modes can be repeated indefinitely.

Proposition 3. If M and L are markings satisfying M ≥ L then every occur-
rence sequence that can occur from L can also occur from M .

Proof. Consider the infinite occurrence sequence σ = tm1tm2tm3 . . . that can
occur from L. Now all finite prefixes of σ (i.e. σk = tm1tm2 . . . tmk, k ∈ N+) can
occur from L according to Proposition 1, i.e.

L
tm1−→ L1

tm2−→ . . .
tmk−→ Lk

Using the enabling condition (and transition rule) as defined above, this
means that L ≥ Pre(tm1). Occurrence of tm1 at marking L leads to a marking
L1 in which the next transition mode in the sequence, tm2, is enabled, and from
which the rest of the sequence tm2tm3 . . . tmk can occur.
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Now consider the marking M . We know that M ≥ L. If L ≥ Pre(tm1) then
this means that M ≥ Pre(tm1) also. Thus transition mode tm1 is enabled in
M .

Occurrence of tm1 from M will lead to a new marking M1, i.e. M tm1−→ M1,
and by Proposition 2 we know that M1 − M = L1 − L (again using vector
subtraction). Knowing M ≥ L and substituting L for M we obtain

M1 − L ≥ L1 − L

⇒M1 ≥ L1

We know that tm2 is enabled in L1, and by the above arguments, tm2 is also
enabled in M1. By repeated application of the above arguments, we obtain that
for every intermediate marking Ln(1 ≤ n ≤ k) during execution of the occurrence
sequence σk there is a corresponding marking Mn such that Mn ≥ Ln. So all
finite prefixes σk of the infinite occurrence sequence σ can occur from M , and
by Proposition 1, σ can occur from M . Thus any occurrence sequence that can
occur from L can also occur from M . ��

3.2 Definitions of Occurrence Graphs and Associated Automata

Part of the methodology requires the generation of a CPN’s occurrence graph
(OG) and its transformation to an appropriate finite state automaton (FSA).
This section provides the definitions that are useful for this purpose.

Occurrence Graphs
We consider that an OG can be defined as a labelled directed graph, where
the nodes of the graph represent markings of the CPN, and the directed arcs
represent the transition modes that can occur in all executions of the net from
the initial marking. The arcs are thus labelled by the transition mode. We thus
start by defining a labelled directed graph.

Definition 14. A labelled directed graph is a triple G = (V, L,E) where

– V is the set of vertices or nodes;
– L is a set of labels; and
– E ⊆ V × L× V is a set of labelled directed edges.

Definition 15. An occurrence graph of a HLPN with an initial marking M0, is
a labelled directed graph OG = (V, TM,A) where

– V = [M0〉 is the set of markings reachable from M0 (the reachability set);
– TM is the set of transition modes of the HLPN; and
– A = {(M, tm,M ′) ∈ V × TM × V |M [tm〉M ′} is the set of arcs (directed

edges) labelled by transition modes.
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Abstract OGs
When we only consider sequences of primitives, there are two abstractions of the
OG which are useful. The first removes the modes (variable bindings) from the
transition modes to give transitions only. The second removes the details of the
markings, so that they are just represented by integers. Both abstractions may
be used together. We formalise these abstractions in the following definitions.

For an occurrence graph where we are only interested in the transition names,
rather than transition modes, e.g. in the case of service primitives where we are
not concerned with service primitive parameter values, but just the primitive
name, then an abstract OG with respect to transitions, AOGT , is defined as
follows.

Definition 16. An abstract OG, with respect to transitions, of a HLPN with
an initial marking M0 and a set of transition modes, TM , is a labelled directed
graph AOGT = (V, T,A) where

– V = [M0〉 is the set of markings reachable from M0;
– T is the set of transitions of the HLPN; and
– A = {(M, t,M ′) ∈ V × T × V |(t,m) ∈ TMandM [(t,m)〉M ′} is a set of arcs

labelled with transition names.

In the case where we are only interested in the identification of the markings
for the nodes, and not the details of the markings, we introduce an injection, I,
mapping the set of reachable markings into the set of positive integers:

I : [M0〉 −→ N+

where I(M0) = 1 represents the initial marking.

Definition 17. An abstract OG, with respect to markings, of a HLPN with an
initial marking M0 and a set of transition modes TM , is a labelled directed graph
AOGM = (V, TM,A) where

– V = {I(M)|M ∈ [M0〉} is the set of nodes;
– TM is the set of transition modes of the HLPN; and
– A = {(I(M), tm, I(M ′)) ∈ V ×TM×V |M [tm〉M ′} is the set of arcs labelled

with transition modes.

This definition is useful for the analysis of the Stop-and-Wait protocol (see sec-
tion 6).

Finally we combine the two abstractions to obtain an abstract OG with
respect to markings and transitions, AOGMT .

Definition 18. An abstract OG, with respect to markings and transitions, of
a HLPN with an initial marking, M0, and a set of transition modes, TM , and
given an injection, I, mapping markings to positive integers, is a labelled directed
graph AOGMT = (V, T,A) where
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– V = {I(M)|M ∈ [M0〉} is the set of nodes;
– T is the set of transitions of the HLPN; and
– A = {(I(M), t, I(M ′)) ∈ V ×T ×V |(t,m) ∈ TMandM [(t,m)〉M ′} is the set

of arcs labelled with transition names.

This last definition is useful when we are only interested in sequences of
transitions, e.g., sequences of service primitive names.

FSA Associated with the OG
The next step is then defining the mapping from an abstract OG to its FSA.
In our methodology, the FSAs are only used to determine language equivalence
(or inclusion) and thus we are not concerned with the details of the markings,
and hence we can use an abstract OG that does not include the marking details.
Hence we just represent the nodes by positive integers.

When we construct the CPN model of the protocol, we normally do so with
primitive events in mind, and thus label transitions in the CPN with service
primitive names. However, in some cases (such as for the stop-and-wait protocol)
it is convenient to have a more general mapping from transition modes to service
primitives. (In the following, we restrict our attention to a mapping to service
primitive names, as that is our current focus, but in general the mapping could
be to service primitives in general, i.e. where service primitive parameters are
included as well as the name.) We thus need a function that maps each transition
mode in the abstract OG to either a service primitive name, or to an epsilon.
Lets call this function Prim as it returns a primitive name (or epsilon). Thus
we have

Prim : TM ′ −→ SP ∪ {ε}
where

– TM ′ ⊆ TM is the set of transition modes used to label arcs in the abstract
OG; and

– SP is the set of service primitive names in the system we are describing.

Given an abstract OG with respect to markings AOGM = (V, TM,A) (see
Definition 17) we can formulate its corresponding FSA as

Definition 19. FSAAOGM = (V, SP,ASP , v0, F ) where

– V is the set of nodes of the abstract OG (the states of the FSA);
– SP is the set of service primitive names of the system of interest (the alphabet

of the FSA);
– ASP = {(v, Prim(tm), v′)|(v, tm, v′) ∈ A} is the set of transitions labelled

by service primitives or epsilons for internal events (the transition relation
of the FSA);

– v0 = 1 corresponds to the abstract initial marking (initial state of the FSA);
and

– F ⊆ V is the set of final states.
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4 Stop-and-Wait Protocols

This part of the paper illustrates our approach to the verification of data transfer
protocols by investigating the class of Stop-and-Wait protocols (SWP) [66, 73].
The work presented here is a major eleboration and extension of that recently
published by the first two authors [12] and is based on [13].

We choose the SWP class because the protocol mechanisms are readily un-
derstood and because they are the simplest representative class of data transfer
protocols since they include sequence numbers and retransmission counters. The
class of SWP protocols is characterised by two parameters: the maximum se-
quence number and the maximum number of retransmissions.

Stop-and-Wait is an elementary form of flow control [66,73] between a sender
and a receiver. The sender stops after transmitting a message and waits until
it receives an acknowledgement indicating that the receiver is ready to receive
the next message. Stop-and-Wait Protocols often operate over noisy channels
and combine flow control with error recovery using a timeout and retransmis-
sion scheme, known as Automatic Repeat ReQuest (ARQ) [73]. In this case,
a checksum [73] is included to detect transmission errors. Messages that pass
the checksum are acknowledged as received correctly. A message that fails the
checksum is discarded by the receiver. In this case, the sender of the message
will not receive an acknowledgement within its specified timeout period, and
thus retransmits the message. This works well if the cause of not receiving the
acknowledgement is due to the message being discarded (due to errors). How-
ever, the acknowledgement is also error protected by a checksum and it could
have been discarded. In this case the retransmitted message is an unnecessary
duplicate of the original message that has already been received correctly. To
prevent duplicate messages being accepted as new messages a sequence number
is appended to each message.

The class of SWPs are important because many practical data transfer pro-
tocols use sliding window mechanisms that have their foundations based on
Stop-and-Wait principles. Sliding Window protocols [66, 73] improve the effi-
ciency of SWPs by allowing many messages (rather than one) to be sent before
requiring an acknowledgement. The number of messages that can be sent be-
fore the sender must stop and wait to receive an acknowledgement is known
as the window . Cumulative acknowledgements and more sophisticated error re-
transmission schemes (such as Selective Reject) [66] can also improve efficiency.
These schemes are used in many practical protocols such as TCP [62]. The un-
derlying principles of ARQ used in sliding window protocols are the same as
those used in SWPs, so that a window size of 1 corresponds to a Stop-and-Wait
protocol. Thus it is essential that the stop-and-wait mechanisms work correctly
if the more advanced protocols are also to be correct.

It is well known [73] that for sliding window protocols to work properly in
detecting and discarding duplicates, the sequence number space needs to be one
greater than the number of unacknowledged messages (the window). In the case
of Stop-and-Wait protocols which have just one outstanding unacknowledged
message, the sequence number space can be just two numbers, usually {0,1}.
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When a SWP uses the sequence numbers {0,1} it is called an Alternating Bit
protocol (ABP) [6], because the sequence number can be implemented using just
one bit in the header of the message, and the sequence number value alternates
between 0 and 1. Acknowledgement messages in this case serve a dual purpose:
that of flow control (indicating that the receiver is ready to receive another
message) and transmission error recovery (informing the sender not to retransmit
as the data has been received correctly). This is the simplest class of SWPs
where the maximum sequence number is instantiated to 1. We consider Stop-
and-Wait protocols with an arbitrary maximum sequence number as this takes
us a step closer to sliding window protocols, where the window size is arbitrary,
and hence the sequence number space (which must be at least one greater than
the window size) is also arbitrary. It may also be the case that SWPs with larger
sequence number spaces can work correctly over media with a limited amount
of re-ordering (see [52]), but we do not consider this situation in this paper.

A number of papers, articles and books [1, 3, 6, 18, 30, 63, 68, 71–73,76] have
been written about the ABP. Many demonstrate that the ABP will work per-
fectly over an underlying medium that behaves in a FIFO (First-In First-Out)
manner and that may also include loss. The ABP is often used as a case study
when developing a new modelling language or a derivation from an existing mod-
elling language, to demonstrate the use or effectiveness of the new language.
This is the case in [68] where the ABP is used as an example to illustrate a new
Timed Rewriting Logic (TRL) for capturing the static and dynamic aspects of
SDL (Specification and Description Language) [45]. Another example of this is
in [71] and [72] where the ABP is formally modelled and analysed using Temporal
Petri nets (derivations of Petri nets with restrictions on the firing of transitions
based on formulae containing temporal operators.) The ABP is used to illustrate
modelling and analysis of protocols using Petri Nets in [30]. The Abracadabra
Service and Protocol Example [76] describes a protocol using Alternating Bit
sequence numbers, Retransmissions on timeout, Acknowledgements, Connection
And Disconnection (ABRACAD), and is one of a graded set of examples used
to provide guidelines for the application of three standardised formal description
techniques, namely Estelle [21], LOTOS (Language Of Temporal Ordering Spec-
ifications) [20] and SDL [45]. Billington et al [18] use a variant of the ABP [22] to
demonstrate a software tool. Reisig [63] develops the ABP in a series of steps as
part of a case study on acknowledged messages, developed incrementally using
simple Petri net models to illustrate the principles and operation of the ABP
over FIFO (First-In First-Out) communication channels.

Some of the above papers demonstrate that the ABP will work as expected
over FIFO channels that may also include loss. It appears, however, that the
situation in which messages may be re-ordered by the medium has not been
considered. The ABP was originally designed to provide a reliable data link ser-
vice over an unreliable point-to-point physical link. In this situation overtaking
of messages does not occur. However, the same ARQ mechanisms are used in
transport level protocols, such as TCP [62], that operate over a medium that
does not guarantee in-sequence delivery and may also lose messages [73]. It is
therefore useful to investigate this situation for SWPs.
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In Section 5 we present and explain our Coloured Petri Net (CPN) [48, 53]
model of the SWP and discuss some of the modelling decisions made during its
construction. The model is then analysed in Section 6 using a combination of
hand proofs and language analysis. A discussion of the impact of the analysis
results on the Transmission Control Protocol is given in Section 7, as well as
the identification and discussion of a limitation of our approach. Finally some
concluding remarks are presented in Section 8.

5 The Stop-and-Wait Protocol Model

We model a Stop-and-Wait protocol that includes error recovery using retrans-
missions operating over a lossy re-ordering medium. The CPN model of our
SWP is given in Figs. 2 and 3. Figure 2 presents the graphical representation
of the system, while Fig. 3 defines all the constants, sets and functions required
and declares the types of the variables used in the annotations associated with
the graphical representation. The software tool, Design/CPN [29], was used for
the construction of the model. Design/CPN has four main facilities: an editor,
a simulator, a state space tool and a performance tool. The simulation engine
and state space tool are built using CPN ML [27], a variant of the functional
programming language Standard ML of New Jersey (SML/NJ) [67]. CPN ML
is used for the net annotations in Fig. 2 and the declarations in Fig. 3.

In Fig. 3 colour sets (types) are defined using the keyword color and enu-
merated types (Sender, Seq, Retranscounter) are created with the set constructor
with. Variables are declared using the keyword var and are typed by a colour
set, e.g. the variables sn and rn of type Seq (sequence number). Functions are
defined using the keyword fun and values (e.g. constants) are defined using the
keyword val.

We now describe the CPN model of the SWP in detail. The model comprises
three main parts: the Sender (on the left), the Receiver (on the right) and an
underlying bidirectional communication medium, Network, in the middle.

5.1 Sender

The sender consists of four places, four transitions and their interconnecting arcs.
The places, sender ready and wait ack, represent the two states of the sender
(either ready to send a new data message or awaiting an acknowledgement)
and are typed by the colour set Sender, representing a single sender. The place,
sender ready, has an initial marking of one s token, indicating that the Sender is
initially in the ready state. The seq no place stores the sender sequence number,
which is either the number of the message just sent (an unacknowledged message)
or if acknowledged, the number of the next message to be sent. It is typed by the
colour set Seq (sequence number) and has an initial marking of a single 0 token,
indicating that the first message to be sent will have sequence number 0. The
current number of retransmissions is recorded in place retrans counter, typed by
the colour set RetransCounter and is initially 0.
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Fig. 2. The CPN of the Stop-and-Wait Protocol operating over a lossy re-ordering
channel.

val MaxRetrans = 1;

val MaxSeqNo = 1;

color Sender = with s;

color Seq = int with 0..MaxSeqNo;

color RetransCounter = int with 0..MaxRetrans;

color Message = Seq;

var sn,rn : Seq;

var rc : RetransCounter;

fun NextSeq(n) = if(n = MaxSeqNo) then 0 else n+1;

Fig. 3. Global Declarations for the Stop-and-Wait Protocol CPN.

Transition send mess models the sending of a message to the receiver. Message
content is not represented as no protocol operations involve it (the protocol
behaves the same way irrespective of content). The same is true for the addresses
of sender and receiver, as we only have one of each in this model. Consequently, a
message (or an acknowledgement) can be modelled by just its sequence number.
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When the sender is ready send mess may occur. It writes its sequence number
(as the message) to the message channel and changes state to waiting for an
acknowledgement.

The timeout retrans transition models the expiry of the retransmission timer
and the retransmission of the currently unacknowledged message. This transition
can only occur if the sender is waiting for an acknowledgement and there have
been less than MaxRetrans retransmissions of this message (see the guard). When
timeout retrans occurs, the retransmission counter is incremented by 1 and the
retransmitted message is placed into the message channel.

Transition receive ack models the receipt of expected acknowledgements from
the receiver, i.e. those that acknowledge the currently outstanding message. Du-
plicate acknowledgements are received and discarded by transition receive dup
ack. These may result from acknowledged retransmissions, where delay rather
than loss was the cause of the retransmission. The complementary guards on
these transitions identify the acknowledgement as being expected or a duplicate.
An expected acknowledgement will have a sequence number one greater than
the sender sequence number. The function NextSeq is used to increment the
sequence number modulo (MaxSeqNo + 1), as shown in Fig. 3. An occurrence
of receive ack will remove the acknowledgement from the channel, return the
sender to the ready state, reset the retransmission counter to 0 and increment
the sequence number stored in seq no using modulo arithmetic. The transition
receive dup ack discards duplicate acknowledgements irrespective of the state of
the sender.

5.2 Receiver

The receiver consists of two places and two transitions. The places receiver ready
and process mess model the states of the receiver and are typed by the colour
set Seq. A sequence number token present on one of these places indicates that
the receiver is in that state (either ready to receive a message, or processing a
message.) The receiver ready place has an initial marking of one 0 token, indi-
cating that initially the receiver is in the ready state and expecting a message
with sequence number 0.

Transition receive mess models the receipt of a message from the sender. The
annotation on the arc from receive mess to process mess compares the sequence
number of the message (sn) with the sequence number expected by the receiver
(rn). If they match, then the message is the one expected (and is passed onto the
user, a process that is not modelled) and the sequence number is incremented
modulo (MaxSeqNo + 1) by the NextSeq function and placed in process mess.
If they don’t match, a duplicate is detected (and discarded) and the receive
sequence number is placed in process mess unchanged. Transition send ack occurs
when the receiver has finished processing the message, indicating that enough
buffer space is available to receive another message. This transition sends an
acknowledgement containing the next sequence number expected by the receiver
and returns the receiver to the ready state. Sending an acknowledgement when
a duplicate message is received is necessary because if an acknowledgement of a
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(new) message is lost and subsequent retransmissions of the same message are
not acknowledged, the system will fail to progress as no acknowledgement will
ever be delivered to the sender.

5.3 Underlying Medium

The underlying communication medium is modelled as a bidirectional chan-
nel consisting of one place and one transition for each direction of communica-
tion. The mess channel place models the message channel while the ack channel
place models the acknowledgement channel. Both channel places are typed by
the colour set Message (a sequence number, see Fig. 3) and are both initially
empty. This models the overtaking behaviour of the communication medium.
The two transitions mess loss and ack loss model the loss of messages and ac-
knowledgements respectively. This corresponds to either loss in the network (due
to congestion and buffer overflow in a router), or to discarding messages (and
acknowledgements) due to checksum failures.

5.4 Discussion of Modelling Decisions

A straightforward way to begin modelling a system such as this is to use one place
for each state of an entity, one place for each data item, and one transition for
each action. This is evident in the Sender, where we have one place for each state
(i.e. ready, waiting for an acknowledgement), one place for each item of data (i.e.
sequence number, retransmission counter) and one transition for each action. A
representation such as this gives a clearer visual indication of the control flow
within the Sender than if the sender states were folded and represented by a
single place typed by the set of states. However, this is normally only possible
for protocols with very few states. As the number of states increases, so do
the number of arcs, which leads to a visually complex diagram with many arc
crossings, distracting from the major flows. This is alleviated to some extent by
the use of thicker lines for arcs to emphasise major flows, as is illustrated for
control flow in Fig. 2.

The receiver has been modelled using a different style, where there has been
a folding of the receiver sequence number and receiver state. The transition re-
ceive mess represents both the receipt of an expected message and the discarding
of duplicate messages, requiring a complex arc annotation. This provides a more
compact representation of the receiver clearly highlighting the control flow loop.
This demonstrates the versatility of CPNs in being able to illustrate visually
control flow and data flow. To do this well requires significant experience, es-
pecially for complex protocols that require a hierarchical approach. We used
different styles for the sender and receiver to illustrate the different approaches.
When modelling a complex protocol this would rarely be done, and a consistent
style throughout the whole model is advocated.

We may want the model structure to reflect the structure of the real life
system, given a certain amount of abstraction. For example, we have illustrated
this by modelling the sequence number at the sender in the net structure as a
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separate place. This is to reflect the fact that in an implementation, the sequence
number as an entity of data may exist separately from, and regardless of, the
state of the sender. It also simplifies modelling of the sender, because duplicate
acknowledgement messages can be received and discarded regardless of the state
of the sender. Conversely, the meaning of the value of the sequence number
(either the next to be sent when in state sender ready, or the message to be
acknowledged when in state wait ack) is dependent on the state, and hence this
would favour folding the sequence number into the state places, as in the receiver.
Modelling the loss of messages and acknowledgements by separate transitions
(instead folding them into the receive transitions) allows for more flexibility in
analysis, as to analyse a system without a lossy channel requires nothing more
than adding a [false] guard to each loss transition. Thus various trade-offs present
themselves to the modeller, even in models as simple as this.

6 SWP CPN Model Analysis

6.1 Properties of Interest

As described previously, with the SWP it is usual to place an upper bound
(MaxRetrans) on the number of retransmissions that are allowed per message.
When this limit is reached, the communication medium is considered to be down.
In practice, an indication is given to a management entity that invokes a proce-
dure to deal with the fault. This interaction (and procedure) is not modelled as
it is not part of the SWP. In our model, the protocol will just terminate in a state
where the retransmission counter has reached its maximum value (MaxRetrans).
This is an expected terminal state, indicating that the network is down, and
that the last message sent may have been lost.

Thus we are not particularly concerned with terminal states. Instead we focus
on properties that are quintessential for correct operation of the SWP. The first
concerns bounds on the channels, the second that duplicates are not accepted as
new messages, the third that messages are not lost unknowingly and the fourth
that the protocol conforms to the Stop-and-Wait service of alternating sends and
(correct) receives, ensuring that messages are received in the same order as they
were sent.

6.2 FIFO Channels

Our first step is to consider the SWP operating over communication channels
that preserve sequence. This corresponds to the SWP operating over a physical
link (as is the case for data link protocols) and is thus important in its own right.
It is also important from the point of view of incremental analysis of the SWP
operating over re-ordering channels. This is because most networks will provide
a FIFO channel most of the time. Thus it is important to ensure that the SWP
will operate correctly over FIFO channels, before we investigate the re-ordering
case.
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The CPN in Fig. 4 and associated declarations in Fig. 5 show our Stop-and-
Wait protocol operating over a lossy FIFO channel. Places mess channel and
ack channel are modified to operate as FIFO queues by altering their colour set
from Message to MessList (a list of messages), giving them an initial marking
of the empty list and modifying appropriate arc expressions on incoming and
outgoing arcs to manipulate the list as a FIFO queue. All arcs placing a message
into one of the channels do so by appending it to the end of the message list
using the infix append operator (^^). All arcs removing a message from one of
the channels do so by removing a message from the beginning of the list using
the infix ‘cons’ operator (::). Loss in the medium is modelled by transitions
mess loss or ack loss. This loss behaviour includes the discarding of corrupted
messages (due to failing the checksum) and loss due to routers dropping packets
(if applicable).
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Fig. 4. A CPN of the Stop-and-Wait Protocol operating over an in-order medium.

We now consider the first property of interest, that of the bounds on the
channels, and then investigate the other three properties (loss, duplication and
SWP service).

Channel Bounds. In this section we state and prove two theorems regarding
the maximum length of each of the message queues in places mess channel and
ack channel.
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val MaxRetrans = 1;

val MaxSeqNo = 1;

color Sender = with s;

color Seq = int with 0..MaxSeqNo;

color RetransCounter = int with 0..MaxRetrans;

color Message = Seq;

color MessList = list Message;

var sn,rn : Seq;

var rc : RetransCounter;

var queue : MessList;

fun NextSeq(n) = if(n = MaxSeqNo) then 0 else n+1;

Fig. 5. Declarations of the CPN shown in Fig. 4.

Theorem 1. For the Stop-and-Wait CPN of Figs. 4 and 5 with MaxRetrans
≥ 0 and MaxSeqNo ≥ 1, the message queue length in place mess channel is
bounded by (2MaxRetrans + 1), i.e. ∀M ∈ [M0〉, |queue| ≤ (2MaxRetrans + 1)
where M(mess channel) = 1‘queue, queue ∈ {0, ...,MaxSeqNo}∗ and |queue| is
the length of the list ‘queue’.

Proof. We use the notation ⊕ for addition modulo (MaxSeqNo + 1) and ‘n-
message’ as shorthand for ‘a message with sequence number n’.

We firstly examine the case where MaxRetrans = 0. From the initial marking
of the CPN as shown in Fig. 4, the only transition that can occur is send mess,
which inserts a 0-message into the message queue, so |queue| = 1. Transition
timeout retrans will never occur because of its guard. The only enabled transitions
are mess loss and receive mess, both of which remove the 0-message, resulting in
|queue| = 0. An occurrence of mess loss leads to a dead marking and hence
the theorem holds in this case. An occurrence of receive mess with the variable
bindings sn = rn = 0 indicates this is the message expected by the receiver. The
receiver sequence number is incremented by the NextSeq function on the arc
from receive mess to process mess. Now the only enabled transition is send ack,
inserting an acknowledgement (rn = 1) into the acknowledgement queue on place
ack channel. The only possible action now is to remove this acknowledgement
from the queue, either through the occurrence of ack loss (leading to a dead
marking and hence the theorem holds) or through receive ack as rn = NextSeq(sn)
= 1. An occurrence of receive ack will return the model to a state identical to
the initial state except that all sequence numbers are now 1 instead of 0. The
behaviour described above is the only behaviour of the system. This behaviour
repeats, each time leading to the ‘same’ state except for the sequence numbers
that have been incremented modulo MaxSeqNo. When the sequence number
wraps back to zero, the CPN returns to the initial state. This demonstrates that
for any MaxSeqNo≥ 1, |queue| ≤ 1 for all markings when MaxRetrans = 0. This
proves the theorem for MaxRetrans = 0.
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For the more general case of MaxRetrans ≥ 1, the situation is complicated by
the possibility of duplicate messages and duplicate acknowledgements. Consider
that we start with empty queues. The maximum number of messages with a given
sequence number n that can be inserted into the message queue is the original
(send mess occurs) plus MaxRetrans duplicates (by MaxRetrans occurrences of
timeout retrans) giving |queue| = (MaxRetrans+1) (given the queue was empty).
At this point the sender must stop and wait until it receives an acknowledge-
ment (receive ack) for the n-message. The minimum number of n-messages that
need to be received and acknowledged (i.e. when no loss occurs) is one, leaving
MaxRetrans n-messages in the message queue. When this acknowledgement is
received, the retransmission counter is reset to zero and (MaxRetrans+1) (n⊕1)-
messages can be sent, giving a queue with MaxRetrans n-messages followed by
(MaxRetrans+1) (n ⊕ 1)-messages and |queue| = (2MaxRetrans+1). Because of
the FIFO property of the communication channels, the remaining MaxRetrans
n-messages must be removed (by loss or receipt) before the first (n⊕1)-message
can be received and acknowledged allowing messages with sequence number n⊕2
to be placed in the message channel. Thus before any new message can be sent,
the length of the queue can be no more than MaxRetrans. As already discussed,
only (MaxRetrans+1) new messages can be added to the queue, giving a maxi-
mum queue length of 2MaxRetrans+1. ��

A similar theorem to that stated in Theorem 1 holds for the acknowledgement
channel.

Theorem 2. For the Stop-and-Wait CPN of Figs. 4 and 5 with MaxRetrans
≥ 0 and MaxSeqNo ≥ 1, the acknowledgement queue in place ack channel is
bounded by (2MaxRetrans + 1), i.e. ∀M ∈ [M0〉, |queue| ≤ (2MaxRetrans + 1)
where M(ack channel) = 1‘queue, queue ∈ {0, ...,MaxSeqNo}∗ and |queue| is
the length of the list ‘queue’.

Proof. From Theorem 1 at most (2MaxRetrans+1) messages can be in the mes-
sage queue. Also, from the proof of Theorem 1 when there are (2MaxRetrans+1)
messages in the message queue the acknowledgement queue is empty. We know
that exactly one acknowledgement is generated for each message accepted by
the receiver, by the occurrence of receive mess followed by send ack, which im-
plies that a message is removed from mess channel for every acknowledgement
generated by the receiver. Further, from the proof of Theorem 1, the sum of
messages and acknowledgements in the channel places can be no more than
MaxRetrans before a new message can be sent. Thus although the removal of
one acknowledgement can result in the addition of (MaxRetrans + 1) messages,
this can only happen when the sum of messages and acknowledgements in the
channels is MaxRetrans. Thus (taking loss into account) the sum of the messages
and acknowledgements in any marking must be ≤ (2MaxRetrans + 1). There-
fore the maximum number of acknowledgements that can be in ack channel is
(2MaxRetrans + 1) (when all the messages in mess channel have been received
and acknowledgements deposited in ack channel). ��
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Loss, Duplication and Stop-and-Wait Property
We firstly prove that the SWP satisfies the SW property for a range of parameter
values and then consider whether or not loss and duplication can occur. We would
like to prove the following theorem.

Theorem 3. The Stop-and-Wait CPN of Figs. 4 and 5 where MaxRetrans ≥ 1
and MaxSeqNo ≥ 1, satisfies the Stop-and-Wait property.

We use language analysis to prove this theorem for a significant range of
values of MaxRetrans and MaxSeqNo.

For the SWP service, we define two primitives: a send at the sender entity
interface; and a receive at the receiver entity interface. We can then define the
service language as 0 or more repetitions of the sequence (send, receive). This
can be represented by the regular expression (send receive)∗ or by the Finite
State Automaton (FSA) shown in Fig. 6.

0 1
send

receive

Fig. 6. FSA for the SWP service.

The next step is to generate the protocol language from the protocol specifica-
tion. The protocol language just contains service primitive events. Our protocol
specification is the CPN model of Figs. 4 and 5. In this CPN we can consider
that the send primitive occurs when the send mess transition occurs and that the
receive primitive occurs when receive mess occurs when the bindings of sn and
rn are the same (sn = rn). (Otherwise the occurrence of receive mess represents
the discarding of duplicates, which does not correspond to a receive primitive.)

Following the verification methodology, the protocol language is obtained
from the CPN’s reachability graph by treating it as a FSA. All non-service
primitive transitions (i.e. those associated with sending and receiving acknowl-
edgements, with loss, retransmission or discarding duplicates) are replaced by
empty (ε) transitions and the resulting FSA minimised [5] to produce the min-
imum deterministic FSA. This FSA represents all possible sequences of service
primitives, generated from the protocol, and is thus the protocol language. We
use the suite of tools available in the FSM package [33] for FSA minimisation
and comparison.

Reachability graphs of the CPN defined in Fig. 4 and Fig. 5 were generated
using Design/CPN [29] for both lossy and lossless media. (Loss is disabled by
adding a guard of [false] to each of the two loss transitions.) We generated the
OGs for a range of values of the parameters MaxRetrans and MaxSeqNo. Table 1
gives the statistics for some selected values of the parameters for lossy FIFO
channels. Each OG is generated on a 2.4 Ghz PC with 1 GByte of memory.
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Table 1. OG Results for SWP operating over lossy FIFO channels.

SeqNo. MaxSeqNo MaxRetrans Nodes Arcs Dead Channel Time
Bits Bound (hh:mm:ss)

1 1 0 12 12 4 1 00:00:00
1 1 1 80 194 4 3 00:00:00
1 1 2 264 834 4 5 00:00:00
1 1 3 640 2278 4 7 00:00:00
1 1 4 1300 4956 4 9 00:00:00

2 3 0 24 24 8 1 00:00:00
2 3 1 160 388 8 3 00:00:00
2 3 2 528 1668 8 5 00:00:00
2 3 3 1280 4556 8 7 00:00:00
2 3 4 2600 9912 8 9 00:00:00

9 511 0 3072 3072 1024 1 00:00:01
9 511 1 20480 49664 1024 3 00:00:29
9 511 2 67584 213504 1024 5 00:03:22
9 511 3 163840 583168 1024 7 00:16:34
9 511 4 332800 1268736 1024 9 00:55:32

10 1023 0 6144 6144 2048 1 00:00:04
10 1023 1 40960 99328 2048 3 00:01:32
10 1023 2 135168 427008 2048 5 00:11:49
10 1023 3 327680 1166336 2048 7 00:57:07
10 1023 4 665600 2537472 2048 9 04:02:14

The first two columns give the value of the number of bits required to en-
code the sequence number and the corresponding maximum sequence number.
The next column records MaxRetrans. The next three columns list the numbers
of nodes (markings), arcs, and dead markings in each OG, respectively. The
second last column indicates the maximum number of messages in the message
queue and the maximum number of acknowledgements in the acknowledgement
queue, confirming Theorems 1 and 2. The last column records the time it took
to generate the OG in hours, minutes and seconds.

The results indicate that the state space is linear in the size of the sequence
number space (MaxSeqNo + 1) and the number of dead markings is given by
2((MaxSeqNo + 1). We expect the number of dead markings to be independent
of the number of retransmissions, and for there to be a dead marking for each
sequence number for two cases: firstly, when all messages are lost; and secondly,
when all acknowledgements are lost.

Generating the reachability graph and answering our analysis questions is
readily achieved with Design/CPN for small values of the MaxSeqNo and MaxRe-
trans parameters. We can obtain results for some practical values of sequence
numbers. For example, the X.25 protocol allows the use of 3 bit, 7 bit and 15 bit
sequence numbers. For MaxSeqNo = 127 (7 bit sequence numbers) and MaxRe-
trans = 3, we find the reachability graph contains 40960 states and takes 94
seconds to generate. Increasing MaxSeqNo to 1023 (10 bit sequence numbers)
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and for MaxRetrans = 4 we find that there are 665600 reachable states, tak-
ing over 4 hours to generate. At around 1.5 million states the generation time
becomes too slow to be feasible. (1.5 million states takes Design/CPN days to
generate and will exhaust the memory on a PC with 1Gb of RAM.) Thus ob-
taining a result for 15 bit sequence numbers is problematic. Further, TCP, which
uses 32 bit sequence numbers (MaxSeqNo = 4294967295), would require the gen-
eration of a reachability graph containing over 1012 states (for MaxRetrans = 3).
Clearly this is not feasible with Design/CPN.

We generated a similar set of statistics for the case without loss. In this case
there are no dead markings and the size of the state space is smaller but still is
linear in the size of the sequence number space. For example, without loss, the
reachability graph for MaxRetrans=1 and MaxSeqNo=1 comprises 48 nodes and
86 arcs, as opposed to 80 nodes and 194 arcs in the lossy case. This reachability
graph is shown in Fig. 7.

We have abbreviated the names of transitions (S for send, R for receive and
T for timeout), included the sequence number and indicated when a duplicate
is received. We can see that the behaviour is quite complex even for this simple
case. The usual behaviour when there are no retransmissions is given by the
cycle of nodes 1,2,3,5,7,9,12,17,1. The rest of the graph depicts the behaviour
when retransmissions occur, leading to the need to receive duplicate acknowl-
edgements. It is worth noting that this graph is strongly connected (all markings
are mutually reachable from each other).

The suite of tools available in the FSM package [33] was used for FSA gener-
ation and manipulation. A mapping was provided for the reachability graph to
distinguish between the transition occurrences of interest and internal events (ε
transitions). Final (halt) states were chosen to be those states in which the sender
and receiver are both in their ready states with the same sequence numbers, as
the protocol can terminate after sending an arbitrary number of messages, not
necessarily a multiple of the modulo value. All the reachability graphs that were
generated in both the lossy and lossless cases were then converted into a format
understandable by the FSM tools. For the lossless FIFO medium, all the mini-
mum deterministic FSA produced were identical to that shown in Fig. 6. Thus
for the range of parameters tested (MaxSeqNo up to 1023 and MaxRetrans up to
4), the SWP operating over a lossless in-order medium is language equivalent to
its service. For the lossy case, the FSA in Fig. 8 was produced for each combi-
nation of parameters tested. It shows that there can be sequences of alternating
sends and receives that may end after either a send or a receive. This is expected,
as the sequence may end after a send if a message and all its retransmissions are
lost, ending in a dead marking, where the medium is declared down. (In this case
the sender cannot tell if the last message was lost or successfully received, as it
could have been that the acknowledgements were lost instead.) Given that this
is inevitable for a finite number of retransmissions, we consider that the SWP
satisfies the stop-and-wait property in this case.

We have thus shown that the SWP satisfies the stop-and-wait property for
the values of the parameters tested. We also conjecture that this result implies
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Fig. 7. OG of the Stop-and-Wait protocol, with MaxRetrans=1, MaxSeqNo=1, operat-
ing over a FIFO channel.
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0 1
send

receive

Fig. 8. A FSA showing sequences of send and receive primitives when the Stop-and-
Wait protocol operates over a lossy FIFO channel.

that no duplicates are accepted as new messages by the receiver, and no messages
are lost, except for possibly the last message in the case of a lossy medium as
discussed above. We have further confidence that these conjectures are true
because the Alternating Bit Protocol is widely accepted as being correct over
lossy FIFO channels [2].

We thus conclude that the SWP operates as expected over lossy FIFO chan-
nels. If we allow messages in the channel to be re-ordered, will these properties
still be satisfied? The next section shows they are not.

6.3 Re-ordering Channels
Channel Bounds. We wish to prove that the number of messages in the com-
munication channel has the potential to grow without bound. This is formally
captured in the following theorem.

Theorem 4. For the Stop-and-Wait CPN of Figs. 2 and 3 where MaxRetrans ≥
1 and MaxSeqNo ≥ 1, the message channel (place mess channel) is unbounded.

Proof. To prove this theorem, we show that a cycle of transition occurrences
exists where the total effect of each cycle is to increase the number of messages
in the message channel by one, and that this cycle can be repeated indefinitely.
The following lemma is used in our proof.

Lemma 1. Let σk be a finite occurrence sequence that can occur from a marking
L, i.e. L σk−→ L′. If L′ ≥ L, then the occurrence sequence σk can be repeated
indefinitely from marking L.

Proof. Given L σk−→ L′ and L′ ≥ L, from Proposition 3 we know that σk can also
occur from L′, i.e. L′ σk−→ L′′. From Proposition 2, we know that L′′−L′ = L′−L
and because L′ ≥ L we know that L′′ ≥ L′. Thus from Proposition 3 we know
that σk can occur from L′′. Thus by repeated application of Propositions 2 and 3,
σk can repeat indefinitely from marking L. ��

All that is left to do to complete the proof of Theorem 4 is to identify a finite
occurrence sequence σk of transitions in our CPN model, such that σk can be
repeated indefinitely (i.e. L σk−→ L′ with L′ ≥ L), and that the total effect of
an occurrence of the sequence σk is to increase the number of messages in the
communication channel.

Consider our CPN model from Fig. 2 with declarations as shown in Fig. 3 but
with MaxRetrans ≥ 1 and MaxSeqNo ≥ 1. From the initial marking,M0, only the



A Coloured Petri Net Approach to Protocol Verification 241

send mess transition is enabled (with the variable sn bound to 0) indicating that
the sender is ready to begin a transmission. The occurrence of this transition
leads to a new marking M1 in which there is a message (a ‘0’ token) in the
mess channel place.

Transitions timeout retrans, mess loss and receive mess are all enabled at
marking M1. We note that the medium is lossy, but that this does not mean
that messages must be lost. An occurrence of receive mess, with variables sn
and rn bound to 0, models the receipt of this message and leads to a marking
M2. The arc inscription of the output arc from transition receive mess to place
process mess determines that this message is not a duplicate (sn = rn = 0) and
indicates this by placing a ‘1’ token (through evaluation of NextSend(0)) into
this place.

Transition send ack is enabled in marking M2 and when fired returns the
receiver to the ready state and places an acknowledgement message into the
acknowledgement channel (place ack channel). This results in marking M3.

The timeout retrans transition now occurs, with rc and sn bound to 0. The
guard on timeout retrans evaluates to true, because MaxRetrans ≥ 1. This leads
to a markingM4 in which the retransmission counter has been incremented (a ‘1’
token on retrans counter) and a duplicate message ‘0’ is in the message channel
(place mess channel).

Transition receive ack rather than receive dup ack is enabled inM4, due to the
complimentary guards, with a binding of rn = 1, sn = 0 and rc = 1. Occurrence
of receive ack removes the acknowledgement message from the acknowledgement
channel, returns the sender to the ready state, increments the sequence number
(NextSeq(0) = 1), and resets the retransmission counter to 0. The resulting
marking is M5, with

M5(sender ready)=1‘s M5(retrans counter)=1‘0
M5(seq no)=1‘1 M5(receiver ready)=1‘1
M5(ack channel)=∅ M5(wait ack)=∅
M5(process mess)=∅ M5(mess channel)=1‘0

M0 and M5 are similar in many respects, but M5 � M0 as the sequence
numbers stored at the sender and at the receiver have been incremented by one.
Note that there is an additional message (‘0’) left in the message channel. Let us
refer to the above sequence of transition occurrences as σ0 where σ0 = send mess
<sn=0>, receive mess <rn=0, sn=0>, send ack <rn=1>, timeout retrans <rc=0,
sn=0>, receive ack <rc=1, rn=1, sn=0> and M0

σ0−→ M5. The binding of vari-
ables for each transition occurrence is written inside angular brackets.

For illustration purposes, we firstly consider alternating bit sequence num-
bers (MaxSeqNo = 1). Consider the sequence of transition modes σ1 where
σ1 = send mess <sn=1>, receive mess <rn=1, sn=1>, send ack <rn=0>, time-
out retrans <rc=0, sn=1>, receive ack <rc=1, rn=0, sn=1>
σ1 is very similar to σ0, with the exception of the bindings of sn and rn. In

all instances, the values to which sn and rn are bound have been incremented,
modulo (MaxSeqNo+1) (modulo 2 in this case). σ1 can occur fromM5, resulting
in a marking M10, with
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M10(sender ready)=1‘s M10(retrans counter)=1‘0
M10(seq no)=1‘0 M10(receiver ready)=1‘0
M10(ack channel)=∅ M10(wait ack)=∅
M10(process mess)=∅ M10(mess channel)=1‘0 + 1‘1

We note that M10 = M0 + {((mess channel, 0), 1), ((mess channel, 1), 1)}.
Thus M10 is a covering marking of M0, i.e. M10 ≥ M0. The sequence numbers
at sender and receiver have wrapped back to their original value of 0 and M10

is identical to M0 with the addition of the two extra messages in the message
channel. According to the transition rule for HLPNs, additional tokens on a place
will not disable any transitions that were previously enabled. From Lemma 1,
the occurrence sequence σ0σ1 can repeat indefinitely, increasing the number of
tokens in mess channel by two each cycle. Thus mess channel is unbounded and
we have proved Theorem 4 for MaxSeqNo = 1.

Generalising for MaxSeqNo ≥ 1, we have MaxSeqNo+1 sequence numbers
and thus require σ0, σ1, . . . , σMaxSeqNo, defined in the same way as σ0 and σ1

above. For 0 ≤ j ≤ MaxSeqNo, σj = send mess <sn=j>, receive mess <rn=
sn=j>, send ack <rn=(j⊕1)>, timeout retrans <rc=0, sn=j>, receive ack <rc=1,
rn=(j⊕1), sn=j>.

The occurrence of σ0σ1 . . . σMaxSeqNo in marking M0 leads to a marking Mm,
where m = 5MaxSeqNo and

Mm(sender ready)=1‘s Mm(retrans counter)=1‘0
Mm(seq no)=1‘0 Mm(receiver ready)=1‘0
Mm(ack channel)=∅ Mm(wait ack)=∅
Mm(process mess)=∅
Mm(mess channel)=1‘0 + 1‘1 + ... + 1‘MaxSeqNo

Mm covers markingM0 so that σ0σ1 . . . σMaxSeqNo can repeat indefinitely from
markingM0, resulting in MaxSeqNo additional messages in the message channel
for each repetition. Thus the message channel is unbounded. ��

A similar theorem holds for the acknowledgement channel.

Theorem 5. For the Stop-and-Wait CPN of Figs. 2 and 3 where MaxRetrans
≥ 1 and MaxSeqNo ≥ 1, the acknowledgement channel (place ack channel) is
unbounded.

Proof. The proof is similar to that of Theorem 4, hence we just provide a sketch.
Consider the transition sequence send mess, receive mess<rn=sn>, send ack,
timeout retrans, receive ack, receive mess<sn�=rn> and send ack. (Binding ele-
ments have been omitted where they are not important.) Transition occurrence
sequences σ0, σ1, . . . σMaxSeqNo are defined in a similar way. The occurrence se-
quence σ0, σ1, . . . σMaxSeqNo can be repeated indefinitely from M0, resulting in
MaxSeqNo additional acknowledgements in the acknowledgement channel for
each repetition. ��
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Loss, Duplication and Stop-and-Wait Property. As previously discussed,
when the Stop-and-Wait protocol operates as required, one message will be re-
ceived correctly at the receiver for every original message sent by the sender. It
turns out that this is not always the case for the Stop-and-Wait protocol operat-
ing over a medium that reorders messages. This demonstrates that the protocol
does not satisfy the Stop-and-Wait service. Further we can show that sequences
of sends and receives exist where there are more receives than sends, indicating
that duplicates are accepted. Finally we can also demonstrate that there are
sequences in which there are more sends than receives, indicating that messages
can be lost.

We summarise these results in the following theorems.

Theorem 6. The Stop-and-Wait CPN of Figs. 2 and 3 where MaxRetrans ≥ 1
and MaxSeqNo ≥ 1, does not satisfy the Stop-and-Wait service.

Theorem 7. For the Stop-and-Wait CPN of Figs. 2 and 3 where MaxRetrans
≥ 1 and MaxSeqNo ≥ 1, the receiver may incorrectly accept duplicate messages
as new messages.

Theorem 8. For the Stop-and-Wait CPN of Figs. 2 and 3 where MaxRetrans ≥
1 and MaxSeqNo ≥ 1, messages can be lost without the sender or receiver being
aware of it.

Proof. We use language analysis to prove the above theorems. Due to the un-
bounded communication channels in our original model shown in Fig. 2, the
resulting reachability graph is infinite. However, to prove our theorems, we only
need to demonstrate that it is possible for the system to malfunction. We there-
fore limit the capacity of the communication channels to two. The rationale
behind this is that if the protocol operates incorrectly with a channel capacity
of two messages, the same incorrect behaviour will also be present in a chan-
nel with capacity greater than two. Capacities of 0 and 1 are not appropriate,
as a capacity of 0 results in no communication and a capacity of 1 prohibits
overtaking. Thus a capacity of two is the minimum needed to show interesting
behaviour.

To obtain the smallest reachability graph of interest, we also set MaxRetrans
= 1 and MaxSeqNo = 1. We argue that if incorrect behaviour is evident when
MaxRetrans = 1 then the same behaviour can occur for MaxRetrans ≥ 1 (as it in-
cludes MaxRetrans = 1) and similarly for MaxSeqNo (as sequence numbers always
wrap, but the sequences illustrating the incorrect behaviour will be longer).

Channel capacity has been implemented as shown in Fig. 9 with declarations
shown in Fig. 10. The initial marking of the mess channel and ack channel places
has been modified so that each place contains a certain number of empty tokens,
in this case two each, representing empty buffers. Each time a message is placed
in the channel, an empty token must be removed, and whenever a message is
removed, an empty token must be put back. This is shown on the arc expres-
sions connecting the mess channel and ack channel places to the surrounding
transitions.
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Fig. 9. A CPN of the Stop-and-Wait Protocol operating over a reordering medium
with finite capacity.

val MaxRetrans = 1;

val MaxSeqNo = 1;

color Sender = with s;

color Seq = int with 0..MaxSeqNo;

color RetransCounter = int with 0..MaxRetrans;

color Message = union message : Seq + Empty;

var sn,rn : Seq;

var rc : RetransCounter;

fun NextSeq(n) = if(n = MaxSeqNo) then 0 else n+1;

Fig. 10. Declarations of the CPN shown in Fig. 9.

Design/CPN [29] was used to generate the reachability graph of this CPN
(Fig. 9) for the configuration shown in Fig. 10, without loss in the channel. The
reachability graph contains 410 nodes and 848 arcs. After interpreting this as a
FSA, the FSM package was used to obtain the equivalent minimum deterministic
FSA as shown in Fig. 11. We have replaced send with s and receive with r in the
figure due to size constraints.
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Fig. 11. FSA showing erroneous sequences of send and receive primitives for the Stop-
and-Wait protocol operating over a lossless reordering medium.

This FSA shows that the SWP operating over a medium that reorders mes-
sages does not satisfy its service. For example, we see that the sequence 4 r→
5 s→ 8 s→ 6 r→ 4 violates the Stop-and-Wait service of alternating send and
receive events. There are other more interesting sequences also. There are incor-
rect sequences of send and receive primitives, indicating that the receiver can
mistakenly accept duplicate messages as new messages. For example, the cycle
7 s→ 10 r→ 13 s→ 6 r→ 4 r→ 5 r→ 7 shows that it is possible for the system to enter
a loop where the receiver accepts four messages as legitimate messages for every
two sent by the sender. Another such loop is 5 s→ 8 r→ 11 r→ 13 s→ 6 r→ 4 r→ 5.
To illustrate how duplication can happen in the protocol, we have included a
protocol trace corrresponding to the initial sequence 0 s→ 1 r→ 2 s→ 3 r→ 4 r→ 5
as shown in Fig. 12.

In Fig. 12, event 1 corresponds to sending a message (send primitive) with
sequence number 0 (mess(0)), which is received (event 2: receive) and acknowl-
edged (event 3) by sending ack(1). The timer then expires at the sender, and
mess(0) is retransmitted (event 4) giving rise to a duplicate (mess(0)[dup]) which
is delayed in the medium. The sender then receives ack(1) (event 5) and sends out
its next message, mess(1), at event 6 (send). At this stage there are two messages
in the channel. Because the retransmitted mess(0) is delayed, it is overtaken by
mess(1) which is expected and received normally by the receiver (event 7:receive)
who acknowledges it with ack(0) at event 8. At this point, the primitive events
have been as expected: send, receive, send, receive. Next the sender retransmits
mess(1) (mess(1)[dup]) at event 9 (not relevant to this discussion). Then at event
10 (receive), the receiver is expecting a mess(0) and receives it. However, it is
a duplicate of the first message, and not a new message. The receiver wrongly
interprets it as a new message and a receive primitive occurs, giving the sequence
send, receive, send, receive, receive.

We now consider a third cycle in Fig. 11, given by 13 s→ 6 s→ 9 s→ 12 r→ 13.
This cycle shows that for every 3 messages sent, only one is received, demon-
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Fig. 12. Time Sequence diagram showing the acceptance of a duplicate for the Stop-
and-Wait protocol operating over a lossless reordering medium.

strating message loss even though there is no loss in the medium! We illustrate
this behaviour with the protocol trace shown in Fig. 13.

The sequence starts as expected with the first two messages (mess(0) and
mess(1)) sent (events 1 and 8) and received (2 and 9) correctly. Retransmissions
occur for both mess(0) (event 4) and mess(1) (event 11), but these are correctly
discarded as duplicates (events 6 and 13). However, they give rise to duplicate
acknowledgements (events 7 and 14) which the sender incorrectly interprets as
acknowledgements (events 16 and 18) for the new messages sent (events 15 and
17). For example, this is due to ack(0) overtaking ack(1) and mess(0) being sent
before ack(1) arrives. Now mess(1) (the fourth message sent) overtakes mess(0)
(the third message sent) and is misinterpreted by the receiver as a duplicate and
discarded (event 19) because the receiver is expecting mess(0). An acknowledge-
ment (ack(0)) is thus sent (event 20) indicating that the receiver is expecting
a message with a sequence number 0. Meanwhile, the sender has received du-
plicate ack(0) (event 18) which it interprets as a good acknowledgement for the
fourth message (which is discarded by the receiver, as already discussed) and
transmits (event 21) the fifth message (mess(0)). This gives us the primitive se-
quence: send, receive, send, receive, send, send, send. The receiver now receives
the third message (mess(0)) correctly (event 22) and acknowledges it (event 23).
The receiver is thus expecting to receive a message with sequence number 1,
but receives the new fifth message (event 25) and discards it as a duplicate.
However, the sender now receives ack(1) (event 24) and believes that the fifth
message has been received correctly. This sequence demonstrates how two mes-
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Fig. 13. Time Sequence diagram showing how loss can occur for the Stop-and-Wait
protocol operating over a lossless reordering medium.

sages (the fourth and fifth) can be lost due to incorrect protocol mechanisms,
while both the sender and receiver believe that there is no problem. Note that
this sequence only requires two retransmissions to occur.

It is interesting to note that problems with acceptance of incorrect messages
do not occur until the sequence numbers wrap, i.e. at node 4 in Fig. 11.

We also considered the case when the channel was lossy (in addition to re-
ordering). The same parameter settings were used. The reachability graph con-
tained 624 nodes and 2484 arcs. The reduced FSA showing the protocol language
for this configuration contains 29 nodes and 47 arcs, and is shown in Fig. 14.
There are many incorrect sequences in this language also. ��

7 Discussion

7.1 Practical Relevance

In order to understand the relevance of these results to practical protocols, let us
consider the error recovery and flow control strategies implemented in TCP [62].
TCP uses retransmission on timeout to recover from packet loss and a sliding
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Fig. 14. FSA showing erroneous sequences of send and receive primitives for the Stop-
and-Wait protocol operating over a lossy reordering medium.
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window mechanism for flow control, which includes dynamic window changes.
TCP operates over IP (the Internet Protocol), which allows packets (known as
segments) to be dropped or reordered. The correctness of TCP’s data transfer
procedures can thus be related to the correctness of the Stop-and-Wait protocol
operating over a medium that allows reordering.

It is necessary to distinguish between ‘old’ duplicates, those left from a pre-
vious connection, and duplicates caused by retransmissions within a connection.
TCP uses a 32 bit sequence number, giving 232 = 4294967296 sequence numbers.
Each sequence number is associated with 1 byte of data. Apart from unbounded-
ness, the problems associated with the Stop-and-Wait protocol only arise after
sequence numbers wrap, so that delayed duplicates can disrupt the acknowl-
edgement mechanism, resulting in loss of messages or mistaken acceptance of
duplicates as new messages. This will only happen in TCP after 4Gbytes of data
have been transmitted and duplicates still remain in the network.

The threat posed by old duplicates was recognised by the designers of the
Internet. They introduced the concept of a life-time for a packet in the IP layer,
known as time-to-live. (This is implemented as a ‘hop count’ in practice.) The
idea is that duplicate packets left floating around a network will be discarded
once their time-to-live expires. TCP also implements a 3-way handshake for con-
nection establishment, such that the starting sequence number for a connection
can be chosen carefully for each new connection. In this way, (time-to-live com-
bined with the 3-way handshake) TCP tried to avoid the problem caused by old
duplicate packets being accepted due to wrapping sequence numbers.

RFC (Request for Comment) 793 [62], the protocol specification for TCP
maintained by the Internet Engineering Task Force (IETF) [42], states that the
maximum lifetime for a segment of data (MSL) is two minutes. Thus there will
not be a problem with duplicate packets if they are destroyed before sequence
numbers can wrap. Every byte is given a sequence number, thus for a trans-
mission rate of 1 megabit per second (125 kBytes/sec) and ideal conditions for
data transfer, the sequence number space will be exhausted in approximately
232/(1.25 ∗ 105) ≈ 9.5 hours. Clearly this is not a problem. For a transmission
rate of 100 megabits/sec (12.5 megabytes/sec) we see that the sequence num-
bers will wrap after 232/(1.25 ∗ 107) ≈ 5 minutes and 45 seconds. This is getting
close to the maximum packet lifetime, but should not pose a problem unless
the hop count mechanism takes longer than 2 minutes to quash packets. With
the introduction of Gigabit networks [73] the sequence numbers of TCP could
wrap after only 34 seconds of data transfer at 1 gigabit/second. Although the
maximum throughput of a network rarely approaches the theoretical maximum,
it would not be unreasonable to assume that with a very large window size and
very large data transfers, wrapping of sequence numbers would occur after about
one minute, allowing for the possibility of duplicates being in the channel at the
same time as new packets with the same sequence numbers.

This is the condition necessary for packet loss and the acceptance of du-
plicates (as a new packet) to occur. However, to get duplicates, there must be
retransmissions caused by additional delay due to network congestion or lack
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of responsiveness in the receiver (e.g. an overloaded web server) which will re-
duce throughput. This delay, however, does not need to be very great to cause
retransmissions, and hence the effect on throughput may not be significant. An-
other factor limiting throughput is TCP’s window size and the round trip delay
(RTD). In standard TCP implementations, the maximum window size is 216

bytes, limiting the throughput to (216/RTD) bytes/sec. The speed of light prop-
agation delay contribution to RTD will then provide a limit irrespective of the
transmission speed. However, to allow users to take advantage of high-speed
networks, RFC 1323 [43] proposes to increase the maximum window size to 230

bytes or 1Gbyte, in which case the speed of light delays are no longer a limiting
factor.

It is unlikely that duplicates are a problem for TCP with the current speed of
networks, however these problems may become more probable if network speed
were to increase by another order of magnitude, i.e. 10 gigabit/second. There are
additional ramifications to be considered if incorrect acceptance of duplicates or
loss of data becomes a problem. For safety critical applications operating over
the Internet the consequences could be catastrophic.

There are a number of suggested ways in which this problem could be solved,
or at least alleviated. RFC 1323 [43] specifies a number of TCP extensions
for high performance. The extension for a larger window size has already been
mentioned. Another extension is Protect Against Wrapped Sequence Numbers
(PAWS) which proposes a solution to wrapping sequence numbers within a con-
nection, by including a 32 bit time-stamp in every segment. Another solution
involves extending the sequence number space, to 264, i.e. 64 bit sequence num-
bers. Even at 10 gigabit/second, a 64 bit sequence number field would take 470
years to wrap. The procedure of sequence numbering may also be reviewed, as
currently every byte is given a sequence number. Providing a sequence num-
ber for every packet would extend the usefulness of the existing 32-bit sequence
numbers.

How likely is it that unbounded growth of messages in the communication
channels will actually occur? The unbounded growth is caused by retransmis-
sions due to delayed acknowledgements. Given the variability of the round trip
delay (due to the unpredictability of network congestion or overloaded servers) it
is not uncommon for these delays to occur. This is countered to some extent by
TCP measuring round trip delay and setting its retransmission timeout period
accordingly. However, due to transients, unnecessary retransmissions will always
occur. The unbounded growth, however, only occurs because the duplicates are
not received by the receiver. This is highly unlikely. Also those that are delayed
in the network will be expunged after their time-to-live limit has expired. Thus
TCP already has mechanisms in place to prevent unbounded growth. TCP has
also developed sophisticated techniques to cope with network congestion [73],
so we don’t see that our unboundedness result for re-ordering media will cause
major difficulties with protocols such as TCP. Nonetheless, as network speeds
increase the problem will get worse, particularly if the time to live value is main-
tained at 2 minutes. In general we can say that the contribution to congestion



A Coloured Petri Net Approach to Protocol Verification 251

over FIFO channels is well contained (determined by the maximum number of re-
transmissions allowed) whereas over channels that re-order messages, it requires
other mechanisms to contain congestion.

One avenue of further study is to generalise these results for other flow control
mechanisms, such as the Sliding Window mechanism used in TCP and other
protocols.

7.2 Shortcomings of Our Approach

The language analysis performed in Section 6.3 uncovered a number of errors,
but was not able to detect all errors. We discovered many scenarios in which
the Stop-and-Wait protocol, operating over a reordering channel (bounded or
unbounded), can generate sequences of alternating send and receive events in
which duplicate data is accepted and messages can be lost.

The following sequence of events is just one of many in which the above two
problems are evident. This particular sequence was chosen because it is one of
the shortest. Starting from the initial state of the CPN as depicted in Figs. 9
and 10, it illustrates the possibility of acceptance of duplicate data and message
loss. This scenario represents a loop in the reachability graph of the model and
exists independently of the boundedness and lossy properties of the channel. In
the following event sequence, we use ‘message n’ as shorthand for ‘the message
with sequence number n’. The corresponding transition and binding of variables
is written after each action.

1. Send message 0 (send mess <sn=0>)
2. Receive message 0 (receive mess <rn=0, sn=0>)
3. Send acknowledgement for message 0 (send ack <rn=1>)
4. Timeout and retransmit message 0 (timeout retrans <rc=0, sn=0>)

- A duplicate message 0 remains in the channel.
5. Receive the ack of message 0 (receive ack <rc=1, rn=1, sn=0>)
6. Send message 1 (send mess <sn=1>)
7. Receive message 1 (receive mess <rn=1, sn=1>)

- Message 1 has overtaken message 0.
8. Send acknowledgement for message 1 (send ack <rn=0>)
9. Receive the ack of message 1 (receive ack <rc=0, rn=0, sn=1>)

10. Send message 0 (send mess <sn=0>)
- Now there are two message 0’s in the channel, a new message 0 and the
duplicate of the previous message 0 from line 4.

11. Receive message 0 (receive mess <rn=0, sn=0>)
- Duplicate data accepted (unless the new message 0 overtakes the old mes-
sage 0.) The receiver believes this to be the correct (new) message 0.

12. Send acknowledgement for message 0 (send ack <rn=1>)
13. Receive and discard a duplicate message 0 (receive mess <rn=1, sn=0>)

- Loss of the data in the new message 0 (unless overtaking occurred in step
11, in which case we are discarding the duplicate message 0 from step 4.)

14. Send a duplicate acknowledgement of message 0 (send ack <rn=1>)
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15. Receive the ack of message 0 (receive ack <rc=0, rn=1, sn=0>)
16. Receive the duplicate ack of message 0 (receive dup ack <rn=1, sn=1>)
17. Send message 1 (send mess <sn=1>)
18. Receive message 1 (receive mess <rn=1, sn=1>)
19. Send acknowledgement of message 1 (send ack <rn=0>)
20. Receive ack of message 1 (receive ack <rc=0, rn=0, sn=1>)
21. Repeat from the beginning.

The problem arises in steps 11 and 13 of the above sequence. Because we do
not include message data in our model, we can not determine which message is
being received at step 11 (the original message from step 10 or the duplicate from
step 4) and which is being discarded at step 13. Note that the global sequence
of alternating send and receive events, as defined in our service, still holds.

Language equivalence is sufficient to prove or disprove that the correct se-
quences of events were occurring in the protocol, as defined in our service specifi-
cation. From it we were able to detect numerous errors relating to the sequences
of events, and to infer from those incorrect sequences that loss or duplication
was occurring. However, given our existing service and protocol specifications,
we were unable to detect the incorrect data acceptance and loss problems iden-
tified above, when the event sequences were as expected. The fault lies not with
language analysis itself but with what we are applying language analysis to. The
service specification is incomplete. Indeed, the service only specifies that there
must be alternating send and receive events, i.e. that every send event (for a
new message) is followed by a receive event (for what the receiver believes is the
same new message). It abstracts from the data that is sent and received. What
appears to be a reasonable abstraction (that is, the data to be sent is not re-
quired as it does not affect the operation of the protocol) is adequate for proving
or disproving properties such as deadlocks and livelocks, and for determining the
sequences of events, but says nothing about the data delivered on the occurrence
of such events.

The assumption we made in defining the service is related to the notion of
data independence [54, 64, 65, 77, 82]. Conceptually, a system is said to be data
independent if the operation of the system is independent of the specific data
it is operating on. Sabnani [65] uses data independence principles to define and
verify properties about the Alternating Bit Protocol operating over a link-layer
channel with a capacity of one. For example, to prove that data is passed up
to the receiving user in the same order in which it is supplied by the sending
user, both Wolper [82] and Sabnani [65] tell us that we need a minimum of three
distinct data values. Incorporating these ideas into our service and protocol
specifications may provide a solution.

Another avenue for investigation is the work presented in [52]. Knuth essen-
tially derives design rules for appropriate bounds on sequence numbers for data
transfer protocols operating over FIFO channels. He then provides a general-
isation of these rules for channels that are basically FIFO in nature but may
exhibit limited (bounded) reordering. Investigating the derivation of these rules
may provide insight into our use of sequence numbers in the analysis of the
protocol specification.
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8 Concluding Remarks on the Stop-and-Wait Protocol

The class of Stop-and-Wait protocols (SWPs) include message acknowledge-
ments and retransmission on time-out procedures to recover from transmission
errors or from dropped packets in a communication medium such as the Inter-
net. They form the basis of the data transfer procedures for both data link layer
protocols and transport level protocols. The retransmission procedure can result
in duplicate messages due to acknowledgements being lost or delayed. To de-
tect duplicates a SWP inserts sequence numbers into messages and keeps track
of the sequence numbers at both ends. However, sequence numbers need to be
from a finite sequence number space and the number of times that a message can
be retransmitted is also limited. We thus characterise SWPs using two param-
eters: the maximum sequence number (MaxSeqNo) and the maximum number
of retransmissions (MaxRetrans). We demonstrate how a simple CPN model can
be built that is parameterised by MaxSeqNo and MaxRetrans and discuss some
of the modelling decisions. The first model operates over a lossy re-ordering
medium. We also show how the CPN model can be modified to operate over
(lossy) FIFO channels (applicable to data link protocols) and that this is an
important starting point for analysing the re-ordering case. We consider four
properties that we believe are important for stop-and-wait protocols: the bound
on the channels; (unknowing) loss of messages; acceptance of duplicates as new
messages; and the stop-and-wait property of alternating sends and receives. In
the case of lossy FIFO channels, we manually prove that the communication
channels are bounded by one more than twice the maximum number of retrans-
missions (2MaxRetrans + 1). We believe this is a new result. This illustrates an
approach to proving properties of protocols for arbitrary parameter values using
manual proofs. Using the protocol verification methodology, i.e., by generating
the occurrence graph of the protocol and using automata reduction, we also
show that the stop-and-wait property holds for small values of the parameters
and conjecture that this implies that no loss or duplication occurs.

Protocols (such as TCP) operating over the Internet Protocol have to contend
not only with loss due to transmission errors and packets dropped at routers, but
also with the possibility that the order of packets is not maintained. Since TCP
can behave as a Stop-and-Wait protocol under certain conditions it is interesting
to investigate the behaviour of SWPs over a reordering medium. We analysed
our CPN model with re-ordering channels and proved that: the communication
channels are unbounded; messages can be lost, although the sender believes they
have been confirmed by the receiver; duplicates can be accepted as new messages
by the receiver; and that the SWP does not satisfy its service of alternating sends
and receives. We provided a manual proof that the channels were unbounded
so long as both parameters were positive giving a general result. The last 3
properties were obtained using our automatic verification method for the case
when the channel capacity was 2 and MaxRetrans and MaxSeqNo were both 1.
We then argued that this would also imply that these error conditions would
occur for any channel capacity greater than one, and any positive values of the
parameters. We also noted that the first result is independent of sequence number
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wrap, while the last three results depend on sequence numbers wrapping before
the problems occur.

We discuss the practical relevance of these results to TCP. We conclude
that sequence number wrap is possible in Gigabit networks, particularly if the
extended window size option is used. RFC 1323 discusses this problem and sug-
gests a mechanism (PAWS) using 32 bit time stamps to reject old duplicates,
which hopefully will eliminate the problems associated with sequence number
wrap. The problem with unbounded channels is not serious, but could add to
congestion problems as the speed of networks increases. Our discussion is at a
high-level and does not investigate in detail TCP’s procedures for data transfer,
nor the suggested PAWS scheme.

Our language analysis results allow us to detect incorrect sequences of events
in our protocol specification and to deduce that loss and duplication are occur-
ring. However, we illustrate that our data abstraction assumption (that data is
not required as it does not affect the operation of the protocol) prevents us from
detecting data loss and duplication in situations where the sequences of events
are correct (i.e. correspond to the SWP service). Thus, with the data abstraction
used, language analysis does not provide a method for verifying correct operation
of the protocol in terms of absence of loss and duplication. To solve this problem
we plan to apply data independence principles and techniques in order to define
service and protocol specifications that capture the required information.

9 Transmission Control Protocol

The purpose of this part of the paper is to provide an example of an applica-
tion of the methodology to an important complex protocol of the Internet, the
Transmission Control Protocol (TCP). Our concern here will be to illustrate the
first steps in modelling and analysing a complex protocol in the hope that this
experience will help others to tackle other complex protocols. We concentrate on
the connection management aspects of the protocol (especially establishment),
rather than data transfer, which has already been discussed in detail for the
Stop-and-Wait protocol.

TCP is specified in Internet Request For Comments (RFC) number 793 [62].
Its goal is to establish, maintain and close point-to-point connections between
host computers attached to the Internet. Its main purpose is the reliable transfer
of data between host computers. It also provides facilities for many connections
to be running simultaneously to support multiple Internet application sessions
such as those related to the World Wide Web and Email.

9.1 TCP Messages

In order to establish and release connections and to transfer data, RFC 793
defines a set of messages that are exchanged between the two computers. A
TCP message, known as a segment, comprises a header field and a data field
that carries application data. The TCP header field provides control information
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for handling multiple connections, their management (the opening and closing
of connections) and reliable data transfer including end-to-end flow control. The
format of a TCP segment is given in Fig. 15.
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Fig. 15. TCP Segment Format.

The 16 bit source and destination port fields are used to identify the ap-
plication that is going to use the connection and allow multiple connections to
be running simultaneously. On a particular connection, a sequence number is
associated with every octet of data that is to be sent from one host computer to
another. When transmitting data, the 32 bit sequence number field specifies the
sequence number of the first data octet in the segment. The 32 bit acknowledge-
ment number field indicates the successful receipt of data octets and contains
the next sequence number of the data octet that the sender of the acknowledge-
ment segment is expecting to receive. The four bit data offset field contains the
header length (in 32 bit words). The next 6 bits are reserved, then there are a
set of 6 control bits that are vitally important for TCP connection management.
We describe them in detail in the next paragraph. A 16 bit window field is used
for flow control. It signals to the receiver of the segment the number of data
octets that the sender of the segment is prepared to receive, beginning with the
acknowledgement number in the segment.

As already mentioned the header contains six 1-bit control flags: URG (ur-
gent), ACK (acknowledgement), PSH (push), RST (reset), SYN (synchronisa-
tion) and FIN (finish). The URG flag if set, is used in conjunction with an urgent
pointer field, to indicate to the receiver the position of data in the octet stream
that needs priority when being delivered to the user. A segment with the ACK
flag set indicates that the acknowledgement number field is valid. A set PSH
flag indicates to the receiving TCP process that all queued data, including that
just received, must be immediately delivered to the user. When set, the RST
flag informs the receiver of the segment to reset the connection. This normally
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results in the connection being aborted. A TCP connection is initiated by setting
the SYN bit in a segment. The SYN carries an initial sequence number which
indicates that the first octet of data to be sent will carry the next sequence num-
ber (initial sequence number plus one). The initial sequence number is chosen
according to the value of a clock that the host runs, instead of always being set to
zero. This is to reduce the probability of delayed old duplicate SYNs interfering
with the connection. Finally, a segment with the FIN bit set indicates that the
sender of the segment has no more data to send. It is used to gracefully close
the connection (i.e. without data loss). The sequence number of the FIN is that
of the last data octet sent plus one. A TCP segment is usually named after the
control bits that are set. For example, a SYNACK segment refers to the segment
which has both the SYN and ACK bits set.

The remaining header fields comprise a 16 bit checksum used to detect trans-
mission errors, a 16 bit urgent pointer required for urgent data (already discussed
above) and an options field (allowing, for example, a maximum segment size to
be indicated in a SYN segment).

9.2 TCP Connection Management Procedures

A TCP state diagram [26,62, 69] is included in the RFC to illustrate TCP con-
nection management procedures. It defines TCP’s 11 states and a core set of
state changes related to processing user calls and connection management seg-
ments. It is incomplete in that it does not include TCP’s state variables nor does
it incorporate reset processing and error handling. A much more comprehensive
pseudo-code like description of TCP’s procedures is given in Section 3.9 of RFC
793. In this section we just illustrate the procedures using message sequence
diagrams.

Figure 16 (a) is a message sequence diagram for normal connection setup
and tear down. On the left is the client (the initiator of the connection) and on
the right is the server. Time progresses down the page. The client’s states (e.g.
CLOSED, SYN SENT, ESTABLISHED) are written to the left of the vertical
line representing the client. A similar convention is adopted for the server side.
User commands (i.e. active open, passive open, and close) are written in paren-
theses on top of some states, indicating when they occur. TCP uses a “three-way
handshake” [75] to establish a connection, i.e., three segments are used by the two
communicating hosts to open the connection. In Fig. 16, the sequence number
and the acknowledgement number (when relevant) are included with the segment
name. The procedure is initiated by the TCP entity on one host (client), and re-
sponded to by the TCP entity on the other (server). In Fig. 16 (a), after receiving
an active open command from its user, the TCP client sends out a SYN segment
with a sequence number ISS1, its initial sequence number for the connection. The
client also changes state from CLOSED to SYN SENT. The TCP server enters
LISTEN after receiving a passive open command from its user. To respond to the
SYN from the client, it sends out a SYNACK segment with an acknowledgement
number ISS1+1 as well as a sequence number ISS2, the server’s initial sequence
number for the connection. After sending the SYNACK segment, the TCP server
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changes state from LISTEN to SYN RCVD. To respond to the SYNACK, the
TCP client sends an ACK with sequence number ISS1+1 and acknowledgement
number ISS2+1 and changes state from SYN SENT to ESTABLISHED. After
receiving the ACK, the server goes into ESTABLISHED from SYN RCVD. The
connection is now set up between the client and the server.
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TIME_WAIT

Fig. 16. Message sequences for TCP connection management.

Graceful connection termination is illustrated at the bottom of Figure 16
(a). Firstly, the TCP client user indicates that it has no further data to send by
issuing a close command. The TCP client sends a FIN segment to the server and
enters the FIN WAIT 1 state. On receipt of the FIN, the server acknowledges it
and informs its user that the client is closing the connection. When the server
user has no more data to send, it issues a close command to the server TCP
entity, which sends a FIN to the client, closing the connection from the server to
the client. Finally the FIN is acknowledged by the client. The sequence number
(x) and acknowledgement number (y) used in this message sequence diagram
assume that the server had no more data to send.

The TCP connection management protocol also incorporates procedures for
simultaneously opening and simultaneously closing connections by both TCP en-
tities. Figs. 16 (b) and (c) show the sequences respectively. For more information
about them, see [62, 69].

As well as the major states defined in the state diagram, TCP state vari-
ables are used to maintain the state of a TCP connection and are stored in a
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record called the Transmission Control Block (TCB). Important TCP variables
for connection management are: SND UNA, SND NXT, ISS and RCV NXT.
SND UNA records the oldest sequence number of a segment that has been sent
but has yet to be acknowledged. SND NXT stores the sequence number of the
next segment to be sent. ISS represents the initial send sequence number of the
initiating TCP entity, while RCV NXT stores the sequence number of the next
expected incoming segment.

10 CPN Model of TCP Connection Management

In this section we explore building a CPN model of TCP’s connection man-
agement procedures. We start by discussing the assumptions and abstractions
used.

10.1 Modelling Assumptions and Abstractions

We make five assumptions when modelling TCP connection management.

1. The communication channel does not lose, corrupt or duplicate packets, but
may delay and re-order packets.

The reason for starting from a non-lossy channel is that a lossy channel
may hide possible deadlocks in the protocol, such as unspecified receptions
which the channel can conveniently lose, but mostly will not! Thus this
anomaly would be missed when inspecting the leaf nodes of the reachability
graph if arbitrary channel loss is included, but nonetheless it would be a
problem. Excluding loss initially allows these imperfections to be detected
by inspecting dead markings.

2. There is no retransmission.

We would like to ensure that the procedures work without the complication of
retransmissions, which we know will cause state space explosion. Thus, when
no loss is involved, retransmissions are not necessary for the procedures to
operate correctly. Later, we shall need to investigate the effect of loss and the
use of retransmissions, once the basic behaviour is confirmed to be correct.
This assumption allows us to ignore the retransmission procedures for SYN
and FIN segments.

3. We consider a single instance of a TCP connection.

Because all instances of a connection operate the same way, we can just
consider one instance. It is only when we wish to consider contention for
resources (such as buffer space in a host) between a number of running
connections, that we need to consider multiple connections. This is ruled
out of the scope of the initial analysis of TCP. This assumption allows us to
ignore the source and destination port numbers.
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4. The receive buffer is big enough to store all the incoming segments.
Since we are only considering connection management, and not data transfer,
it is reasonable to assume that the receiver will be able to store the connection
management segments. This allows us ignore the flow control window and
the calculations and comparisons based on it. This simplifies the model and
thus reduces the size of the state space.

5. The user issues four commands to the TCP entity: active open, passive open,
send and close.
The TCP user interface also allows for three other calls: abort, receive and
status. We do not model the abort call at this stage, as we wish to investi-
gate TCP’s basic behaviour of establishing and gracefully releasing connec-
tions, before including arbitrary aborts. Once we know the core behaviour
is satisfactory, then we can start to investigate the rarer and more complex
behaviour that includes user aborts. The receive and status calls do not af-
fect the operation of the protocol and can be considered as local interface
matters. They are also not modelled.
The TCP RFC says little about feedback to the user (such as receipt of data,
or indications that the connection has been requested or is established) and
thus at this stage of the investigation, we do not consider it. It is however
of vital importance with respect to whether or not TCP satisfies its service,
where we must be explicit about such interactions. Since RFC 793 does not
define a service, we firstly investigate the operation of the protocol without
it. Once more experience is gained, then we are in a much better position to
define the service [15–17].

We model TCP segments at the level of detail needed for analysing the con-
nection management procedures, given the above assumptions. A TCP segment
is thus modelled by including: the sequence number, the acknowledgement num-
ber and four control flags: SYN, ACK, RST and FIN. Other fields in the TCP
header can be omitted because they do not affect the operation of the connection
management procedure. For example, we do not need to model the checksum as
discussed in Section 2.2, and the flags PSH and URG, the urgent pointer field
and the window are only concerned with the data transfer procedures. We also
do not consider options.

10.2 Architecture

Our CPN model comprises 6 places and 87 transitions. It is organised into three
hierarchical levels, as shown in Fig. 17.

The first level has one page called TCP Overview. The second level also has
one page, named TCP Entity. Since TCP is symmetrical (both ends implement
the same procedures) we only need to define the procedures once, and then
instantiate them for each end, using page instances [53]. The third level has
eleven pages, one for each TCP state. This is standard practice in many protocol
definitions and has been used in the modelling of other communication protocols,
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Hierarchy#10010
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TCP_Overview#1
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FIN_WAIT_2#9

CLOSE_WAIT#10
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FIN_WAIT_1
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CLOSING

LAST_ACK

TIME_WAIT

Fig. 17. Hierarchy page for the CPN model.

for example, [34]. This approach is also consistent with the way TCP is specified
in Section 3.9 of RFC 793. (It turns out that other structures are possible which
take advantage of common procedures in different states ( [37]). However, the use
of a state-based approach provides a clean and readily followed structure when
first starting to model protocols, especially if they include state diagrams or
state tables in their definitions. Once this experience has been obtained, further
important optimisations of the structure can be undertaken.)

10.3 Declarations for the TCP Model

The declarations shown in Fig. 18 define the colour sets and any associated
variables for User Commands, TCP segments and the TCB and include values
for the initial sequence numbers.
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1 (* User Commands *)

2 color COMMAND = with A Open | P Open | Send | Close;

3

4 (* TCP Segments *)

5 color Int = int;

6 color CTLbit = with SYN | RST | ACK | FIN;

7 color ACKflag = with on | off;

8 color SEG CTL = product CTLbit*ACKflag;

9 color SEG = record

10 SEQ: Int *

11 ACK: Int *

12 CTL: SEG CTL;

13 var seg: SEG;

14

15 (* Transmission Control Block *)

16 color STATE = with CLOSED | LISTEN | SYN SENT | SYN RCVD | EST |
17 CLOSE WAIT | LAST ACK | FIN W1 | FIN W2 |CLOSING | TIME WAIT;

18 color SV = record

19 RCV NXT: Int *

20 SND NXT: Int *

21 SND UNA: Int *

22 ISS: Int;

23 var v: SV;

24 color LISTENstat = with lis | cls;

25 var i: LISTENstat;

26 color TCB = product STATE*SV*LISTENstat;

27

28 (* ISS *)

29 val ISS tcp1 = 10;

30 val ISS tcp2 = 20;

Fig. 18. Declarations for TCP user commands, segments and TCB.

The colour set COMMAND (line 2) defines four commands: A Open (active
open); P Open (passive open); Send; and Close, that are issued by users. The
colour set SEG (lines 9–12) defines a TCP segment as a record with three entries:
SEQ, ACK and CTL. SEQ is used to model the sequence number and ACK, the
acknowledgement number. Both numbers are defined as integers. Note that the
actual sequence number and acknowledgement number space is finite, ranging
from 0 to 232 − 1. Because we are only dealing with connection management
and not data transfer, only a very small portion of the sequence number space
is used for establishing and releasing a connection. Thus we can also assume
that the sequence numbers do not wrap (i.e. cycle back to zero), so that modulo
arithmetic is not required. (Note that including modulo arithmetic is essential
when modelling the data transfer procedures.)

CTL (line 12), typed by the colour set SEG CTL, is used to model TCP’s
control flags. SEG CTL (line 8) is a product of CTLbit (line 6) and ACKflag
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(line 7) that model the four segment types and the ACK flag respectively. The
ACKflag indicates the status (on or off) of the Acknowledgement Number field. If
the ACK flag is on it indicates that the Acknowledgement field is valid. Variable
seg (line 13), the variable for TCP segments, is declared as type SEG. An example
of a SYNACK using ML syntax is {SEQ = 20, ACK = 11, CTL = (SY N, on)}.

The Transmission Control Block (lines 15–30) defines at line 26 a colour
set, TCB, as a product of STATE (line 16), SV (lines 18–22) and LISTENstat
(line 24). STATE comprises the 11 TCP states. SV defines the four TCP variables
explained in Section 9.2: RCV NXT, SND NXT, SND UNA and ISS. We use
integers for state variable values (instead of 32 bit integers) for the same reason
as given above for sequence numbers. LISTENstat is a Boolean used to keep
track of whether or not the TCP entity has previously been in the LISTEN
state. If it has, variable i, typed by LISTENstat (line 25), will take the value lis,
otherwise it will take the value cls, indicating that the entity has not previously
been in LISTEN but CLOSED. This is used to determine the next state that
TCP enters from states SYN SENT and SYN RCVD on receipt of a RESET
segment (see RFC 793, Section 3.4). Variable v (line 23), the variable for the
record of TCP state variables, can take any value belonging to SV, such as
{RCV NXT = 21, SND NXT = 11, SND UNA = 11, ISS = 10}. ISS tcp1 and
ISS tcp2 (lines 29–30) define the initial send sequence numbers for each TCP
entity.

We also define six functions that create TCP segments, depending on the
value of state variables or incoming segments, as shown in Fig. 19. All the func-
tions are similar, so we just illustrate in detail the creation of a segment by using
the function SYNseg (lines 32–35) that creates a SYN segment, as an example.
The initial sequence number, stored in TCB as the fourth component of the state
variable record and specified in ML as #ISS(v), is assigned to the sequence num-
ber field of the SYN segment. By convention, the acknowledgement number field
is assigned the value 0 (for null), because the SYN segment is used to initiate
a connection and therefore cannot carry a valid acknowledgement number. In
the SYN segment, the control bit SYN is on and ACK is off (indicating that the
acknowledgement number is not valid), so entry CTL of the segment record is as-
signed (SYN,off). Other TCP segments are modelled in a similar way. Note that
functions RSTackon and RSTackoff take incoming segments as their argument
rather than TCB’s state variables. They are used to model the RST segment
with ACK on and off respectively.

10.4 The Top and Second Level Pages

The top level page is shown in Fig. 20, which provides an abstract view of the
protocol.

There are 6 places in Fig. 20. Places User 1 and User 2, typed by COM-
MAND, model TCP user commands. Changing the initial marking of a user
place will change the command issued to TCP, resulting in modelling different
cases. Places TCB 1 and TCB 2, typed by TCB, model TCP state information.
A token in either place represents a local TCP (compound) state. Places H1 H2
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31 (* Functions for TCP Segments *)

32 fun SYNseg(v: SV): SEG =

33 {SEQ = #ISS(v),

34 ACK = 0,

35 CTL = (SYN,off)};
36

37 fun SYNACKseg(v: SV): SEG =

38 {SEQ = #ISS(v),

39 ACK = #RCV NXT(v),

40 CTL = (SYN,on)};
41

42 fun ACKseg(v: SV): SEG =

43 {SEQ = #SND NXT(v),

44 ACK = #RCV NXT(v),

45 CTL = (ACK,on)};
46

47 fun FINseg(v: SV): SEG =

48 {SEQ = #SND NXT(v),

49 ACK = #RCV NXT(v),

50 CTL = (FIN,on)};
51

52 fun RSTackon(seg: SEG): SEG =

53 {SEQ = 0,

54 ACK = #SEQ(seg)+1,

55 CTL = (RST,on)};
56

57 fun RSTackoff(seg: SEG): SEG =

58 {SEQ = #ACK(seg),

59 ACK = 0,

60 CTL = (RST,off)};

Fig. 19. Functions for creating TCP Segments.

and H2 H1, typed by SEG, each model a unidirectional communication channel.
H1 H2 indicates the transmission direction is from host 1 to host 2, whereas
H2 H1 indicates the opposite direction. A token in the communication channel
place represents that a segment is in transit from one TCP entity to its peer
TCP entity, and may be anywhere in the network or in a buffer of either local
entity.

Also in Fig. 20, are two substitution transitions named TCP’1 and TCP’2.
Each represents a TCP connection management process that implements both
the establishment and termination procedures. A substitution transition may be
viewed as a macro that is linked with another CPN page (known as a subpage)
that is called when the CPN executes. TCP’1 and TCP’2 are both linked with
the second level page (Fig. 21), which serves as a page instance.

The places associated with a substitution transition need to be assigned to
places on the subpage. For example, places User 1 and User 2 in Fig. 20 are both
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Fig. 20. Top level CPN page: TCP Overview.

assigned to place User in Fig. 21. In contrast, Place H1 H2 in Fig. 20 is assigned
to place Out for TCP’1 and In for TCP’2 (see Fig. 21) and vice versa for H2 H1.

The second level page structures the TCP connection management process
into eleven substitution transitions. Each transition is named by a TCP state
and is linked with a page at the third level, which models TCP’s behaviour for
that state.

10.5 Third Level Pages

We illustrate the TCP model at the executable level by considering four pages
at the third level: CLOSED, LISTEN, SYN SENT and SYN RCVD.

The CLOSED Page. The CLOSED page (Fig. 22) models TCP’s behaviour
for the CLOSED state. It has 4 transitions and 4 places that have already been
described.

When a server wishes to receive connection requests, it issues a passive open
to its TCP entity. This is modelled by transition Passive Open. TCP enters
the LISTEN state (with state variables unchanged) after receiving a passive
open (P Open) command. When transition Passive Open occurs, the value of
the LISTENstat flag of the token in TCB is changed from cls to lis, indicating
that TCP has been in LISTEN. Transition Active Open models the expected
behaviour of TCP sending out a SYN after receiving an active open (A Open)
command from its user. TCP enters SYN SENT and updates its state variables
as shown on the output arc to place TCB.

When TCP is CLOSED, it is not expecting any incoming segments. If it
receives one, then it needs to inform the sender that it is closed, by sending a
reset. However, if the incoming segment is a reset, then it is discarded, as the
receiver does not need to inform its peer to close. As indicated by its guard,
transition Rcv noRST models TCP’s response to any incoming segment that is
not a reset (i.e. the RST bit is not set). TCP sends a RST segment to its peer
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 TCB
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P I/O

In

SEG

P InOut

SEG

P Out

CLOSED

HS

LISTEN

HS

SYN_SENT

HS

SYN_RECEIVED

HS

ESTABLISHED

HS

 User

COMMAND

P In

FIN_WAIT_1
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CLOSE_WAIT
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CLOSING
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LAST_ACK

HS

TIME_WAIT

HS

Fig. 21. Second level CPN page: TCP Entity.

and remains CLOSED with its state variables unchanged. As indicated by the
output arc expression, the RST sent by TCP may carry an acknowledgement
number or not, depending on the status of the ACK bit in the incoming segment.
Transition Rcv RST models TCP’s behaviour on receipt of a segment with RST
on, that is, discarding the incoming segment and remaining in CLOSED.

The LISTEN Page. The actions taken by TCP when in the LISTEN state
are shown in Fig. 23.

The LISTEN page has 5 transitions: Close, Send, Rcv ACK, Rcv RST and
Rcv SYN. Transitions Close and Send model TCP’s behaviour on the receipt of
user commands Close and Send respectively. A passive open command followed
by Send is equivalent to a two stage active open, resulting in the sending of a SYN
segment and TCP entering the SYN SENT state. Receiving a Close command
while in LISTEN returns TCP to CLOSED, with no need to send any segment,
as no peer has requested a connection.



266 Jonathan Billington, Guy Edward Gallasch, and Bing Han

 TCB

TCB

P I/O

In

SEG

P InOut

SEG

P Out

Rcv_noRST

[#1(#CTL(seg))<>RST]

Rcv_RST

[#1(#CTL(seg))=RST]

User

COMMAND

P In

Active_Open

Passive_Open

if #2(#CTL(seg))=on 
then RSTackoff(seg)
else RSTackon(seg)

seg

(CLOSED,v,i)

(CLOSED,v,i)

(CLOSED,v,i)

(LISTEN,v,lis)

(CLOSED,v,i)

(SYN_SENT,
{RCV_NXT=0,
SND_NXT=#ISS(v)+1,
SND_UNA=#ISS(v),
ISS=#ISS(v)},i)

SYNseg(v)

seg

A_Open

P_Open

Fig. 22. The CLOSED page.

Transition Rcv ACK and Rcv RST model unexpected behaviour. Transition
Rcv ACK specifies TCP’s response to any incoming segment with its ACK on
that is not a reset. It replies with a RST segment and remains in LISTEN. Transi-
tion Rcv RST models TCP remaining in LISTEN after receiving and discarding
a RST segment.

When in LISTEN, TCP expects to receive a connection request. Transition
Rcv SYN models this situation by receiving a SYN segment. TCP returns a
SYNACK and enters SYN RCVD with its state variables updated.

The SYN SENT Page. The SYN SENT page (Fig. 24) has 9 transitions that
are created in accordance with the TCP specification for the SYN SENT state.

Transition Close models TCP entering CLOSED from SYN SENT in re-
sponse to a Close command. Transitions Rcv uACK and Rcv uACK RST model
TCP’s response to an unacceptable ACK segment with the RST bit off and on re-
spectively. Transitions RST LISTEN and RST CLOSED are used to respond to
a RST with an acceptable ACK number based on TCP’s previous state informa-
tion. That is, if it has previously been in LISTEN, indicated by the LISTENstat
flag having the value lis, TCP changes state to LISTEN from SYN SENT (mod-
elled by transition RST LISTEN), Otherwise, it goes into CLOSED (modelled
by transition RST CLOSED). Transition Rcv RSTnoACK is used to respond to
a RST without an ACK. Transitions Rcv SYNACK and Rcv SYN model TCP’s
response to an incoming segment with the SYN bit on under different conditions.
If the incoming segment acknowledges the SYN, TCP goes into ESTABLISHED
from SYN SENT and sends out an ACK (modelled by Rcv SYNACK). Other-
wise, it enters SYN RCVD and sends out a SYNACK (modelled by Rcv SYN).
If the incoming segment has neither SYN nor RST set (normally an acceptable
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Fig. 23. The LISTEN page.

ACK), TCP drops the segment. This is modelled by transition noSYN noRST.
Note that if the ACK in an incoming segment is not acceptable, TCP sends out
a RST, as specified by transition Rcv uACK.

The SYN RCVD Page depicted in Fig. 25 has 11 transitions. Transition
Close models TCP sending a FIN segment and entering FIN WAIT 1 after re-
ceiving a Close command from its user. Rcv uSeq and Rcv uSeq RST are used
to respond to an incoming segment with an unacceptable sequence number (first
item of the guard) with RST off or on respectively.

Other transitions in Fig. 25 require that the sequence number of the incom-
ing segment is acceptable (first item of the guard). Transitions RST LISTEN
and RST CLOSED model TCP’s response to a RST with an acceptable se-
quence number based on TCP’s previous state. That is, if it has previously
been in LISTEN, TCP enters LISTEN from SYN RCVD, otherwise, it changes
state to CLOSED. Also depending on TCP’s previous state, transitions SYN-
inw LISTEN and SYNinw CLOSED model TCP sending out a RST after re-
ceiving an acceptable SYN (i.e. its sequence number is in the receive window). If
the SYN’s sequence number is not in the window, an ACK is sent as a result of
the sequence number check (see transition Rcv uSeq). Transition Rcv ACKoff
models TCP dropping the incoming segment and remaining in SYN RCVD in re-
sponse to a segment with ACK off. Transitions Rcv ACKonA and Rcv ACKonU
model TCP’s behaviour on receipt of an ACK under different conditions. If the
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Fig. 24. The SYN SENT page.

ACK is acceptable, TCP enters ESTABLISHED (modelled by Rcv ACKonA),
otherwise, TCP sends out a RST (modelled by Rcv ACKonU). Finally, tran-
sition Rcv FIN models TCP entering CLOSE WAIT and sending an ACK on
receipt of a FIN segment.
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Fig. 25. The SYN RCVD page.
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11 Functional Analysis of TCP Connection Management

The TCP connection management protocol is analysed by generating occurrence
graphs (OGs) using Design/CPN 4.0.5 running under Linux on a 800MHZ Intel
Celeron laptop computer with 128 MB RAM.

11.1 Initial Configurations

We can analyse many different connection management scenarios by choosing
a number of different initial markings of places User 1 and User 2 in Fig. 20.
This allows us to start simply by just considering the connection establishment
protocol, before analysing the effect of releasing connections. This incremental
approach has two advantages. Firstly it allows us to gain confidence in the model
by providing the simplest analysis results which can be checked against the spec-
ification (i.e. RFC 793). This is an important step in model validation. Secondly,
we may discover errors in the protocol, which we can more easily debug in a
simpler reachability graph. Once we gain confidence that the model is correct,
we can then look at more complex scenarios which exercise all parts of the speci-
fication, by choosing the initial marking of places User 1 and User 2 accordingly.
For example, we could include an active open and a close command in one user
place, and a passive open, send and close in the other.

In this paper we shall just illustrate the approach by considering two cases
that just relate to connection establishment. In Case 1, place User 1 has an
A Open (active open) command as the initial marking, while place User 2 has a
P Open (passive open) command as its initial marking. This represents the usual
client-server opening scenario that would occur, for example, when requesting a
web page. In Case 2, both user places have an A Open as the initial marking,
which allows for the simultaneous opening of a connection, that may occur in
peer to peer applications. The initial markings of the remaining places are the
same for the different cases. The channel places are empty, while the TCB places
are as shown in Fig. 20. Since the initial send sequence (ISS) number for each
TCB can be chosen arbitrarily within the 32 bit integer range, we arbitrarily
select ISS=10 for TCB 1 and ISS=20 for TCB 2.

11.2 Analysis Results

When we analysed our CPN model for the above two cases, we found that there
was a problem with the simultaneous open procedures (Case 2). We modified
the original model (Model A) twice to remove the problems. We refer to the first
modified model as Model B and to its modification as Model C.

Analysis of Model A
OGs for Model A are obtained for both cases. The results are summarised in
Table 2 and the OGs for Cases 1 and 2 are given in Figs. 26 and 27.

The table shows the number of nodes, arcs and dead markings in the OG.
The final column indicates whether or not the dead markings are considered to
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Table 2. Results for Model A.

Model A Nodes Arcs Dead Markings Deadlocks

Case 1 11 12 2(0) 0

Case 2 42 60 2(1) 0

1 
0:2

2 
1:2

3 
1:1

4 
1:2

5 
2:1

6 
1:1

7 
1:1

9 
2:0

8 
1:1

10 
1:1

11 
1:0

CLOSED’Active_Open 1 CLOSED’Passive_Open 2

CLOSED’Rcv_noRST 2 CLOSED’Passive_Open 2 CLOSED’Active_Open 1

SYN_SENT’RST_CLOSED 1 CLOSED’Passive_Open 2

CLOSED’Passive_Open 2 SYN_SENT’RST_CLOSED 1

LISTEN’Rcv_SYN 2

SYN_SENT’Rcv_SYNACK 1

SYN_RECEIVED’Rcv_ACKonA 2

Fig. 26. OG of Model A for Case 1.

be deadlocks (i.e. undesired terminal markings). The integer in parenthesis in
column Dead Markings shows the number of dead markings reached through
undesired transition sequences. Both OGs are small and are generated in less
than 1 second.

Case 1 has two dead markings, nodes 9 and 11 in Fig. 27. The details of the
dead markings are given in Fig. 28. Node 9 has one TCP entity in CLOSED, the
other in LISTEN, and nothing in the channel. This is an expected terminal state
because when the TCP server is in CLOSED (the passive open command has
yet to be issued) and receives a SYN, it sends out a RST that changes the state
of the TCP client from SYN SENT to CLOSED. The server TCP entity then
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Fig. 27. OG of Model A for Case 2.

goes into LISTEN after receiving the passive open command. The other dead
marking (Node 11) has both TCP entities in the ESTABLISHED state and
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nothing in the channel. Also, the sequence numbers are synchronised at both
ends, that is, the send next (SND NXT) and the send oldest unacknowledged
(SND UNA) numbers are equal on one side and also equal the receive next
number (RCV NXT) at the other end of the connection. This is thus the desired
terminal state in which the connection is properly established at both ends.
Examining the sequences leading to the two dead markings (see Fig. 26) indicates
that they are reached through desired transition sequences.

9 
2:0

9
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)
TCB 2: 1‘(LISTEN,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 20},lis)

11 
1:0

11
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(EST,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 11,ISS = 10},cls)
TCB 2: 1‘(EST,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 21,ISS = 20},lis)

Fig. 28. The dead markings for Case 1 (Model A).

In Case 2 there are two dead markings, nodes 32 and 42 as shown in Fig. 27.
Both are desired terminal states as can be seen from the marking details given
in Fig. 29. Node 42 has both TCP entities in the ESTABLISHED state with
synchronised state variables and nothing in the channel. The other dead marking
(node 32) has both TCPs in the CLOSED state and nothing in the channel.

42 
6:0

42
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(EST,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 11,ISS = 10},cls)
TCB 2: 1‘(EST,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 21,ISS = 20},cls)

32 
4:0

32
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)

Fig. 29. The dead markings for Case 2 (Model A).

There are 38 sequences of transitions from node 1 to node 42, of length 7
or 8. Thus we do not find the sequence corresponding to the scenario shown in
Fig. 16(b), which is of length 6. Instead, we find sequences similar to the trace
obtained from the OG and shown in Fig. 30. This scenario is drawn as a message
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1 
0:2

1
User 1: 1‘A_Open
User 2: 1‘A_Open
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 10},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 20},cls)

2 
1:2

2
User 1: empty
User 2: 1‘A_Open
H1_H2 1: 1‘{SEQ = 10,ACK = 0,CTL = (SYN,off)}
H2_H1 1: empty
TCB 1: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 20},cls)

5 
2:2

5
User 1: empty
User 2: empty
H1_H2 1: 1‘{SEQ = 10,ACK = 0,CTL = (SYN,off)}
H2_H1 1: 1‘{SEQ = 20,ACK = 0,CTL = (SYN,off)}
TCB 1: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

10 
1:2

10
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: 1‘{SEQ = 20,ACK = 0,CTL = (SYN,off)}++ 1‘{SEQ = 20,ACK = 11,CTL = (SYN,on)}
TCB 1: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(SYN_RCVD,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

15 
2:2

15
User 1: empty
User 2: empty
H1_H2 1: 1‘{SEQ = 10,ACK = 21,CTL = (SYN,on)}
H2_H1 1: 1‘{SEQ = 20,ACK = 11,CTL = (SYN,on)}
TCB 1: 1‘(SYN_RCVD,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(SYN_RCVD,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

24 
1:2

24
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: 1‘{SEQ = 20,ACK = 11,CTL = (SYN,on)}++ 1‘{SEQ = 21,ACK = 11,CTL = (ACK,on)}
TCB 1: 1‘(SYN_RCVD,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(SYN_RCVD,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

36 
2:2

36
User 1: empty
User 2: empty
H1_H2 1: 1‘{SEQ = 11,ACK = 21,CTL = (ACK,on)}
H2_H1 1: 1‘{SEQ = 21,ACK = 11,CTL = (ACK,on)}
TCB 1: 1‘(SYN_RCVD,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(SYN_RCVD,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

40 
4:1

40
User 1: empty
User 2: empty
H1_H2 1: 1‘{SEQ = 11,ACK = 21,CTL = (ACK,on)}
H2_H1 1: empty
TCB 1: 1‘(EST,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 11,ISS = 10},cls)
TCB 2: 1‘(SYN_RCVD,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

42 
6:0

42
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(EST,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 11,ISS = 10},cls)
TCB 2: 1‘(EST,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 21,ISS = 20},cls)

CLOSED’Active_Open 1: {v={RCV_NXT = 0,
SND_NXT = 0,SND_UNA = 0,ISS = 10},
i=cls}

CLOSED’Active_Open 2: {v={RCV_NXT = 0,
SND_NXT = 0,SND_UNA = 0,ISS = 20},
i=cls}

SYN_SENT’Rcv_SYN 2: {v={RCV_NXT = 0,
SND_NXT = 21,SND_UNA = 20,ISS = 20},
seg={SEQ = 10,ACK = 0,CTL = (SYN,off)},
i=cls}

SYN_SENT’Rcv_SYN 1: {v={RCV_NXT = 0,
SND_NXT = 11,SND_UNA = 10,ISS = 10},
seg={SEQ = 20,ACK = 0,CTL = (SYN,off)},
i=cls}

SYN_RCVD’Rcv_uSeq 2: {v={RCV_NXT = 11,
SND_NXT = 21,SND_UNA = 20,ISS = 20},
seg={SEQ = 10,ACK = 21,CTL = (SYN,on)},
i=cls}

SYN_RCVD’Rcv_uSeq 1: {v={RCV_NXT = 21,
SND_NXT = 11,SND_UNA = 10,ISS = 10},
seg={SEQ = 20,ACK = 11,CTL = (SYN,on)},
i=cls}

SYN_RCVD’Rcv_ACKonA 1: {v={RCV_NXT = 
21,SND_NXT = 11,SND_UNA = 10,ISS = 10},
seg={SEQ = 21,ACK = 11,CTL = (ACK,on)},
i=cls}

SYN_RCVD’Rcv_ACKonA 2: {v={RCV_NXT = 
11,SND_NXT = 21,SND_UNA = 20,ISS = 20},
seg={SEQ = 11,ACK = 21,CTL = (ACK,on)},
i=cls}

Fig. 30. A sequence of the OG for Case 2 (Model A).

sequence diagram in Fig. 31(a), which shows that an ACK is sent in response to
each SYNACK before each TCP entity enters the ESTABLISHED state. This
behaviour is not desired because it adds delay when there is a simultaneous open
and also is not according to TCP’s intent as described by the message sequence
diagrams in [62].

By examining the trace in Fig. 30, we see that it is transition Rcv uSeq in
Fig. 25 that sends out the redundant ACK, on receipt of segment SYNACK
(see the transition from node 24 to node 36 in Fig. 30). Transition Rcv uSeq



A Coloured Petri Net Approach to Protocol Verification 275

CLOSED CLOSED

SYN_RCVD

SYN_SENT

(active open)

SYNACK(10, 21)

SYN 20

RST (21,0)

SYN 10

RST (11,0)

CLOSED

SYN_SENT

CLOSED

(b) Open fails

(active open)

CLOSED CLOSED

SYN_RCVD

SYN_SENT

(active open)

SYN_SENT SYN 10
SYN 20

ESTABLISHED

SYNACK(10,21)

(a) Unnecessary acknowledgements

ESTABLISHED

(active open)

ACK(21,11)

ACK(11,21)

SYNACK(20, 11) SYNACK(20, 11)SYN_RCVD SYN_RCVD

Fig. 31. Problematic simultaneous open scenarios.

sends out an ACK in response to any incoming segment that satisfies the two
inequalities on its transition guard, according to the specification on page 69 of
RFC 793.

“If an incoming segment is not acceptable, an acknowledgment should
be sent in reply (unless the RST bit is set, if so drop the segment and
return) . . . ”

This means that the sequence number of the incoming SYNACK is less than
the value of RCV NXT. In addition, the second inequality is satisfied because
the SYNACK is not a RST segment. As the inequalities are applicable not only
to the expected SYNACK, but also to other segments (including unexpected
SYNACKs), we do not revise them to remove the problematic ACK for this case.
Instead, we question the value of RCV NXT on whether or not it reflects the
sequence number of the next segment that TCP is expecting after receiving the
SYN segment. The next segment that TCP is expecting is a SYNACK which has
the same sequence number as that of the SYN (see Fig. 8, page 32 of RFC 793 and
Fig. 16(b)). Examining the marking immediately prior to the firing of transition
Rcv uSeq, we find that the value of RCV NXT is updated to SEQ(seg)+1 by
transition Rcv SYN on the SYN SENT page (Fig. 24), according to processing
a SYN in SYN SENT on page 68 of RFC 793. To remove this inconsistency, we
propose not to update RCV NXT in the case of simultaneous open, keeping its
value as SEQ(seg). Therefore, #SEQ(seg) < #RCV NXT (v) will be false, and
hence transition Rcv uSeq will not be enabled.

To test our assertion, we make the corresponding modification, assigning
#SEQ(seg) to RCV NXT, on the output arc of transition Rcv SYN to place
TCB (see Fig. 24). This gives us Model B.

Analysis of Model B
The analysis results of Model B are again generated in less than 1 second and
shown in Table 3. The results for Case 1 are the same as those of Case 1 for
Model A.
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Table 3. Results for Model B.

Model B Nodes Arcs Dead Markings Deadlocks

Case 1 11 12 2(0) 0

Case 2 44 62 2(1) 0

Examining the sequences leading to the dead markings of Case 2 shows that
this undesired sequence is removed. However, it reveals another problematic
sequence, which involves the generation of RSTs by each TCP entity in response
to a SYNACK, as shown in Fig. 32. The corresponding scenario is drawn in
Fig. 31(b), where the connection is unnecessarily terminated.

Examining the trace in Fig. 32, we see that it is transition SYNinw CLOSED
in Fig. 25 that sends out the RST. SYNinw CLOSED rejects the SYN in the
window by sending out a RST, as specified on page 71 of RFC 793. However,
the SYNACK is mistakenly treated as an old duplicate, because RFC 793 spec-
ifies that for state SYN RCVD, all segments with the SYN bit on (hence for
a SYNACK) are rejected by sending out a RST. It is worth mentioning that
our proposed solution for the first problem helps to reveal this. To remove the
second problem, we must check the ACK bit while checking the SYN bit for
state SYN RCVD in the case of simultaneous open.

We make the corresponding modifications to the guards of transitions SYN-
inw CLOSED and Rcv ACKonA in Fig. 25. Firstly, we replace #1(#CTL(seg)) =

SY N with #CTL(seg) = (SY N, off) for transition SYNinw CLOSED to exclude
the SYNACK. Then we replace #CTL(seg) = (ACK, on) with #1(#CTL(seg)) <>

RST and #1(#CTL(seg)) <> FIN for transition Rcv ACKonA to accept the
SYNACK. We also replace the annotation on the arc from Rcv ACKonA to
TCB by function. It is the same as the previous annotation except that it up-
dates the value of RCV NXT with #SEQ(seg)+1 if a SYNACK is received and
with #SEQ(seg) if an ACK is received. We thus get Model C.

Analysis of Model C
The analysis results of Model C are shown in Table 4.

Table 4. Results for Model C.

Model C Nodes Arcs Dead Markings Deadlocks

Case 1 11 12 2(0) 0

Case 2 39 54 2(0) 0

The results of Case 1 are the same as those of Case 1 for Models A and B.
Analysis of Case 2 shows that there are two dead markings that are desired and
reached through desired sequences. One dead marking (Node 35 in Fig. 33) has
TCP entities in ESTABLISHED, state variables synchronised and nothing in
the channel. The other (Node 32) has both TCPs in CLOSED and nothing in
the channel.
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1 
0:2

1
User 1: 1‘A_Open
User 2: 1‘A_Open
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 10},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 20},cls)

2 
1:2

2
User 1: empty
User 2: 1‘A_Open
H1_H2 1: 1‘{SEQ = 10,ACK = 0,CTL = (SYN,off)}
H2_H1 1: empty
TCB 1: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 20},cls)

5 
2:2

5
User 1: empty
User 2: empty
H1_H2 1: 1‘{SEQ = 10,ACK = 0,CTL = (SYN,off)}
H2_H1 1: 1‘{SEQ = 20,ACK = 0,CTL = (SYN,off)}
TCB 1: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

10 
1:2

10
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: 1‘{SEQ = 20,ACK = 0,CTL = (SYN,off)}++ 1‘{SEQ = 20,ACK = 11,CTL = (SYN,on)}
TCB 1: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(SYN_RCVD,{RCV_NXT = 10,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

15 
2:2

15
User 1: empty
User 2: empty
H1_H2 1: 1‘{SEQ = 10,ACK = 21,CTL = (SYN,on)}
H2_H1 1: 1‘{SEQ = 20,ACK = 11,CTL = (SYN,on)}
TCB 1: 1‘(SYN_RCVD,{RCV_NXT = 20,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(SYN_RCVD,{RCV_NXT = 10,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

23 
1:2

23
User 1: empty
User 2: empty
H1_H2 1: 1‘{SEQ = 10,ACK = 21,CTL = (SYN,on)}++ 1‘{SEQ = 11,ACK = 0,CTL = (RST,off)}
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)
TCB 2: 1‘(SYN_RCVD,{RCV_NXT = 10,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

35 
1:1

35
User 1: empty
User 2: empty
H1_H2 1: 1‘{SEQ = 10,ACK = 21,CTL = (SYN,on)}
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)

43 
2:1

43
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: 1‘{SEQ = 21,ACK = 0,CTL = (RST,off)}
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)

32 
4:0

32
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)

CLOSED’Active_Open 1: {v={RCV_NXT = 0,
SND_NXT = 0,SND_UNA = 0,ISS = 10},
i=cls}

CLOSED’Active_Open 2: {v={RCV_NXT = 0,
SND_NXT = 0,SND_UNA = 0,ISS = 20},
i=cls}

SYN_SENT’Rcv_SYN 2: {v={RCV_NXT = 0,
SND_NXT = 21,SND_UNA = 20,ISS = 20},
seg={SEQ = 10,ACK = 0,CTL = (SYN,off)}
,i=cls}

SYN_SENT’Rcv_SYN 1: {v={RCV_NXT = 0,
SND_NXT = 11,SND_UNA = 10,ISS = 10},
seg={SEQ = 20,ACK = 0,CTL = (SYN,off)}
,i=cls}

SYN_RCVD’SYNinw_CLOSED 1: {v={RCV_NXT 
= 20,SND_NXT = 11,SND_UNA = 10,ISS = 
10},seg={SEQ = 20,ACK = 11,CTL = (SYN,
on)},i=cls}

SYN_RCVD’RST_CLOSED 2: {v={RCV_NXT = 
10,SND_NXT = 21,SND_UNA = 20,ISS = 20}
,seg={SEQ = 11,ACK = 0,CTL = (RST,off)
},i=cls}

CLOSED’Rcv_noRST 2: {v={RCV_NXT = 0,
SND_NXT = 0,SND_UNA = 0,ISS = 0},seg={
SEQ = 10,ACK = 21,CTL = (SYN,on)},
i=cls}

CLOSED’Rcv_RST 1: {v={RCV_NXT = 0,
SND_NXT = 0,SND_UNA = 0,ISS = 0},seg={
SEQ = 21,ACK = 0,CTL = (RST,off)},
i=cls}

Fig. 32. A sequence of the OG for Case 2 (Model B).

Based on the sequences from the reachability analysis, three typical simul-
taneous open scenarios that are expected are obtained. They are presented in
Fig. 16(b), and Fig. 34 (a) and (b). The scenarios shown in Fig. 34 are not
discussed in RFC 793, nor in the text books (e.g., [26, 69]).

12 Concluding Remarks on TCP

In this part of the paper we have illustrated two parts of the verification method-
ology for a complex practical protocol. Firstly we have provided some guidelines
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35 
8:0

35
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(EST,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 11,ISS = 10},cls)
TCB 2: 1‘(EST,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 21,ISS = 20},cls)

32 
2:0

32
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)

Fig. 33. The dead markings for Case 2 (Model C).

CLOSED

SYN_SENT

(active open)
SYN 10

CLOSED CLOSED

SYN_SENT

SYN_RCVD

SYN_SENT

(active open)
SYN 10

SYN 20

SYNACK (20, 11)

ACK (11, 21)

ACK (11, 21)

ESTABLISHED

RST (0, 11)

SYN 20

SYNACK (10, 21)

SYN_RCVD

SYN_SENT

(active open)

CLOSED

ACK (21, 11) ESTABLISHED

(b) Delayed RST(a) Delayed SYN

ESTABLISHED

ESTABLISHED

(active open)

Fig. 34. Two expected simultaneous open scenarios.

for taking the first steps when modelling a complex protocol. The protocol is di-
vided into its connection management part and its data transfer part. We firstly
model the connection management part and importantly list the assumptions
made. We then illustrate the use of hierarchical CPNs to structure the specifica-
tion, taking advantage of symmetry, to just specify the connection management
procedures once, but call them for each TCP entity by using page instances.
This reduces the complexity of the model and eases maintenance. The detailed
part of the model is structured into the processing that occurs per state which is
a standard way of specifying protocols and a useful starting point for organising
specifications. Secondly, we have illustrated the process of analysing a connection
management protocol using reachability analyis with the help of Design/CPN.

The analysis has revealed some problems with the procedures for simultane-
ously opening a connection as specified in Section 3.9 of RFC 793. One problem
causes delay and additional traffic due to an unnecessary exchange of acknowl-
edgements when establishing the connection. A solution to this was incorporated
and analysed revealing a more serious problem where the procedure can fail to
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establish the connection. This is due to another error in the functional specifi-
cation of RFC 793. A further correction to the model is made which removes
the problem. Note that the second error also occurs in the finite state machine
(FSM) diagram of RFC 793. So the FSM and narrative descriptions of Section
3.9 of RFC 793 are consistently in error. No deadlocks or other subtle errors
were found. These results were reported in [38, 39].

This part has only touched the surface regarding the analysis of TCP connec-
tion management, where we have presented results just for the case of opening a
connection. Further work addresses closing of the connection, relaxes some of the
modelling assumptions, for example, allowing segments to be lost in the chan-
nel and recovered by retransmissions, develops a service specification [15–17]
and compares the connection management protocol language with its service
language. This work is consolidated in [37].

13 Some Observations Concerning Specification
and Verification

13.1 Modelling Assumptions

After reading the definition of the protocol or service in a standards document (or
other primary reference) it is vitally important to write down the assumptions
that are made when modelling the protocol (or service). This is to ensure that
the analysis results obtained are with respect to the set of assumptions made
and that this is firmly in the mind of both the verifier and the reader of the
results. The assumptions can be with respect to scope or restrictions within the
scope, or abstractions that are made. Illustrations of these for complex protocols
are given in [34, 37, 58, 78].

13.2 Specification Structure

There are several ways to structure a specification using hierarchical nets such as
Coloured Petri Nets. One of the most popular ways is to structure specifications
according to the (major) states of the protocol entities. For each major state,
each action in that state is modelled by a transition, for example, the processing
of an incoming message or a command from a user. Many international standards
are structured this way by using state tables, or Specification and Description
Language (SDL) [45] processes where there is one SDL diagram for each major
state. If the CPN structure matches the structure in the international standard,
then this aids in validating the CPN model against the standard, to ensure that
the CPN accurately reflects the standard.

However, there are some specifications where this approach has significant
drawbacks and can lead to specifications that have a lot of redundancy. This
is the case when the processing of various input messages are treated the same
way in a set of states. For example in TCP, the state machine comprises 11
states, and processing of some actions such as reset is essentially the same for
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8 of these states. Thus the specifier needs to be aware of commonalities that
exist for various states and to structure the specification according to processing
actions (such as opening connections, resetting, closing connections and dealing
with timeouts and retransmissions) rather than slavishly following a state-based
approach. This leads to a more elegant specification that has fewer transitions,
where actions that are common are clearly seen to be the same, and where main-
tenance is facilitated. This is following the usual rules of good programming and
good writing, which is at the core of the object-based approach. The reduction
in the specification is achieved by the folding of transitions that have the same
actions for different states, and using a variable that runs over states, with the
appropriate restrictions placed in a guard (see [37]).

13.3 Specification Validation

The validation of a CPN specification against the definition of a protocol pro-
vided in a standards document or in a proprietary definition is a very important
step in making sure that the analysis results do apply to the system of interest.
Validation may involve several steps. Firstly developing specifications incremen-
tally and checking that each transition does accurately reflect the intent of the
system is essential. This may include stepping through the model using interac-
tive simulation on a tool such as Design/CPN. The next step is to incrementally
analyse the model using the OG. Errors discovered may be in the model or in
the protocol definition. This is detected by carefully checking if the error is in
fact in the system or introduced into the model due to some misinterpretation
or inaccurate assumption. Errors in the model need to be removed and then the
model re-analysed, iteratively removing inaccuracies. In circumstances where
the protocol definition can be discussed with its inventors, this is a vital step in
resolving assumptions made in the model.

13.4 Specification versus Verification

Various concerns are more important when developing specifications for imple-
mentation rather than for verification. A specification for implementation needs
to be readable to ease understanding, and complete so that it contains all es-
sential details to ensure that implementations will interwork correctly. Due to
complexity, the verifier will want to modify the specification to just concentrate
on essential aspects that need verification. Otherwise the verification task be-
comes impossible. The main approach concerns making the right abstractions
and dividing the specification into manageable and separable components that
can be verified independently.

When considering the development aspects of protocol engineering in full,
the protocol engineering team will need to develop the protocol architecture and
complete service and protocol specifications. The art of the protocol verifier is
then to have sufficient insight into how the protocol specification can be divided
into manageable parts for verification. This may then lead to proof obligations
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that the independence assumptions are valid for the properties that require ver-
ification.

Let us briefly look at some of the techniques that are used.

Independence of Protocol Mechanisms. Transaction protocols, such as the
Internet Open Trading Protocol, define a set of transactions that may be carried
out by the different parties. In this case, it is possible to treat each transaction
separately. This greatly reduces the complexity of verification. It is only when
transactions interact in some way (such as when a refund is dependent on a
previous purchase), that we need to consider transactions together. Hence a
lot of insight can be obtained and errors can be detected by considering each
transaction independently (see [58]).

For connection-oriented protocols, we can divide the operation of the protocol
into phases: connection establishment; data transfer; and connection release,
and verify each phase separately, before considering their interactions. The next
step will normally be to consider the release or abortion of connections at any
time during the life of the connection, considering connection establishment and
termination together.

Data Abstraction. Protocol messages may include fields that are not used or
affected by the protocol mechanisms under investigation. For example, address
and multiplexing fields (such as port numbers in TCP) allow multiple connec-
tions to be in progress at the same time between a large number of end systems.
However, the operation of each connection is the same, and as long as we are not
concerned about resources that are shared between connections (such as buffer
space), we can just consider one connection as a representative and analyse its
behaviour. This means that we can greatly reduce the address space and mul-
tiplexing fields. For example, in the case of TCP, we do not need to include
these fields at all, and can just consider two protocol entities interacting over
a medium representing the operation of IP, where every message that is sent is
destined for the peer entity. This is easily achieved by having two places for the
medium, one for each direction of information flow. Further, if our objective is to
verify TCP connection management procedures, then we can safely ignore fields
that are concerned with data transfer, such as windows for flow control, and ur-
gent pointers and flags that are concerned with urgent data transfer. Moreover,
we can omit the checksum (used to detect transmission errors) and model its
effect using non-determinism as discussed in Section 2.2. We also do not need to
model the header length or options (such as the maximum packet size), nor the
data that may be transferred. This then reduces the message to a small tuple of
values. In the case of TCP a message can be reduced to a triple where we model
the message type (such as a connect request (SYN) or reset (RST)), its sequence
number and an acknowledgement number. This also reduces the amount of state
information that needs to be modelled in the TCP entities, such as the window
size. An illustration of the approach is given in [39] and explained earlier in this
paper.
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With data transfer protocols it is normally sufficient to consider the sender
and receiver parts of a protocol entity separately. Thus we just consider one way
flow of data across the medium between a sender and receiver, with a return
path for control information such as acknowledgements. However, ignoring the
data field in data transfer protocols can lead to situations where although service
primitive sequences are satisfied, duplicate data and data loss may be occurring,
as discussed in Section 7.2.

13.5 Modelling the Underlying Medium

The behaviour of the protocol depends on the medium over which it operates.
It is important to start with the simplest medium that makes sense. This is
often a FIFO queue. For example, although the Internet Protocol allows for re-
ordering, loss, delay and duplication of messages, most of the time it behaves like
a FIFO queue. Thus as a first step, it is important to verify that the protocol
will operate correctly over this perfect medium. The reason for this is that media
that can lose messages or reset or disconnect connections, can hide undesirable
behaviour such as the occurrence of deadlocks. However, that the medium may
occassionally lose a message or reset a connection is cold comfort to the users
of the protocol who may have to wait a long time for such an event to occur to
remove the deadlock. Once the protocol is shown to operate correctly over this
friendly medium, then medium imperfections can be introduced and the protocol
re-analysed.

13.6 Incremental Approach

To gain confidence in the CPN model and with its verification it is important
to use an incremental approach in modelling and analysing the system under
investigation. This is illustrated in [78] where RSVP mechanisms are examined
one at a time. A similar approach is taken for IOTP [58] where error free and
successful transactions are examined first and then arbitrary cancellation and
error handling procedures are added.

13.7 Parameters

Complex protocols include several parameters of significance such as the size of
the sequence number space, flow control and congestion control window sizes,
the maximum number of retransmissions, and the data that is to be sent. An-
other parameter may also be the capacity of the medium over which the protocol
operates. For example, in the Stop-and-Wait protocol we have two parameters of
interest, the maximum sequence number and the maximum number of retrans-
missions.

Reachability analysis requires that parameters of the system be instantiated
with particular values before the reachability graph can be generated. Thus
we have to generate the OG and its equivalent deterministic automaton for
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every parameter value. The first step is to start with the smallest values that
make sense (such as a medium capacity of one or two, no retransmissions, and
maximum sequence number of one) to obtain results to give a feel for how the
system operates.

As the values of these parameters increase, reachability analysis suffers from
the state explosion problem [77] and becomes intractable. It also means that we
can only obtain results for a (small) subset of values, rather than a general result
for any value. It may be that results can be obtained for the values of interest
of the parameters involved, such as the maximum values of the retransmission
counters in the transaction service of WAP [34]. However, in general we would
like a result that is valid for any value of the parameters involved. In this case
we resort to theorem proving, quite often based on the results obtained from
reachability analysis for small parameter values.

In some cases we can invoke the notion of data independence [82] to reduce
what could be an infinite set (e.g. data items) to a finite and possibly very small
number (such as 3), when protocol operations do not affect the data. This can be
the case for the data that is sent, when only read/write or assignment operations
are involved [65].

Recently, we have managed to obtain symbolic expressions (possibly recur-
sive) for the reachability graphs and their deterministic automata in terms of
the medium capacity for the Capability Exchange Signalling service and TCP’s
data transfer service as discussed under infinite state systems in Section 2.3.

14 Conclusions

This paper summarises the steps of a protocol verification methodology and
discusses them in some detail based on several years of attempting to use the
methodology for the verification of industrial scale protocols. The methodology
uses Coloured Petri Nets (CPNs) to specify both the service provided by the
protocol to is users, and the composite specification of the protocol entities inter-
acting over a communication medium or channel. The composite specification is
analysed using tool supported reachability analysis to discover behavioural prop-
erties, such as undesirable terminal states, livelocks, channel bounds or sequences
of events which are inefficient, without recourse to the service specification. Some
of this behaviour (inefficient sequences or bounds) are not visible to the users
and are thus not captured in service specifications. However, because they have
impact on the use of network resources they are worthy of investigation.

Most protocols are characterised by a set of parameters (such as window
sizes, sequence number range and maximum number of retransmissions) which
need to be instantiated for automatic reachability analysis. For parameters with
a small range, such as the maximum number of retransmissions for the Wire-
less Application Protocol transaction layer (where no more than 8 is required)
repeated automated runs may be sufficient to obtain the desired results [34].
The range of results obtained may be extended by using advanced state space
techniques, such as the sweep-line method [25, 36], partial orders or equivalence
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classes or some combination [14]. However, for many industrial protocols, the
number of parameters and their significant ranges, preclude obtaining results
for all but very small values of the parameters using automated analysis. When
this is the case, the automated approach may be able to be supplemented by
hand proofs to obtain general results for all values of the parameters. Quite of-
ten the intuition behind these hand proofs arises from the results obtained from
using automated reachability analysis for small values of parameters.

It is also valuable to compare the behaviour of the composite specification
with that of the service specification. For some protocols the service has also been
defined as part of the process of defining the protocol. This greatly facilitates
the creation of a CPN model of the service. However, the service definitions
invariably do not completely specify the global sequences of user observable
events (known as service primitives) concentrating instead on defining the local
interface sequences. The CPN modeller must then use their intuition to obtain
a consistent set of global sequences. Sometimes this involves complex structures
in the CPN to ensure that the correct sequences occur, while in other cases it
is quite straightforward. However, as far as we are aware, none of the Internet
protocols have included service definitions, and thus a service specification must
be created, based on the protocol definition, interface definitions if they exist and
the experience of the modeller. In this circumstance, it is recommended that the
protocol be modelled and analysed first, and then the service developed, based
on the experience gained. Once a service model is obtained, the sequences of
service primitives embedded in the service model (the service language) can
be compared with the service primitive sequences that occur in the composite
specification (the protocol language). This can be done automatically for finite
state systems using well-known reachability analysis and automata reduction
and comparison algorithms. This approach also suffers from the state explosion
problem. For infinite state systems, or where parameter values are unknown,
we briefly discuss an approach using recursive techniques to provide symbolic
representations of the occurrence graphs and associated automata. The intuition
behind these symbolic representations has been obtained from using reachability
analysis for small values of parameters. In some cases it is possible to derive the
symbolic representations directly without the need for recursive formulations.

The methodology is illustrated by two case studies. One considers the class of
Stop-and-Wait protocols (SWP) as a representative of the class of data transfer
protocols. This involves the inclusion of two parameters: the maximum sequence
number and the maximum number of retransmissions. We define 4 properties of
interest (queue bounds, data loss, duplication and the Stop-and-Wait property)
and prove that the SWP operates correctly over FIFO channels. The channel
bound depends the maximum number of retransmisions (MaxRetrans) and is
given by 2MaxRetrans + 1 for both channels. We believe this to be a new result.
This is obtained using hand proofs, which we develop in detail to illustrate the
process. To prove that there is no loss or duplication and that the Stop-and-Wait
property holds (i.e. that the protocol satisfies its service of alternating sends and
receives) we use automatic reachability and language analysis. We do this for a
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significant range of parameter values e.g. up to 10 bit sequence numbers for up to
4 retransmissions, which gives confidence that the results are general. However,
we have no general proof. We also prove that the properties do not hold when the
SWP operates over lossy (or lossless) re-ordering channels. Again hand proofs are
used to prove that the channels are unbounded, giving a general result when both
the maximum number of retransmissions and the maximum sequence number
are any positive integer. We use language analysis for the other proofs, and
argue that they are generally applicable for medium capacities of two or greater,
and for the other two parameters (MaxRetrans and MaxSeqNo being positive
integers. The results for loss and duplication are illustrated with time sequence
diagrams. We discuss the practical relevance of these results by considering their
impact on the Transmission Control Protocol. We conclude that the problems
can occur once transmission rates are at about 10 Gbit/s. We also discuss a
limitation of our approach. We have shown that loss and duplication can occur
in the SWP by considering sequences where there are more sends than receives
(loss) or more receives than sends (duplication). We also illustrate that both loss
and duplication can occur even when the Stop-and-Wait property of alternating
sends and receives holds. This is due to our data abstraction assumption, which
is too strong. We note that using the notion of data independence may overcome
this limitation.

The second case study examines the connection management procedures of
the Transmission Control Protocol, as a representative example of connection
management procedures as opposed to the data transfer procedures of the SWP.
It also illustrates the application of the methodology to a practical protocol
of major significance. We exemplify the process of writing down assumptions,
regarding the creation of the model, that simplify the analysis task. We also
stress the importance of this step. We build a model of significant complexity
and analyse the connection establishment protocol. This allows us to discover two
problems with the simultaneous open procedures, and provide a solution which
we then verify to be correct. This is easily handled by brute force reachability
analysis. However, we have only illustrated the use of the methodology for the
analysis of the very simplest of procedures. Further work is in hand to provide a
comprehensive verification of the connection management procedures, including
release, abort and the use of retransmissions [37].

Finally we end the paper with some observations and recommendations re-
garding the use of the methodology. Better tool support is required for the
methodology to allow the seamless integration of reachability analysis and lan-
guage analysis and to allow language equivalence or inclusion to be done on-the-
fly using advanced techniques such as the sweep-line method. Promising areas
of future work include the incorporation of the notion of data independence into
the methodology and the use of recursive techniques to obtain general results
for parameteric verification.
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Abstract. As web applications become more and more complex, prim-
itives for handling interaction patterns among independent components
become essential. In fact, distributed applications require new forms
of transactions for orchestrating the progress of their negotiations and
agreements. Still we lack foundational models that accurately explain
the crucial aspects of the problem. In this work we explore how to
model transactions in coloured, reconfigurable and dynamic nets, (i.e.,
high-level/high-order Petri nets that can express mobility and can ex-
tend themselves dynamically during their execution). Starting from zero-
safe nets – a well-studied extension of Place/Transition Petri nets with
a transactional mechanism based on a distinction between consistent
(observable) and transient (hidden) states – we show how the zero-safe
approach can be smoothly applied to a hierarchy of nets of increasing
expressiveness.

1 Introduction

To some extent, place/transition Petri nets (p/t nets) [27, 28] are for Concur-
rency Theory what finite automata are for the Theory of Computation: their
rigorous theories have been consolidated in pioneering work; they are founda-
tional models for many other languages and calculi; they have been enriched
in a number of ways (e.g. time, stochastic, data type, high-order and reflec-
tion) for taking into account particular features demanded by real case studies
and scenarios; they have been applied with success interdisciplinarily and even
in industrial applications; they have been a constant reference for comparing
emerging paradigms with; they admit intuitive graphical presentations; they are
widely used in software engineering and in system specification and verification.

Nowadays, one of the main challenges for researchers with interest in Con-
currency is the definition of adequate models for global computing applications,
where aspects like distribution, name and code mobility, security, quality of
services, and coordination are stretched to the very limit. Several of these as-
pects have been investigated separately and sometimes combined especially with
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the help of suitable process calculi (e.g. π-calculus [26], join calculus [21], spi-
calculus [1], ambient calculus [19]), where new primitives can be easily introduced
and experimented with. Although such calculi are much more expressive than
p/t nets, it is possible to recover their spirit by progressively enriching the basic
p/t net model with high-level and high-order features, like exemplified in [15].
The Petri Box calculus [4] is a different approach for reconciling both worlds.

In this paper, the aspect we want to focus on is orchestration. In fact, as
more and more complex global computing applications are developed, then more
primitives for handling common interaction patterns between independent com-
ponents become essential. Academy and Industry are showing renewed interest
in the orchestration of distributed applications via programming languages and
calculi with primitive transactional mechanisms for managing electronic negoti-
ations and contracts carried on among independent components. Although some
solutions have been proposed in the literature (see the section on related work),
still there is no complete agreement on the foundational models that better ex-
pose the crucial points of the problem.

The solution we propose in the paper relies on the so-called zero-safe ap-
proach, that is shown to span along a hierarchy of concurrent models (of in-
creasing expressiveness), from p/t nets to dynamic nets, (i.e., high-level petri
nets that can express dynamic network reconfigurability and reflection), step-
ping through coloured nets and reconfigurable nets. The hierarchy is indeed the
one proposed in [15], where it is also shown that each net flavors correspond to a
typeable fragment of join calculus. The straight consequence is that the zero-safe
approach can be transferred also to those (sub)calculi at no additional cost.

Zero-safe approach. Zero-safe nets (zs nets) have been introduced to model
transactions in concurrent systems [11]. The basic model extends p/t nets with
a mechanism for expressing serializable concurrent (multiway) transactions. In
ZS nets there are two kinds of places (and, consequently, two kinds of tokens),
called stable and zero-safe. Roughly, a transaction on a ZS net is a concur-
rent computation that departs from and arrives to a multiset of stable tokens.
Recently, they have been used in [8] to encode short-running transactions of
Microsoft Biztalk r©, a commercial workflow management system [30]. zs nets
additionally provides a “dynamic” specification of transactions boundaries (as
opposed to the “static” one of BizTalk) supporting multiway transactions, which
retain several entry and exit points, and admit a number of participants which
is statically unknown. Nevertheless, zs nets are not suitable to express some
interesting aspects of negotiations in global computing, such as value passing,
dynamic reconfiguration of communication, name mobility, programmable com-
pensations and nesting. Also their expressive power is limited as e.g. reachability
is decidable [16].

zs nets offer a two-level view of the modeled system: (1) the concrete op-
erational view where transient places and the coordination mechanism between
activities participating to a transaction are fully exposed; (2) the abstract view,
where transactions are seen as atomic activities, and the user is aware of stable
places only, while transient places are transparent. In fact, the abstract view is
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given by an ordinary p/t net, whose places are the stable places of the zs net and
whose transitions are the transactions of the zs net. Moreover, the correspon-
dence between the two views admits a rigorous mathematical characterization
as coreflection between suitable model categories. It is worth remarking that zs
nets with a finite number of transitions can yield abstract p/t nets with in-
finitely many transitions. From the system designer viewpoint, this means that
the combinatorial features of zs nets can be exploited to keep small the size of
the architecture.

The zero-safe approach has been extended to more expressive frameworks
such as nets with read and inhibitor arcs [13], which have been shown expressive
enough to give a concurrent operational semantics to the language TraLinda (an
extension of Linda with transactional primitives).

From the implementation point of view, a distributed interpreter for zs nets
has been proposed in [10] that is based on the ordinary unfolding construction
for Petri nets, while both centralized and distributed interpreters have been
proposed in [7, 8], which are written in (distributed) join calculus. In partic-
ular, while the centralized implementation closely corresponds to the spirit of
BizTalk’s Transaction Manager and can be written in the join fragment corre-
sponding to coloured nets, the distributed implementation exploits a novel com-
mit protocol, called Distributed 2-Phase Commit (D2PC) and exploits reflection
for dynamic creation of local transaction managers. Given the correspondence
in [15], the distributed interpreter can be directly translated in dynamic nets,
but neither in reconfigurable nets, nor in coloured nets.

A hierarchy of transactional frameworks. In this paper, we progressively enrich
zs nets by adding: (1) the value passing mechanism of coloured nets; (2) the
dynamic interconnection mechanism of reconfigurable nets; (3) the high-order
features of dynamic nets.

In most cases, it is shown that that two-level view of the zero-safe approach
is fully preserved, in the sense that, e.g. the abstract net of a coloured zs net is
a coloured p/t net, and so on. Moreover, most constructions are consistent with
the obvious embedding derived from the hierarchy, in the sense that, e.g. if we
regard a coloured zs net as a reconfigurable zs net and take the corresponding
abstract reconfigurable p/t net, then we get a coloured p/t net. In other words,
the diagram in Figure 1 commutes (vertical arrows are the obvious embedding,
while horizontal arrows stand for the construction of abstract nets). We used the
word “most”, because although we conjecture that the construction of abstract
nets can be extended to the dynamic case, at the moment the problem is still
open and therefore the tower in Figure 1 misses the roof.

For each layer of the tower we give several examples for illustrating the
main features of the corresponding model. The two main case studies which
are presented are the mobile lessees problem and the mailing list. Regarding
the mobile lessees problem, first it is shown that an instance of the problem
can always be represented as a zs net, then it is shown that colours allow for
modeling all the instances with a unique coloured zs net. Regarding the mailing
list example, first it is shown that reconfigurable arcs are needed for modeling
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dynamic zs nets ? dynamic p/t nets

reconfigurable zs nets reconfigurable p/t nets

coloured zs nets coloured p/t nets

zs nets p/t nets

Fig. 1. The hierarchy of transactional frameworks.

dynamic message delivery, and then it is shown that the example can be extended
with dynamic creation of new mailing lists by exploiting reflection in dynamic
zs nets.

Structure of the paper. In Sections 2 and 3 are background sections, where we
recall the basics of p/t nets and zs nets. In particular, we define the operational
semantics of such models and the notion of a causal net, the notion of a process
and the notion of an abstract net, which are later extended to account for colours,
reconfiguration and high-order. The modeling of (instances of) the mobile lessees
problem is instead original.

Section 4 and 5 contains the original proposals for extending the zero-safe
approach to coloured and reconfigurable nets. In both cases, the operational and
abstract semantics are defined and related by strong correspondence theorems.

Section 6 attempts to extend the zero-safe approach to dynamic nets. The
operational semantics of dynamic zs nets is presented and discussed on the basis
of the mailing list example, whereas the abstract semantics is just informally
discussed to put in evidence the difficulties in completing the tower in Figure 1.

Some concluding remarks and future work are in Section 7.

Related work. This part collects pointers to recent approaches to formal meth-
ods applied to negotiations for distributed systems. It can be skipped without
compromising the reading of the rest of the paper.

Recent works have addressed the extension of the coordination language
Linda [23] to express transactions. In particular, the serializability of transac-
tions in JavaSpaces [31] have been studied in [17] by adding new primitives for
handling traditional flat transactions to Linda. An alternative extension with
multiway negotiations is proposed in [14], called TraLinda. The semantics of
TraLinda relies on a zero-safe extension of contextual nets. Contextual nets have
been previously used in [29] to study the serializability on database transactions.

While aforementioned works are closely related to the classical notion of
transactions – “all or none” effect of a transaction is observable – web services
languages, such as bpel [6], wsfl[25], xlang [32], and its graphical representa-
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tion Biztalk[30], are particular aware of primitives for handling long-lived nego-
tiations. Such languages do not guarantee atomicity of transactions, but provide
programmable compensations for undoing actions performed by failed negotia-
tions. The compensation mechanism has been introduced in [22] for designing
long-running transactions in database applications.

A compensation language, called StAc, has been proposed in [18]. Processes
and compensations in StAc are written in terms of atomic activities. Never-
theless, the interaction among activities is reduced to data sharing and is not
described at the top-level (they are hidden on the detailed description of the
atomic activities).

In the spirit of process description languages, an extension of the π-calculus
with nested compensation contexts has been introduced in [5]. Nevertheless, the
extension accounts only for compensation and there is no mechanism to restrict
the interactions of transactional processes: the communication capabilities of a
process do not change when it runs inside a transactional context. A different
approach is taken in cJoin [9] – an extension of the Join calculus with nested,
compensatable negotiations – where processes in different transactions can inter-
act by joining their original negotiations into a larger one. Finally, [20] introduces
the pike calculus based on conclaves (i.e., set of dependent processes) as main
abstractions for programming fault-tolerant applications. Different notions of
transactions can be modelled in pike by combining such abstractions.

2 Petri Nets

In Petri nets, places are repositories of tokens (i.e. resources, messages) and
transitions fetch and produce tokens. We consider an infinite set of resource
names P . Given S ⊆ P , we denote with ℘f(S) the set of all finite subsets of S.

Definition 1 (Net). A net N is a 4-tuple N = (SN , TN , δ0N , δ1N ) where SN ⊆
P is the (nonempty) set of places, a, a′, . . ., TN is the set of transitions, t, t′, . . .
(with SN ∩ TN = ∅), and the functions δ0N , δ1N : TN → ℘f(SN ) assign respec-
tively, source and target to each transition.

We will denote SN ∪TN by N , and omit subscript N whenever no confusion
arises. We abbreviate a transition t ∈ T such that δ0(t) = s1 and δ1(t) = s2 as
s1[〉s2, where s1 is usually referred to as the preset of t (written •t) and s2 as the
postset of t (written t•). Similarly for any place a in S, the preset of a (written •a)
denotes the set of all transitions with target in a (i.e., •a = {t|a ∈ t•}, and the
postset of a (written a•) denotes the set of all transitions with source in a (i.e.,
a• = {t|a ∈ •t}. Moreover, let ◦N = {x ∈ N |•x = ∅} and N◦ = {x ∈ N |x• = ∅}
denote the sets of initial and final elements of N respectively. A place a is said
to be isolated if •x ∪ x• = ∅.

Remark. We consider only nets whose transitions have a non-empty preset, i.e.
such that ◦N ⊆ S.
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(firing)

m [〉 m′ ∈ T m′′ ∈ MS

m ⊕ m′′ →T m′ ⊕ m′′

(step)

m1 →T m′
1 m2 →T m′

2

m1 ⊕ m2 →T m′
1 ⊕ m′

2

Fig. 2. Operational semantics of p/t nets.

Note that in a net, the target and the source of a transition is a set of states,
and thus transitions can consume and produce at most one token in each state.
More generally in p/t nets, a transition can fetch and produce several tokens in
a particular place, i.e., the pre and postset of a transition are multisets.

Definition 2 (Multiset). Given a set S, a multiset over S is a function m :
S → N. Let dom(m) = {a ∈ S | m(a) > 0}. The set of all finite multisets
(i.e., with finite domain) over S is written MS. The empty multiset (i.e., with
dom(m) = ∅) is written ∅. The multiset union ⊕ is defined as (m1 ⊕m2)(a) =
m1(a) +m2(a).

Note that ⊕ is associative and commutative, and ∅ is the identity for ⊕.
Hence, Ms is the free commutative monoid S⊕ over S. We write a for a singleton
multiset m such that dom(a) = {a} and m(a) = 1.

Definition 3 (p/t net). A marked place / transition Petri net (p/t net) is a
tuple N = (SN , TN , δ0N , δ1N ,m0N ) where SN ⊆ P is a set of places, TN is a set
of transitions, the functions δ0N , δ1N : TN → MSN assign respectively, source
and target to each transition, and m0N ∈ MSN is the initial marking.

The notions of pre and postset, initial and final elements, and isolated places
are straightforwardly extended to consider multisets instead of sets.

The operational semantics of p/t nets is given by the inference rules in
Figure 2. Given a net N , the proof m →T m

′ means that a marking m evolves
to m′ under a step, i.e., the concurrent firing of several transitions. Rule firing
describes the evolution of the state of a net (represented by the markingm⊕m′′)
by applying a transition m[〉m′, which consumes the tokens m corresponding to
its preset and produces the tokens m′ corresponding to its postset. The multiset
m′′ represents idle resources, i.e. the tokens that persist during the evolution.
Rule step stands for the parallel composition of computations, meaning that
several transitions can be applied in parallel as far as there are enough tokens to
fire all of them. We omit the subscript T whenever it is clear from the context.
The sequential composition of computations is indicated →∗, i.e. m →∗ m′

denotes the evolution of m to m′ under a (possibly empty) sequence of steps.

Example 1 (A simple p/t net). Let N be a p/t net s.t. S = {a, b, c, d}, T =
{t1, t2}, δ0(t1) = δ0(t2) = {a, b}, δ1(t1) = {c}, δ1(t2) = {d}, m0 = {a, b}. Fig-
ure 3(a) shows the graphical representation ofN . As usual, places are represented
with circles, transitions with boxes, tokens with dots, and the pre and postset
functions are represented with arcs. Figure 3(b) shows a possible computation in
N for the initial marking {a, a, b, b}, which corresponds to the concurrent firing
of t1 and t2.
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•
a

•
b

t1 t2

c d
(a) p/t net N .

t1 = a ⊕ b[〉c ∈ T

a ⊕ b →T c

firing
t2 = a ⊕ b[〉d ∈ T

a ⊕ b →T d

firing

a ⊕ a ⊕ b ⊕ b →T c ⊕ d

step

(b) A computation in N for a⊕ a⊕ b⊕ b

Fig. 3. A simple p/t net.

3 Zero-Safe Nets

In this section we recall the basics of the zero-safe approach by following the
presentation given in [11]. Zero-safe nets are an extension of Petri nets suitable
to express transactions. Differently from p/t nets, the places of zero-safe nets
are partitioned into ordinary and transactional ones (called stable and zero,
respectively). Accordingly to the ordinary terminology, in a ’0-safe’ net all places
cannot contain any token in all reachable markings. Zero-safe net – note the word
’zero’ instead of the digit ’0’ – is used to denote that the net contains zero places
that cannot contain any token in any observable marking. The role of zero places
is to coordinate the atomic execution of complex collections of transitions.

Definition 4 (zs net). A Zero-Safe net ( zs net) is a 6-tuple B = (SB, TB,
δ0B, δ1B,m0B, ZB) where NB = (SB , TB, δ0B, δ1B,m0B) is the underlying p/t
net and the set ZB ⊆ SB is the set of zero places. The places in SB\ZB (denoted
by LB) are called stable places. A stable marking m is a multiset of stable places
(i.e., m ∈ MLB), and the initial marking m0B must be stable.

Note that markings m ∈ MSB can be seen as pairs (s, z) with m = s ⊕ z,
where s ∈ MLB is a stable marking and z ∈ MZB is the multisets of zero
resources, because MSB $ MLB × MZB . Transitions are written m[〉m′, with
m and m′ multisets of stable and zero places. A transaction goes from a stable
marking to another stable marking. The key point is that stable tokens produced
during a transaction are made available only at commit time, when no zero
tokens are left. As usual, we omit subscripts when referring to components of a
zs net if they are clear from the context.

The operational semantics of zs nets is defined by the two relations ⇒T

and →T in Figure 4. Rules firing and step are the ordinary ones for Petri
nets, for the execution of one/many transition(s). However, sequences of steps
differ from the ordinary transitive closure of →T : The rule concatenation
composes zero tokens in series but stable tokens in parallel, hence stable tokens
produced by the first step cannot be consumed by the second step. Transactions
are step sequences from stable markings to stable markings, when close can be
applied. The moves (s, ∅) ⇒T (s′, ∅) define all the atomic activities of the net,
and hence they can be performed in parallel and sequentially as the transitions
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(firing)

s⊕z[〉s′⊕z′ ∈ T s′′ ∈ MLB z′′ ∈ MZB

(s ⊕ s′′, z ⊕ z′′) →T (s′ ⊕ s′′, z′ ⊕ z′′)

(step)

(s1, z1) →T (s′1, z
′
1) (s2, z2) →T (s′2, z

′
2)

(s1 ⊕ s2, z1 ⊕ z2) →T (s′1 ⊕ s′2, z
′
1 ⊕ z′

2)

(concatenation)

(s1, z) →T (s′1, z
′′) (s2, z

′′) →T (s′2, z
′)

(s1 ⊕ s2, z) →T (s′1 ⊕ s′2, z
′)

(close)

(s, ∅) →T (s′, ∅)
(s, ∅) ⇒T (s′, ∅)

Fig. 4. Operational semantics of zs nets.

of an ordinary net. It is worth noting that a step (s, ∅) ⇒T (s′, ∅) can be itself
the parallel composition of several concurrent transactions (by rule step).

One of the main advantages of the zero safe approach is that it prevents
combinatorial explosion at the specification level. In fact, atomic activities can
be defined in terms of several subactivities, which keeps the description of the
system small, tractable and modular.

Example 2 (The free choice problem). Suppose the net introduced in Example 1
(see Figure 3(a)) to code the assignment of two resources a and b either to the
activity c or d. By firing t1 the resources are assigned to c, and by t2 to d. The
nondeterministic choice encoded by the net corresponds to a centralized coordi-
nation mechanism that guarantees that both resources are assigned atomically
to the same activity. Nevertheless, if one wants to model the system using a
free choice net, where all decisions are made locally (i.e., by looking just one
place) the situation is different. Consider the free choice net shown in Figure 5.
It models the system with two independent decisions: one for the assignment of
a, the other for the assignment of b.

Nevertheless, the free choice net admits computations not allowed in the
abstract system in Figure 3(a). In fact, the free choice net has deadlocks: consider
the firing of assigna,c and assignb,d. In this case, the net cannot evolve to either
b or c, which is a computation not possible in the original net.

zs nets can be used to overcome this problem, by defining intermediate places
as zero places. The assignment problem can be modelled as the zs net in Figure 6,
where smaller circles stand for zero places. The zs net avoids deadlocks because
computations ending in markings containing zero tokens are recoverable and not
observable.

Example 3 (Mobile lessees). The general problem that we want to model con-
sist of a set of apartments that can be rented immediately, a group of people
looking for an apartment, and people that want to change their apartments, i.e.,
they are willing to move to another apartment if somebody else can rent their
actual apartments. Consider an instance of the problem with three apartments
A,B,C and four people P,Q,R, S. The initial state can be represented as in
Figure 7(a), where the apartment A is available for rent, P and S are searching
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•
a

•
b

assigna,c assigna,d assignb,c assignb,d

a to c a to d b to c b to d

t1 t2

c d

Fig. 5. Free choice net for the assignment problem.

for an apartment, Q wants to leave B, and R wants to leave C. Figure 7(b)
shows the preferences of people on apartments.

The formulation of the problem as a zs net is shown in Figure 8. Note that
there is a place for any apartment available for immediate rent in the initial
state (A free), a place for any person looking for an apartment (S wants and
P wants), and a place for any person willing to change apartment (Q changes B
and R changes C). There is also a place for any possible rent (i.e., accordingly to
the preference matrix in 7(b)). For instance, the transition S takes A states that
person S can rent the apartment A whenever A is free and S is searching for an
apartment, and a token in S moves A means that the person S has rented the
apartment A. The more interesting transitions are Q leaves B and R leaves C,
each of them starts a transaction. In fact, they describe the activity of changing
an apartment as the orchestration of two different activities, one in which a
person finds a new apartment, and other in which the apartment is rented. For
instance, when Q leaves B is fired a token is produced in Q search, and another
in B avail. Note this transaction can finish only when both tokens are consumed,
meaning that both Q has rented a new apartment and B has been rented. The
initial marking denotes the initial state of the problem.

In Figure 9 we show a proof for a transaction in which Q leaves B and takes
A, R leaves C and takes B; and P takes B, while S remains without apartment.
For space reason, we abbreviate the name of places (i.e. Af for A free, QBc for
Q changes B, and similarly for the rest). Moreover, we write stable places with
capital letters, while zero places are written with lower case. The computation
corresponds to the parallel begin of two transactions (where Q changes B and
R changes C are decomposed into two subactivities) followed by the parallel
execution of Q takes A, P takes C and R takes B
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•
a

•
b

assigna,c assigna,d assignb,c assignb,d

a to c a to d b to c b to d

t1 t2

c d

Fig. 6. Free choice net for the assignment problem.

P Q R S Free
A •
B •
C •

Wants • •
(a) Initial State.

P Q R S
A • •
B •
C •

(b) Preferences.

Fig. 7. An instance of the mobile lessees.

3.1 Abstract Semantics

As stated by the operational semantics of zs nets (Figure 4), the observable
states of a system are those represented by stable markings, while the meaningful
computations (i.e., the atomic activities) are the stable steps of the net, i.e.
the steps consuming and producing stable markings (relation ⇒). Since stable
steps can be composed in sequence and parallel, a stable step can be thought
of as the execution of several basic transactions, i.e., stable steps that cannot
be decomposed into other stable steps. Consequently, all the correct behaviours
of the system can be derived from the set of basic transactions of the net. The
abstract semantics of zs net is intended to capture the behaviour of a zs net in
terms of its basic transactions.

In this context, a transaction denotes an activity of the system that might
be composed by many, possibly concurrent, coordinated subactivities. Since the
concurrent semantics of an operational model is usually defined by considering as
equivalent all the computations where the same concurrent events are executed
in different orders, it follows that we should quotient out those transactions
which are equivalent from a concurrent point of view, in such a way that the
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•
A free

•
S wants

•
P wants

•
Q changes B

•
R changes C

Q leaves B R leaves C

Q search B avail

C avail
R search

Q takes A S takes A P takes C R takes B

Q moves A S moves A P moves C R moves B

Fig. 8. zs net of the mobile lessees example.

A:

Af ⊕ qs [〉 QAm ∈ T

(Af, qs) →T (QAm, ∅)
(f)

ba ⊕ rs [〉 RBm ∈ T

(∅, ba ⊕ rs) →T (RBm, ∅)
(f)

(Af, qs ⊕ ba ⊕ rs) →T (QAm ⊕ RBm, ∅)
(s)

Pw ⊕ ca [〉 PCm ∈ T

(Sw ⊕ Pw, ca) →T (Sw ⊕ PCm, ∅)
(f)

(Sw ⊕ Pw ⊕ Af, qs ⊕ rs ⊕ ba ⊕ ca) →T (Sw ⊕ QAm ⊕ RBm ⊕ PCm, ∅) (A)
(s)

QBc [〉 qs ⊕ ba ∈ T

(QBc, ∅) →T (∅, qs ⊕ ba)
(f)

RCc [〉 rs ⊕ ca ∈ T

(RCc, ∅) →T (∅, rs ⊕ ca)
(f)

(QBc ⊕ RCc, ∅) →T (∅, qs ⊕ rs ⊕ ba ⊕ ca)
(s) A

(Sw ⊕ Pw ⊕ Af ⊕ QBc ⊕ RCc, ∅) →T (Sw ⊕ QAm ⊕ RBm ⊕ PCm, ∅)
(concat)

(Sw ⊕ Pw ⊕ Af ⊕ QBc ⊕ RCc, ∅) ⇒T (Sw ⊕ QAm ⊕ RBm ⊕ PCm, ∅)
(close)

Fig. 9. A proof for the execution of a transaction in the mobile lessees zs net.

actual order of execution of concurrent transitions in the zs net is invisible in
the abstract net.

In order to identify the equivalent executions from a concurrent point of view
there are two main approaches: the collective token philosophy (CTph) and the
individual token philosophy (ITph). The net semantics under the CTph does not
distinguish among different instances of the idealized resources (i.e., tokens).
This is a valid interpretation of the behaviour of a system only when any such
instance is operationally equivalent to all the others. Nevertheless, tokens may
have different origins and histories, thus the causality information carried on by
different tokens is disregarded when identifying equivalent computations w.r.t.
CTph, which turns to be the main drawback of this approach. Alternatively, the
ITph takes into account the causal dependencies arising in concurrent executions.

The abstract semantics of zero-safe nets has been largely studied under both
philosophies. In particular, in both cases the abstract net is characterized by an
adjunction on suitable categories [11]. We summarise here the basics of the ab-
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stract semantics under the ITph, which is the most significant one. In particular,
the distinction between tokens with different origins and history relies on the
notion of a deterministic process. A deterministic process denotes a particular
computation in a net, and therefore it explicitly carries the causal information
between firings. To define processes we need two other concepts: net morphisms
and causal nets.

Definition 5 (Net morphism). Let N,N ′ be p/t nets. A pair f = (fS :
SN → SN ′ , fT : TN → TN ′) is a net morphism from N to N ′ (written f : N →
N ′) if fS(δiN (t)) = δiN ′(fT (t)).

We usually omit subscripts when they are clear from the context. With abuse
of notation we apply functions (i.e., fS) over (multi)sets, meaning the multiset
obtained by applying the function element-wise: fS({m0, . . . ,mn}) = fS(m0) ⊕
. . .⊕ fS(mn).

Definition 6 (Causal Net and Process). A net K = (SK , TK , δ0K , δ1K)
is a causal net (also called deterministic occurrence net) if it is acyclic and
∀t0 �= t1 ∈ TK , δiN (t0) ∩ δiN (t1) = ∅, for i = 0, 1.

A (Goltz-Reisig) process for a p/t net N is a net morphism P from a causal
net K to N .

Two processes P and P ′ of N are isomorphic and thus equivalent if there
exists a net isomorphism ψ : KP → KP ′ such that ψ;P ′ = P .

Given a process P : K → N , the set of origins and destinations of P are
defined as O(P ) = ◦K and D(P ) = K◦ ∩SK , respectively. We write pre(P ) and
post(P ) for the multisets denoting the initial and final markings of the process,
i.e. pre(C) = P (O(P )) and post(C) = P (D(P )). Moreover, as isomorphisms
respect initial and final markings, we say that O(ξ) = pre(P ), D(ξ) = post(P ),
for ξ = �P �≈. Finally, the set of evolution places of a process P is the set
EP = {P (a)|a ∈ K, |•a| = |a•| = 1}.

Definition 7 (Connected transaction). Given a zs net B, let P be a process
of the underlying p/t net NB. The equivalence class ξ = �P �≈ is a connected
transaction of B if:

– pre(P ) and post(P ) are stable markings, i.e., the process starts by consuming
stable tokens and produces only stable tokens;

– EP ⊆ ZB, i.e. stable tokens produced during the transaction cannot be con-
sumed during in the same transaction;

– P is connected, i.e. the set of transitions TK is non-empty, and for all t0, t1 ∈
TK there exists an undirected path connecting t0 and t1; and

– P is full, i.e., it does not contain idle (i.e., isolated) places (i.e., ∀a ∈
SK , |•a| + |a•| ≥ 1).

We denote by ΞB (ranged by ς) the set of connected transaction of B.

A connected transaction can be executed when the state of the net contains
enough stable tokens to enable all the transitions independently. At the end of
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•
S wants

•
A free

•
P wants

•
Q changes B

•
R changes C

S takes A Q takes A & P takes C & R takes B

S moves A Q moves A P moves C R moves B

Fig. 10. Abstract net of the mobile lessees example.

its execution no token may be left on zero places (nor may be found on them at
the beginning of the step). This means that all the zero tokens produced by a
transaction are also consumed by the same transaction. Moreover, in a connected
transaction no intermediate marking is stable.

Definition 8 (Causal abstract net). Let B = (SB, TB, δ0B, δ1B ,m0B, ZB).
The net IB = (SB\ZB, ΞB, δ0I , δ1I ,m0B), with δ0I(ς) = pre(ς) and δ0I(ς) =
post(ς), is the causal abstract net of B (we recall that pre(ς) and post(ς) denote
the multisets Pς(O(ς)) and Pς(D(ς)), respectively, and that ΞB is the set of all
the connected transactions of B).

Example 4 (Abstract Net for the Mobile lessees problem). Figure 10 shows the
abstract net corresponding to the zs net in Figure 8. In the abstract net there
are only two transitions, each of them representing an abstract transaction of
the zs net: S takes A, corresponding to the homonymous transition in the zs
net; Q takes A & P takes C & R takes B, for the atomic negotiation in which
Q leaves B and takes A, R leaves C and takes B; and P takes B. These two
transitions are enough to model the abstract behaviour of the system. In fact, any
other combination is not possible because it would imply that some exchanged
apartment (i.e., B or C) remains available for rent or a person willing to change
apartment (Q or R) remains without apartment, which is an inconsistent state
(with pending negotiations).

Note that one of the main advantages of the approach is that it allows to
fully specify the behaviour of a system without analyzing all possible global
combinations. Consider an instance of the lessees problem with a larger number
of apartments and people, and a more complicated set of preferences. It could be
tedious to figure out which are all the possible combinations that correspond to
consistent transformations in the system. Moreover, it is possible to describe an
infinite abstract net with a finite zs net, as the multicasting system presented in
[11] or the generalized version of the mobile lessees problem analyzed in Section 7.

The correspondence between the concrete and the abstract view is stated by
the following theorem [12].

Theorem 1. Let B be a zs net and IB its abstract net. Then m →TIB
m′ iff

m ⇒TB m
′.
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4 Adding Colours to zs Nets

4.1 Coloured p/t Nets

In coloured p/t nets [24] (known also as high-level nets), tokens carry on informa-
tion, which is given by their colours. Actually, colours are values/data associated
with a particular instance of a resource. Hence, the state and transitions of a
net exploit also the information present in tokens, i.e. their colours.

We consider an infinite set of constant colour names B, ranged over by
x, x1, . . . and an infinite set of colour variables V , ranged over by v, w, . . .. We
denote the set of constants and variables with C = B ∪ V . Moreover, we require
constant and variable colours to be disjoint (B ∩ V = ∅) and different from place
names, i.e. C ∩ P = ∅. Let S be a set, S∗ stands for the set of all finite (possible
empty) sequences on S, i.e. S∗ = {(s1, . . . , sn)|n ≥ 0 ∧ si ∈ S}. The empty
sequence is denoted by •, and the underlying set of a sequence (s1, . . . , sn) by:

(s1, . . . , sn) =
⋃
i

{s1}

Definition 9 (Coloured net). A coloured net N is a 5-tuple N = (SN , CN ,
TN , δ0N , δ1N ) where SN ⊆ P is the (nonempty) set of places, CN ⊆ C is the set
of colours, TN is the set of transitions (with SN ∩ TN = ∅), and the functions
δ0N , δ1N : TN → ℘f(SN × C∗

N ) assign respectively, source and target to each
transition. To assure that a transition fetches and produces at most one token
in a place we require that ∀t ∈ TN , if(s, c1), (s, c2) ∈ δiN (t) then c1 = c2, for
i = 0, 1.

The pre and postset of a transition are defined similarly to Section 2, but
taking into account that they are coloured sets instead of sets. Analogously, for
any place a in SN , the preset of a (written •a) denotes the set of all transitions
with target in a (i.e., •a = {t|(a, c) ∈ t•}, and the postset of a (written a•)
denotes the set of all transitions with source in a (i.e., a• = {t|(a, c) ∈ •t}.
The definitions for the sets of initial and final elements, and isolated place are
identical to those given in Section 2.

Note that in coloured nets a transitionm1[〉m2 denotes a pattern that should
be matched/instantiated with appropriated colours in order to be applied. In par-
ticular, constant colours appearing in m1 act as values that should be matched
in order to fire the transition, while variables should be instantiated with appro-
priate colours. Variables are binders of colours occurring inm2. For instance, the
transition t = (a1, v), (a2, v), (a3, x1) [〉(a1, v), (a4, x2) denotes a pattern stating
that whenever a1 and a2 contain tokens with the same colour (but they can
be of any constant colour because of the variable v) and a3 contains a token
with constant colour x1, the transition can be fired. When t is fired, the tokens
matching the preset are consumed, and a new token is put in a1, whose colour
corresponds to the consumed tokens in a1 and a2, and a token with colour x2 is
produced in a4. Consequently, the firing of t over m = (a1, x3), (a2, x3), (a3, x1)
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will produce m′ = (a1, x3), (a4, x2). From a functional point of view, colour vari-
ables occurring in the preset of a transition act as its parameters, which are
called received colours.

Definition 10 (Received colours of a transition). The colour of a set s ⊆
S×C∗ is defined as col(s) = ∪(a,c)∈s c, the set of constants is colB(s) = col(s)∩B,
and the set of variables colV(s) = col(s) ∩ V. Given a transition t = m[〉m′, the
set of received colours (also received names) of t is given by rn(t) = colV(m).

Remark. As variables are used to describe parameters in a transition, we will con-
sider only coloured nets in which each transition t = m[〉m′ satisfies colV(m′) ⊆
rn(t). This restriction states that all variables occurring in the postset of a tran-
sition are bound to some variable in the preset.

Clearly, previous definitions can be straightforwardly extended to consider
coloured multisets instead of sets.

Definition 11 (Coloured Multiset). Given two sets S and C, a coloured
multiset over S and C is a function m : S → C → N. Let dom(m) = {(s, c) ∈
S × C | m(s)(c) > 0}. The set of all finite multisets over S and C∗ is written
MS,C. The multiset union is defined as (m1 ⊕m2)(s)(c) = m1(s)(c)+m2(s)(c).
We write s(c) for a multiset m such that dom(m) = {(s, c)} and m(s)(c) = 1.
Additionally, (s, c) ∈ m is a shorthand for (s, c) ∈ dom(m), while s ∈ m means
(s, c) ∈ m for some c.

Definition 12 (c-p/t net). A coloured marked place / transition net (c-p/t
net) is a 6-tuple N = (SN , CN , TN , δ0N , δ1N ,m0N ) where SN ⊆ P is the set
of places, CN ∈ C is the set of colours, TN is a set of transitions, the functions
δ0N , δ1N : T → MSN ,CN assign respectively, source and target to each transition,
and m0N ∈ MSN ,CN is the initial marking. Moreover, ∀t ∈ TN , colV(t•) ⊆ rn(t)
(i.e., variables in the postset are bound to received names), and col(m0N ) ⊆ B
(i.e., tokens in the initial marking are coloured with constants).

As aforementioned, the firing of a transition t in a coloured net requires
to instantiate t with appropriate colours, i.e., those corresponding to tokens
present in places. Consequently, the instantiation of a transition corresponds to
a substitution on colour variables.

Definition 13 (Substitution on colours). Let σ : V → B ∪ V be a partial
function. The substitution vσ on a colour variable v is c if σ(v) = c, otherwise
it is v, i.e., it is the identity when σ it is not defined. Instead, the substitution
xσ on a constant colour x produces x, i.e., it has no effect. The substitution
on a colour sequence is the simultaneous substitution on the names appearing in
the sequence, i.e., (c1, . . . , cn)σ = (c1σ, . . . , cnσ). The colour substitution on a
multiset m ∈ MS,C is given by (m � σ)(s)(c) =

∑
dσ=c m(s)(d).
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The operational semantics of coloured nets is given by replacing the rule
firing in Figure 2 by the following version:

(coloured-firing)

t = m [〉 m′ ∈ T m′′ ∈ MS,C

m � σ ⊕m′′ →T m
′ � σ ⊕m′′

dom(σ) = rn(t) and σ(v) ∈ B for v ∈ dom(σ)

Remark: α-equivalence on defined names. Note that the variables chosen to
denote colours in the preset of a transition are meaningless. Actually, they act
as binders whose scope is just that transition, and consequently the can be
changed without modifying the meaning of a transition. Therefore we define the
following relation over transitions, called α-conversion on received colours.

Two transitions t1 = m1[〉m′
1 and t2 = m2[〉m′

2 are α-convertible if there
exists an injective substitution σ : V → V , where dom(σ) ⊆ rn(t1), such that
m1 � σ = m2 and m′

1 � σ = m′
2. The α-conversion is an equivalence relation,

which is denoted by ≡α. We usually talk about transitions up-to α-equivalence.

4.2 Coloured zs Nets

The zs version of a coloured net is obtained also by distinguishing stable places
from zero ones.

Definition 14 (c-zs net). A coloured zs net (c-zs net for short) is a 7-tuple
B = (SB, CB , TB, δ0B, δ1B,m0B, Z0B) where NB = (SB , CB, TB, δ0B, δ1B,m0B)
is the underlying c-p/t net and the set ZB ⊆ SB is the set of zero places. The
places in SB\ZB (denoted by LB) are called stable places. A stable marking m is
a coloured multiset of stable places (i.e., m ∈ MLB ,CB), and the initial marking
m0B must be stable and satisfy col(m0B) ⊆ B.

The operational semantics of c-zs nets is a straightforward extension of rules
given in Figure 4, where the firing rule is replaced by the following version:

(coloured-firing)

t = s⊕ z [〉 s′ ⊕ z′ ∈ T s′′ ∈ ML,C z′′ ∈ MZ,C

(s � σ ⊕ s′′, z � σ ⊕ z′′) →T (s′ � σ ⊕ s′′, z′ � σ ⊕ z′′)
dom(σ) = rn(t), and
σ(v) ∈ B for v ∈ dom(σ)

We still write a marking m = s⊕ z as a pair (s, z) to denote that s ∈ ML,C

and z ∈ MZ,C .

Example 5 (c-zs net for the mobile lessees problem). A more general represen-
tation for the mobile lessees problem introduced in the Example 3 can be given
in terms of c-zs nets. Consider the net in Figure 11, where label on arcs corre-
sponds to the colours of the pre and postset of a transition. Tokens present in
the place free represent apartments that are available for being rented immedi-
ately. The actual identity of the apartment is given by the colour of the token.
Similarly people looking for an apartment are represented as coloured tokens
in wants, and those willing to change apartment as tokens (w′, v′) in changes,
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v

free

(w′,v′)

changes

w

wants

freeing

v

changing
v′ w′

searching

w

v′′
avail

w′′
search

taking

(w′′ ,v′′)

(w′′,v′′)

(w′′,v′′) pref

moves

Fig. 11. Coloured zs net of the mobile lessees example.

meaning that the person w′ changes the apartment v′. The transition freeing
initiates a transaction by making available for rent an offered apartment. Anal-
ogously, searching initiate a transaction in which a person is looking for an
apartment. Transition changing starts a transaction by rendering available the
offered apartment and putting a token in the place of persons looking for an
apartment. Finally, the transition taking states that a person w′′ searching for
an apartment can take the available apartment v′′ if she likes it (i.e., a token
with colour (w′′, v′′) is in the set of preferences). A token with colour (w′′, v′′)
produced in the place moves means that the person w′′ has moved to the apart-
ment v′′. It is worth noting that tokens are actually produced on place moves
when no token is left in the zero places (i.e., avail or search).

While in the zs net different instances of the problem (i.e., different set of
apartments, people or preferences) correspond to different structures of the net
(i.e., states, transitions and flow function), in the coloured version the structure
is the same for every instance of the problem, the only thing that changes is the
initial marking. In fact, all the information about a particular instance of the
problem is represented by colours.

Contextual nets. The self-loops introduced to model the preference sets in the
Example 5 can be better modelled as read arcs. Nets with read arcs allow for
modelling “read without consume”, where many readers can access concurrently
the same resource. Consider transition taking in Figure 11. Actually, there is
no need to consume the token in pref. To fire taking it is enough to check the
presence of a token with suitable colours on pref. The extension of the zs model
to contextual nets have been studied in [13].

zs nets can be encoded as c-p/t nets. zs nets have been encoded in [7] into a
fragment of the join calculus corresponding to the coloured nets. In such encoding
(which is called flat) the transactional mechanism of zs nets is implemented
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through a centralized coordinator, which is aware of the zero tokens present in
the net. Roughly, stable tokens produced during a transaction are kept frozen
by the coordinator, which will release them when no zero token is left in the net.

4.3 Abstract Net under the ITph Approach

In order to define the abstract net associated to a c-zs net we revise the notion
of causal net and processes in order to take into account colours.

Definition 15 (Coloured Causal Net). A coloured net K = (SK , CK , TK ,
δ0K , δ1K) is a causal net if it is acyclic and transitions do not share places in
their pre and postsets, i.e. if a ∈ δiN (t0) and a ∈ δiN (t1) then t0 = t1.

When viewing coloured causal nets as descriptions of runs, it should be clear
that differently from causal nets, in the coloured version a causal net can be
blocked because the bindings between the different colours are not consistent.
Consider a simple causal net with the following transitions t0 = (a0, •)[〉(b0, x0),
t1 = (a1, •)[〉(b1, x1), and t2 = (b0, v), (b1, v)[〉(a, •). Starting with the marking
a0(•) ⊕ a1(•), it cannot execute completely because t0 produces a token with
the constant colour x0 on b0 and t1 a token with colour x1 on b1, but t2 requires
tokens in b0 and b1 with the same colour.

In general, causal nets can execute completely when the colours used to label
transitions are sequences of variables of the same length.

Definition 16 (Plain nets). A causal net K is a plain net if ∃k ∈ N s.t.
∀t ∈ T, (s, c) ∈ •t ∪ t• : c ⊆ V ∧ |c| = k, with |c| denoting the length of c.

As for p/t net, we define a notion of morphism between c-p/t nets.

Definition 17 (Coloured net morphism). Let N,N ′ be c-p/t nets. A tuple
f = (fS : SN → SN ′ , fT : TN → TN ′ , σ = {σt}t∈TN ) is said a coloured net
morphism from N to N ′ (written f : N →σ N

′) if fS(•t)[〉fS(t•) = •fT (t) �
σt[〉fT (t)• � σt.

Note that a morphism explains also the correspondence between colours used
by transitions. Each σt relates each colour appearing in t with a colour in fT (t).
Moreover, transitions in N are required to be a particular case of those in N ′.

Definition 18 (Process of a coloured net). A (Goltz-Reisig) process for a
c-p/t net N is coloured net morphism P : K →σ N , from a coloured causal net
K to N , s.t. ∀σt ∈ σ, σt is injective and σt : V → V.

Two coloured processes P and P ′ are isomorphic and thus equivalent if there
exists a net isomorphism ψ : KP →σ KP ′ such that ψ;P ′ = P .

A process P associates a coloured causal net K to a c-p/t net N . As K is
itself a coloured net, its transitions can be fired for any suitable substitution of
colours. Therefore, a process describes several runs that start from initial mark-
ings with different colours. (Our approach is similar to that presented in [3]).
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Nevertheless, this does not mean that a process can be instantiated for any
possible combination of colours. In fact, a process stands for executions where
just one token is produced and/or consumed from a particular place, and conse-
quently the colours appearing in the preset and postset of a place must coincide.
Consequently, a process implicitly defines a relation among colours in admissible
markings. A compatible execution of a process is an instantiation of colours that
satisfies such constraints.

For simplicity, we defined the notion of compatible execution for the equiva-
lence class of P , i.e. �P �≈.

Definition 19 (Compatible execution of �P �≈). Let ς ∈ �P �≈ such that
∀t1, t2 ∈ Tς , rn(t1)∩rn(t2) = ∅, i.e., transitions do not share variables. A substi-
tution σ is said a compatible execution of ς if ∀a ∈ Sς ,

•a �σ = a• � σ. If such σ
exists, we say that �P �≈ is compatible. A process P is compatible if there exists
a compatible execution for �P �≈.

A compatible execution captures the notion of unification that takes place
when computing in a coloured net.

Example 6. Two simple processes for the c-zs net in Figure 11 are presented
in Figure 12. The first one represents a person looking for an apartment that
takes a free apartment, while the second shows the process in which two people
exchange their apartments.

The first process can be used as representative of its equivalence class because
its transitions do not share variables. The substitution σ = {v/v′, w/w′} is a
compatible execution for the first process. Note that w/w′ in σ captures the
idea that the token consumed from the state wants refers to the same person
of the token used from the preference set (similarly, v/v′ relates the different
tokens referring to the same apartment). Observe also that the substitution
σ′ = {v/x, v′/x,w/x,w′/x} is a compatible execution for the same process,
which requires all names to be equals to the constant x. Clearly, σ′ imposes
more restrictive constraints than σ. Moreover, σ′ is a particular case of σ.

On the other hand, the second process cannot be taken as representative of
its equivalence class because some transitions, such as changing′ and taking,
share variables. Nevertheless, a representative can be obtained by applying α-
conversion on transitions.

Proposition 1. Any process P of a plain net is compatible.

As we are interested on capturing the most general definition for equivalent
executions, we will associate particular cases to instantiations of more general
ones. Consequently, we are interested on the less restrictive constraints on colours
implied by a process, which is called the most general compatible execution.

Definition 20 (mgce). A compatible execution σ is said the most general com-
patible execution (shorten as mgce) of ς, written σς , if for every other compatible
execution σ′ there exist a substitution γ s.t. ∀t ∈ Tς , (t � σς) � γ = t � σ′.
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Fig. 12. Two coloured processes for the mobile lessees example.

We write by ΞB (ranged by ς) the set of connected transaction of B.
The definition for connected transactions is identical to Definition 7, but

requiring processes to be compatible. Consequently, the definition of the abstract
net is immediate, the only difference is that abstract transitions are defined in
terms of the processes and their mgce.

Definition 21 (Causal abstract coloured net). Let B = (SB , CB, TB, δ0B,
δ1B,m0B, ZB). The net IB = (SB\ZB, CB, ΞB, δ0I , δ1I ,m0B), with δ0I(ς) =
pre(ς) � σς and δ0I(ς) = post(ς) � σς , is the causal abstract net of B (we recall
that σς is the mgce for ς, that pre(ς) and post(ς) denote the multisets Pς(O(ς))
and Pς(D(ς)), respectively, and that ΞB is the set of all the compatible connected
transactions of B).

Example 7 (Abstract coloured net for the generalized mobile lessees problem).
Figure 13 shows a partial view of the abstract net corresponding to the mobile
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Fig. 13. Partial abstract net of the c-zs net of the mobile lessees example.

lessees example. Transition wants&free corresponds to the atomic step in which
a person who is searching for an apartment rents an available apartment. Tran-
sition n changes corresponds to the case in which n people interchange their
apartments. Note there are infinite transitions of this kind, one for any n ≥ 2.
Similarly, the transition n changes&wants&free stands for the atomic step in
which n people change their apartments, but one of them takes a free apartment
and one person looking for an apartment participates in the exchange. Observe
that this infinite abstract net is modelled with a finite concrete zs net.

Finally, the correspondence between the two different views provided by the
concrete zs net and the abstract net is guaranteed by the following result.

Theorem 2. Let B be a c-zs net and IB its abstract net. Then m →TIB
m′ iff

m ⇒TB m
′.

Proof (sketch). ⇒) By induction on the structure of the proof m →TIB
m′.

(i) When the reduction is obtained by applying rule firing, then there is a
transition m1[〉m′

1 in IB s.t. m1 � σ⊕m′′ = m and m′
1 � σ⊕m′′ = m′, i.e., m1 is

consumed, m′
1 is produced, and m′′ denotes idle resources. Consequently, by the

construction of the abstract net there is a connected transaction (a compatible
process) ς with a mgce σς s.t. pre(ς)�σς = m1 and post(ς)�σς = m′

1. We can build
a proof form1�σς �σ ⇒B m

′
1�σς �σ using ς in the following way: at each step use

rules coloured-firing and step for firing all enable transitions, then combine
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steps with rule concatenation. The concatenation rule can always be applied
because the evolution places of a concatenable transaction are zero-places. The
family of substitutions σt used by the morphism explains how variables appearing
in the transitions (of the net B) are used in the process. Consequently, any
substitution used in the proof to fire a transition t is defined as σt � σς � σ
restricted to rn(t). Note that proof obtained by adding idle resources in the
application of firing is also a valid rule. Consequently, the idle resources m′′

can always be added to the computation described by the process. (ii) When
the reduction is obtained by applying rule step the proof is immediate by using
inductive hypothesis on premises and by noting that steps in the abstract net
corresponds also to steps in the zs net.

⇐) Note that it is possible to define a process P describing the computation
m ⇒TB m′, s.t. pre(P ) = m, post(P ) = m′. Moreover, the causal net used
by P contains a place for each produced token in the proof, and a transition
for any application of firing. Note that by rule concatenation all evolution
places corresponds to zero places. If two independent computations are combined
with rule step, then the process has independent subnets, each of them is a
process from a stable marking to a stable marking. So, they can be considered
independently. Obviously, each independent process is compatible, because it is
a possible computation of the net (the compatible execution can be built from
the substitutions used during the proof). Therefore the abstract net contains a
transition representing this process. This is guaranteed because transitions in the
abstract net are defined in terms of the mgce (i.e., any compatible instantiation
of the processes can be obtained as an instantiation the mgce). Consequently,
there is a firing corresponding to any independent subnet in the process. The
entire computation in the abstract net can be obtained by using rule step to
combine concurrent firings. Isolated places in the causal net are idle resources
and can be added to any firing in the proof.

zs nets as c-zs nets. p/t (and zs) nets can be seen as a particular case of c-p/t
(resp., c-zs) nets where tokens are coloured with the empty sequence •.

Definition 22 (Coloured version of a p/t net). Let N = (SN , TN , δ0N ,
δ1N ,m0N ) be a p/t net. The coloured net CN = (SN , ∅, TN , δ0CN , δ1CN ,m0CN ),
with δiCN (t)(a, •) = δiN (t)(a) for i = 1, 2 and m0CN (a, •) = m0N (a) is the
coloured version of N . Given a zs net B, the c-zs net CB is coloured version B
if its underlying c-p/t net NCB is the coloured version of the underlying p/t
net NB of B, and ZB = ZCB .

It should be noted that the construction of the abstract nets under these
two different views is consistent. That is, the coloured abstract net for a zs net
coincides with the abstract (non-coloured) net.

Theorem 3. Let B a zs net, IB its abstract p/t net, CB and CIB their coloured
versions, and ICB the abstract net of CB (i.e., the colored version of B). Then
CIB ≈ ICB .
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Proof (sketch). The proof follows from the fact that the coloured version CP of
a process P of a net N is a process of the coloured net CN . Moreover, if P ≈ P ′

then CP ≈ C′
P . On the other hand, the coloured version of P is always a plain

net, because all colours are sequences of length 0. Therefore any coloured process
CP is compatible, and consequently CIB ≈ ICB .

5 Reconfigurable zs Nets

5.1 Reconfigurable Nets

The idea behind reconfigurable nets (r-p/t nets) is that basic colours are names
of places in the net, and consequently the postset of a transition is not static,
but depends on the colours of the consumed tokens. For instance, a transition
t = a(v)[〉v(a) denotes a pattern that consumes a token from a and generates a
token in the place corresponding to the colour v of the consumed message. In
fact, if t is applied to m1 = a(b) it produces m2 = b(a). Instead, when applied
to m′

1 = a(b′), it generates m′
2 = b′(a).

Consequently, the definitions of nets and of place/transitions nets can be
extended in order to allow received names to appear as places in the postsets
of transitions. We consider an infinite set of variable names V , ranged over by
v, w, . . .. We require also variable names be different from place names, i.e.,
V ∩ P = ∅. Moreover, the constant colours are names of places, hence C = P .

Definition 23 (r-p/t net). A Reconfigurable marked place / transition net
is a 5-tuple N = (SN , TN , δ0N , δ1N ,m0N ) where SN ⊆ P is a set of places,
TN is a set of transitions, the functions δ0N : TN → MSN ,SN∪V and δ1N :
TN → MSN∪V,SN∪V assign respectively, source and target to each transition,
and m0N ∈ MSN ,SN is the initial marking. Moreover, for every t in TN we
require δ1N (t) ⊆ MSN∪rn(t),SN∪rn(t), i.e., variables occurring in the postset of a
transition are received names.

Note that we allow variables to occur in the preset of a transition just in
colour positions, while they can also occur in place positions in the postsets.
Variables are used analogously to variables in the coloured model, i.e., they are
the parameters of a transition that should be instantiated in order to fire the
transition. As usual, we consider transitions up-to α-conversion.

The main difference between coloured and reconfigurable nets is that when
a transition t is fired in a r-p/t net, the variables in the postset of t should
be substituted also when they appear in place position. The following definition
introduces the substitution of names occurring both in colour and place position.

Definition 24 (Substitution). Let σ : V → V ∪ P be a partial function.
The substitution σ on a multiset m ∈ MV∪P,V∪P is given by (mσ)(s)(c) =∑

rσ=s∧dσ=c m(s)(d).

The operational semantics for reconfigurable nets can be defined by replacing
the rule (firing) in Figure 4 by the following (reconf-firing) rule:
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(reconf-firing)

t = m [〉 m′ ∈ T m′′ ∈ MS,S

m � σ ⊕m′′ →T m
′σ ⊕m′′

dom(σ) = rn(t), and
σ(v) ∈ S for v ∈ dom(σ)

Comparing rule (coloured-firing) of c-p/t nets and (reconf-firing)
of r-p/t nets, it should be clear that in both cases a transition t can be fired on
m only when m contains an instance of the preset obtained by renaming only
colours (i.e., m � σ). That is, a transition in both c-p/t nets and r-p/t nets
consumes messages from a fixed set of places. Differently, in c-p/t nets, tokens
generated by firing t corresponds to an instance of the postset of t obtained by
substituting only colours accordingly to σ, whereas in r-p/t nets the renaming
also affects names appearing in place position. For this reason, in c-p/t nets
a transition produces messages in a fixed set of places (although their colour
can be different for each firing). Instead, in r-p/t nets two different firings of
the same transition can produce messages in different places, i.e. the postset
of a transition changes dynamically depending on the colours of the consumed
messages.

5.2 Reconfigurable zs Nets

The first consideration is that in r-p/t net there is no difference between places
and colours. Taking into account that places in zs nets can be either stable or
zero, also colours are zero and stable. Consequently, the distinction between sta-
ble and zero markings must also consider colours present inside places. Actually,
a stable marking should contain only stable names, therefore we write s to in-
dicate s ∈ ML,L and we write z for denoting a zero marking. At a first glance,
it could appear that any other marking denotes a zero marking. This is not the
case for a non-empty marking m ∈ ML,Z. Markings of this kind contain stable
places with tokens coloured with zero names, which is somehow contrary to the
zs approach. Note that in zs nets, tokens in stable places produced during a
transaction are released only at commit, when all zero tokens have been con-
sumed. Consequently, we will restrict zero markings to z ∈ M Z,S . We denote
the set of well-defined markings as WL,Z = ML,L ∪ M Z,L∪Z . Additionally, we
consider the set of variable names V as partitioned into sets: VL, the set of stable
variables V,W, . . ., and VZ the set of zero variables v, w, . . ..

Definition 25 (r-zs net). A Reconfigurable zs net is a 6-tuple B = (SB, TB,
δ0B, δ1B,m0B,ZB) where NB = (SB, TB, δ0B, δ1B,m0B) is the underlying r-
p/t net and the set ZB ⊆ SB is the set of zero places. The places in SB\ZB

(denoted by LB) are called stable places. A stable marking m is a coloured mul-
tiset of stable places (i.e., m ∈ MLB,LB), and the initial marking m0B must
be stable. Moreover, we impose the pre and postset functions to be defined over
well-defined markings, i.e., ∀t ∈ TB, δiN (t) ∈ WLB∪VL,ZN∪VZ , for i = 1, 2.

We require transitions to be fired with appropriate names, that is zero vari-
ables are substituted by zero places and stable variables by stable places.
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Definition 26 (Type preserving substitution). A substitution σ is type
preserving if ∀V ∈ VL, σ(V ) ∈ (LB ∪ VL) and ∀v ∈ VZ , σ(v) ∈ (ZB ∪ VZ).

In what follows we assume all substitutions to be type preserving. Then,
firing rule for r-zs nets can be written as follows.

(reconf-firing)

t = s⊕ z [〉 s′ ⊕ z′ ∈ T s′′ ∈ ML,L z′′ ∈ MZ,S

(s � σ ⊕ s′′, z � σ ⊕ z′′) →T (s′σ ⊕ s′′, z′σ ⊕ z′′)
dom(σ) = rn(t), and
σ(v) ∈ S for v ∈ dom(σ)

Example 8 (Mailing list). Consider a data structure that allows to send atom-
ically a message to a list of subscribers (in the sense that it is either sent to
all or to none). Figure 14 shows a zs net corresponding to such structure. Nil
is a stable constant colour, all other colours used for labelling arcs are stable
variables.

The stable place newSubs contains the tokens corresponding to the agents
that want to be subscribed to the list. Their colours are the places in which they
expect to receive a new message. Place top contains the element on top of the
list (the latest subscriber). We assume that an empty list is denoted with a token
coloured with the constant colour Nil. A list is encoded with several tokens in
place subscList, where each token carries on the information corresponding to
one subscriber and the next subscriber in the list, hence their colours are pairs.

By firing the transition add a new subscriber N is added on top of the list.
The token corresponding to the previous subscriber on top of the list (whose
colour is T ) is replaced with a new token of colour N , i.e., the new subscriber
becomes the top of the list. Also, a new token is produced in subscList whose
colour is (N,T ), meaning that the subscriber that follows N in the list is the
previous element on top of the list T .

Transition tell allows to send a message M to every subscriber in the list.
When tell is fired a new transaction is initiated, because a new token is gen-
erated in place sending, which is a zero place. Note that the top of the list is
consumed, and a new token with the same colour is produced in top, but it will
be released only when the transaction finishes. Therefore, transitions add and
tell will not be enabled until the current transaction finishes.

The zero token present in sending contains the information of the subscriber
to notify (i.e., the first colour of the pair), and the message to send (i.e., the sec-
ond colour). Transition notify is a reconfigurable transition. In fact, it consumes
from sending the token (T,M), and sends M to the subscriber T (nevertheless
this token will be available actually when the transaction finishes). Additionally,
notify takes from subscList the subscriber F that follows T in the list, and
update the state of the transaction by putting in the zero place sending a token
to notify the next subscriber with M .

The transaction finishes when the end of the list is reached. That is, when
the token in sending is addressed to the receiver Nil. At this point, the tran-
sition end can be fired to consume the zero token present in the net, which will
release all the stable tokens produced during the transaction. At this moment
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Fig. 14. A r-zs net for the mailing list example.

all subscribers atomically receive message M , and the top of the list is available
for executing new activities.

5.3 Abstract Net under the ITph Approach

The definition of the abstract semantics of r-zs net also relies on the identifi-
cation of the basic atomic computations of the net, and for the ITph approach
on the notion of Goltz-Reisig processes. The interesting point here is that dur-
ing a computation on a reconfigurable net some transitions are instantiated in
a particular way. Consider the reconfigurable net shown in 15(a), consisting of
two transitions t1 = a(u, v)[〉u(v) and t2 = c(w)[〉w(•), where a, b and c are
places, and u, v and w variables. Figure 15(b), shows a possible execution in
the net where the transition t′1 is an particular case of t1, where the received
name u has been used as colour c. Consequently, our notion of processes of a
reconfigurable net is based on this idea of instantiation.

Definition 27 (Instance of a transition). Let t = m[〉m′ be a transition.
A transition i is an instance of t for a substitution σ if dom(σ) ⊆ rn(t) and
i = m � σ[〉m′σ.

Definition 28 (Reconfigurable net morphism). Let N,N ′ be r-p/t nets.
A tuple f = (fS : SN → SN ′ , fT : TN → TN ′ , ρ = {ρt}t∈TN , σ = {σt}t∈TN ) is a
reconfigurable net morphism from N to N ′ (written f : N →σ,ρ N

′) if ∀t ∈ TN :

– ρt : V → P (i.e., substitutes variables by constants);
– fS(•t � ρt)[〉fS(t• � ρt) is an instance of •fT (t)[〉fT (t)• for σt.

Substitution ρt are referred to as proper substitutions or instantiations.
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Fig. 15. Reconfigurable net morphism.

For the particular case of coloured transitions (i.e., transitions without re-
configurable capabilities), the condition required on the mapping is analogous to
that on coloured net morphisms (Definition 17). In fact, no proper instantiations
are needed. Moreover, if used they correspond to instantiations of colours.

Figure 15(c) shows a morphism between reconfigurable nets. Note that the
received name u′ of t′1 has been instantiated as c′ (i.e., the proper substitution
is ρt1 = {c′/u′}), because t2 consumes messages from c. Nevertheless, the whole
net is still a reconfigurable net. In fact, the place v′ in which the final transition
will produce the token depends on the colour of the token consumed from a′.

Definition 29 (Process of a reconfigurable net). A (Goltz-Reisig) process
for a r-p/t net N is a reconfigurable net morphism P : K →σ,ρ N , from a
reconfigurable causal net K to N , s.t. every ρtk

is minimal (i.e., for every other
ρ′tk

that satisfies the morphism conditions ρ′tk
⊆ ρtk

holds) and every σtk
is

injective and σtk
: V → V.

As done for coloured nets, we also define a notion of compatible execution of
a process to capture the relation between the different colours appearing in the
causal net.

Definition 30 (Compatible execution of �P �≈). Let ς ∈ �P �≈ s.t. ∀t1, t2 ∈
Tς , rn(t1) ∩ rn(t2) = ∅, i.e., transitions do not share variables. A substitution σ
is said a compatible execution of ς if:

– if ∀a ∈ Sς ,
•a � σ = a• � σ.

– σ is consistent with any proper instantiation ρt in ς, i.e., ∀t ∈ Tς , ρt ⊆ σ.

If such σ exists, we say that �P �≈ is compatible. A process P is compatible if
there exists a compatible execution for �P �≈.
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Fig. 16. Two reconfigurable processes.

The first condition is similar to that for compatible executions of coloured
processes. The second one assures that in a compatible execution a name is not
instantiated in different ways.

Example 9. Consider a reconfigurable net consisting of the following transitions:
t1 = a(v)[〉b(v) ⊕ v(•), t2 = b(w)[〉w(•), t3 = d(•)[〉f(•) and t4 = e(•)[〉g(•).
Figure 16 shows two process of the net (both can be taken as representative of
their equivalence class because their transitions do not share variable names). For
simplicity, we call transitions in the causal net t′ if they are mapped to t, while
corresponding places have the same name. Places with name such as w = e denote
the proper instantiations used by the morphism. Consider the first process, the
place v = d can be mapped only into d, because t′3 in the net corresponds to t3 in
the original net. Consequently, t′1 is an instance of t1 for the proper instantiation
{d/v}.

Note that the first process does not admit a compatible execution σ. By the
first condition of a compatible execution, σ should include substitutions {v/w},
{w/v} or {u/v, u/w}. By the second, as t′1 is a proper instantiation for {d/v}
then {d/v} should be in σ. Similarly, by considering t′2, {e/w} should be in
σ. Hence, all conditions together are inconsistent because a substitution is a
function and cannot assign two different substitutions for the same variable.

The second process admits σ = {d/v, d/w} as a compatible execution.

The definitions for the most general compatible execution (mgce), compatible
process, connected transactions, and causal abstract net are analogous to those
presented in Section 4.3.

Example 10 (Abstract net for the mailing list example). In Figure 17 we (par-
tially) show the abstract net corresponding to the r-zs net in Figure 14. Transi-
tion add is identical to transition add in Figure 14. The transition tell n sends
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Fig. 17. A partial view of the abstract net for the mailing list example.

atomically a messageM to n subscribers in the list whose top is N1 and finishes
in Nil. There is one such transition for any n ≥ 2. The transition drop handles
the case in which the list is empty. In such situations the message sent is simply
lost (consumed).

Also for the reconfigurable case, the following theorem assures the correspon-
dence between the abstract and the concrete view.

Theorem 4. Let B be a r-zs net and IB its abstract net. Then m →TIB
m′ iff

m ⇒TB m
′.

Proof. The proof follows as in Theorem 2 (considering also proper instantia-
tions).

c-zs nets as r-zs nets. c-zs nets are a particular case of r-zs net, where no
transition uses received names as places in their postset. Thus, given a c-zs net
B, it is possible to construct its abstract c-p/t net CB and its abstract r-p/t
net RB. The following results assure that both constructions are isomorphic.

Proposition 2. Let N be a coloured net. If P is a compatible coloured process,
then P is a compatible reconfigurable process.

Theorem 5. Let B be a c-zs net, CB its abstract c-p/t net, and RB its ab-
stract r-p/t net RB. Then RB ≈ CB .

Proof (sketch). The proof follows from Proposition 2. First noting that equiv-
alence classes are the same under both views. Finally, as proper instantiations
are not used for coloured transition, a compatible execution under the coloured
view is also compatible under the reconfigurable view.
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6 Towards Dynamic zs Nets

6.1 Dynamic Nets

While in reconfigurable nets the sets of states and transitions remains unchanged
during computations, dynamic nets can create new components while executing:
new places and transitions may be added to the net when a transition is fired.
The main idea is that the firing of a transition may allocate a new subnet, which
is parametric on the actual values of the received names. Nevertheless, it is not
possible to modify existing transitions: they always consume tokens from a fixed
multiset of places and the postset is always the same expression (multiset of
places or nets) parametric on the received values. Moreover, it is not possible to
attach new transitions with preset in a place after the net has been instantiated
(i.e., there is not input capability). The definition given here of dynamic nets
follows the presentation given in [2].

Definition 31 (DN). The set dn is the least set satisfying the following equa-
tion:

N = {(SN , TN , δ0N , δ1N ,m0N ) |
SN ⊆ P ∧ δ0N : TN → MSN ,C ∧ δ1N : TN → N ∧ m0N ∈ MP,C}

If (SN , TN , δ0N , δ1N ,m0N ) ∈ DN: SN is the set of places, TN is the set of
the transitions, δ0N and δ1N are the functions assigning the pre and postset to
every transition, and m0N is the initial marking. Note that while in previous
nets the initial marking is required to be a multiset over the places of the net,
here we allow a net to fixed a marking over states that are not defined by it. In
fact, the initial marking m0N is a multiset over P (i.e., m0N ∈ MP,C) and not
over the places of the net SN (MSN ,C). A trivial example is the way in which
a coloured transition a(v)[〉b(•) is written: a(v)[〉(∅, ∅, ∅, ∅, b(•)), where b clearly
does not belong to the new subnet. In what follows, we write coloured and recon-
figurable transitions as in the previous sections, and use verbose notation just for
transitions that allocate new components. Also the postset of transitions defined
in a new subnet can produce tokens in places not defined by it. Nevertheless,
well-defined subnets cannot use places that do not belong to the net they are in.

Names defined in SN act as binders on N . Therefore, nets are considered up-
to α-conversion on SN . Specially, the creation in N of a new subnet N1 means
the creation of a α-equivalent net N ′

1 s.t. all names in SN ′
1

are guaranteed to be
different from any other place in N (i.e., they are fresh).

Example 11 (A simple dynamic net). Consider the net N represented in Fig-
ure 18(a). The double-lined arrow indicates the dynamic transition t = a(•)[〉N1,
which creates an instance of the subnet N1 when fired. We allow the initial mark-
ing of N1 and the postset of transitions in TN1 to generate tokens in a. Therefore,
the following is a valid definition forN1: SN1 = {d}, TN1 = {t1},m1 = a(•)⊕d(•)
and t = d(•)[〉a(•). A firing of t will produced the net shown in 18(b). A new
place d and a transition t (whose pre and postset are d(•) and a(•), resp.) have
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•
a

t

N1

(a) Initial state.

•
a

•
d

t t1

N1

(b) After firing t.

•
d′

•
a

•
d

t′1 t t1

N1

(c) After two firings of t.

Fig. 18. A simple dynamic net.

been added to the net. Also two tokens have been produced: one in a and the
other in d, accordingly to the initial marking of N1. In this marking t is enabled
and can be fired again. The intended meaning of the new activation of t is to
create a new subnet: a new place and a new transition whose names are different
from others in the net (Figure 18(c)).

Definition 32 (Defined and Free names). The set of defined names in a
marking m is dn(m) = {a|a ∈ m}, i.e. names appearing in place position. Given
N = (SN , TN , δ0N , δ1N ,m0N ) ∈ dn, the set of defined (dn) and free (fn) names
of transitions, sets of transitions, and nets are defined as follow:

dn(m1[〉N1) = dn(m1)
dn(N) = dn(TN ) =

⋃
t∈TN

dn(t)
fn(m1[〉N1) = dn(m1) ∪ colB(m1) ∪ (fn(N1) \ rn(m1))
fn(TN ) =

⋃
t∈TN

fn(t) \ dn(TN)
fn(N) = fn(TN) \ SN

Definition 33 (Dynamic Net). N ∈ DN is a dynamic net if fn(N) = ∅.

As mentioned above, a well-defined net N does not generate tokens in places
that do not belong to it. Note that the condition on the free names imposed for
dynamic nets (i.e., fn(N) = ∅) assures that tokens are always generated in the
same net. In this case, any name is bound to a particular place defined in the
net, which is guaranteed to be different to any other place.

As for coloured and reconfigurable nets, the firing of a transition t requires
the postset to be instantiated with the received colours of t, i.e., the parameters
of the t (rn(t)). Hence, we need a suitable notion of substitution on nets.

Definition 34 (Instantiation of a net). Let σ : V → P ∪ V be a substitution.
The instantiation of a transition t = m1[〉N1 with σ s.t. rn(t) ∩ dom(σ) = ∅ is
defined as tσ = m1[〉N1σ. Given a dynamic net N = (SN , TN , δ0N , δ1N ,m0N ),
the instantiation of N with σ s.t. dom(σ) ∩SN = ∅ is defined as Nσ = (SN , TN ,
δ0N , δ1Nσ,m0Nσ), where δ1Nσ(t) = (δ(t)1N )σ.

The condition imposed on the substitution used to instantiate a net (or a
transition) avoids the capture of free names appearing in the substitution. If
this side condition is not satisfied, an α-conversion on the places of the net (or
on the received names of the transition) can be applied before.
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(dyn-firing)

t = m [〉 N1 ∈ T m′′ ∈ MSN ,C

(S, T, m � σ ⊕ m′′) → (S, T, m′′) � N1σ

dom(σ) = rn(t), and
σ(v) ∈ S for v ∈ dom(σ)

(dyn-step)

(S, T, m1) → (S, T, m′
1) � N1 (S, T, m2) → (S, T, m′

2) � N2

(S, T, m1 ⊕ m2) → (S, T, m′
1 ⊕ m′

2) � (N1 ⊕ N2)

Fig. 19. Operational semantics of dynamic nets.

Definition 35 (Composition of nets). Let N1 and N2 be dynamic nets. The
addition of N2 to N1 (written N1 �N2) defined as N1 �N2 = (SN1 ∪SN2 , TN1 ∪
TN2 , δ0N1∪δ0N2 , δ1N1 ∪δ1N2 ,m0N1 ⊕m0N2) provided with the fact that N1∩N2 = ∅
and fn(N1) ∩SN2 = ∅. The addition N1 �N2 is said the parallel composition of
N1 and N2 (written N1 ⊕N2) if also fn(N2) ∩ SN1 = ∅.

Observe that side conditions for the parallel composition avoid free names in
one net to be captured by the transitions defined by of the other. Nevertheless,
when a subnet N2 is added to a net N1 (N1 � N2) we allow the free names of
N2 to be capture by the definitions in N1. We remind that we are considering
nets up-to α-conversion in the name of the places, thus it is always possible to
rename places in order to satisfy the side conditions mentioned above.

In order to provide the operational semantics for dynamic nets, we remark
that the state of a net is not given just in terms of the markings, but also in
the structure of the net. The operational semantics is presented in Figure 19.
For simplicity we write (S, T,m) as a shorthand for (S, T, δ0, δ1,m). Rule dyn-
firing stands for the firing of t when the marking contains an instance of the
preset of t (for a suitable substitution on colours σ). The resulting net consists
of the original net, where the consumed tokens have been removed, and a new
instance of N1 (i.e., the postset of t). Note that the composition � of nets assures
that the names of the added components are fresh. Rule dyn-step stands for the
parallel composition of computations when the initial marking contains enough
tokens to execute them independently. By requiring (N1 ⊕N2), the components
added by concurrent activities are guaranteed to be disjoint.

It is worth noting that reconfigurable nets are a particular case of dynamic
nets. In fact when t is a reconfigurable rule, i.e. N1 = (∅, ∅,m1), the expression
(S, T,m) �N1 = (S, T,m⊕m1) corresponds to the reconf-firing rule.

6.2 Applying the zs Approach to Dynamic Nets

The evolving structure of dynamic nets opens several possibilities when applying
the zs approach. The more obvious option is to provide transactions by allowing
any net to define stable and zero places, as done for the other kind of nets.
Nevertheless, other options can take advantage of the possibility of creating
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(dyn-firing)

t = s ⊕ z[〉N1 ∈ T s′′ ∈ ML,L z′′ ∈ MZ,S

(S, T, (s�σ ⊕ s′′, z�σ ⊕ z′′), Z) → (S, T, (s′′, z′′), Z) � N1σ

dom(σ) = rn(t), and
σ(v)∈S for v∈dom(σ)

(dyn-step)

(S, T, m1, Z) → (S, T, m′
1, Z) � N1 (S, T, m2, Z) → (S, T, m′

2, Z) � N2

(S, T, m1⊕m2, Z) → (S, T, m′
1⊕m′

2, Z) � (N1 ⊕ N2)

(dyn-concatenation)

(S, T, s1 ⊕ z1, Z) → (S′′, T ′′, z′′, Z′′) � s′1 (S′′, T ′′, s2⊕z′′, Z′′) → (S′, T ′, s′2⊕z′, Z′)

(S, T, (s1⊕s2, z), Z) → (S′, T ′, (s′1⊕s′2, z
′), Z)

(dyn-close)

(S, T, s1, Z) → (S′, T ′, s′1, Z
′)

(S, T, s1, Z) ⇒ (S′, T ′, s′1, Z
′)

Fig. 20. Operational semantics of flat dynamic sz nets.

subnets to specify subactivities that should be executed atomically, providing in
this way a hierarchy of atomic activities, i.e., nested transactions. On the rest
of this section we describe the operational semantics for the first case, called
flat dynamic zs nets. We left as interesting problems to be investigated in the
future the characterization of the abstract net, and the different possibilities for
applying the zs approach to dynamic nets.

Flat Dynamic zs Nets. As mentioned above, flat dynamic zs nets correspond
to a direct application of the zs approach where the places of a net B are
either stable, i.e. in LB = SB\ZB, or zero, i.e., in ZB. As for reconfigurable
nets, we rely on two disjoint set of variables: VLB , ranged over by V,W, . . . for
stable variables, and VZB for zero variables v, w, . . .. Similarly, we use s ∈ ML,L

for denoting a stable marking, and z ∈ M Z,S for zero markings. Moreover
WL,Z = ML,L ∪ M Z,L∪Z stands for the set of well-defined markings.

Definition 36 (Flat d-zs net). A flat dynamic zs net is a 6-tuple B =
(SB, TB, δ0B, δ1B,m0B, ZB) where NB = (SB, TB, δ0B, δ1B,m0B) is the under-
lying dynamic net and the set ZB ⊆ SB is the set of zero places. The places
in SB\ZB (denoted by LB) are called stable places. A stable marking m is a
coloured multiset of stable places (i.e., m ∈ MLB ,LB), and the initial marking
m0B must be stable. Moreover, we impose the pre and postset functions to be
defined over well-defined markings.

Rules in Figure 20 shows the operational semantics of flat d-zs nets. The
rules are the straightforward extension of rules corresponding to r-zs nets for
the case of dynamic transitions.

Example 12 (Private Mailing Lists). Consider the mailing list problem presented
in Example 8. Suppose there are n users ui, each of them needs to send atomically
messages present in mi to listeners whose names are in si. (Every user has its
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own list of subscribers and messages). The system can be modelled as a flat
dynamic zs net by reusing the mailing list structure in Figure 14. Consider the
dynamic net in Figure 21 for the case of two users. The net N1 (appearing in
the postset of t = new(V,W )[〉N1) corresponds exactly to the net in Figure 14
plus the initial marking m0N1 = V (newSubs) ⊕W (message) ⊕ top(Nil).

There are n transitions subsci and disti, i.e., a pair for each user ui. The
listeners for the user ui are in place si, while the messages are inmi. For instance,
the listeners for u1 are j1 and j2, and it has only the message l1 to send. To create
a list for u1 it is necessary to put a token on new with colour (as1 , dm1) (we omitted
it in Figure 14 for space limitations) . The obtained net after firing new with
colours (as1 , dm1) is shown in Figure 22. Note that a new instance of N1 has been
created. For convenience in the graphical representation we renamed newSubs
with 1s and message with 1m. Observe that tokens corresponding to the initial
marking of N1 have been produced: token Nil in top, 1s in as1 , and 1m in
dm1 . Now, listeners in s1 can be subscribed to the list by firing the reconfigurable
transition subsc1. Note that any coloured tokenW in s1 is forwarded to the place
1s, which will enable the transition add of the mailing list structure. Similar is
the case for tokens in m1, which are forwarded by dist1 to the place 1m.

Suppose that t is fired again for a token (as2 , dm2) in new. In this case, a new
mailing list structure is created, which is guaranteed to be independent of the
first structure.

About the abstract view of flat dynamic zs nets. The main difficulty when defin-
ing the abstract dynamic net describing the atomic movements of the concrete
zs nets is to figure out a suitable notion for a process. A process, viewed as
morphism from a causal net into a p/t net, identifies elements of the causal net
as particular instances of elements in p/t net. For p/t, c-p/t, and r-p/t nets,
where the elements of the net are fixed, the correspondence between instances
and general elements is quite clear. In particular, states are mapped into states
and transitions (instance of some pattern) to transitions (representing a general
pattern). Instead, when describing the execution of a dynamic net D it could
be necessary to talk about states and transitions that are not present in D (al-
though D describes how to create them). This question is still open and remains
as an interesting problem that bears further investigation.

7 Conclusions

In this paper we have extended the zero-safe approach along the hierarchy of
increasingly expressive models characterized in [15]. The results are summarized
in Figure 1. Although the more general case of dynamic nets presents some tech-
nical difficulties in reconciling the operational and abstract view, the zero-safe
approach has been shown somehow orthogonal to the whole hierarchy. Notably,
when defining the operational semantics of c-zs nets and r-zs nets only the rule
describing the firing of a transition is modified. Instead, for dynamic nets all
rules are rewritten to consider also the structure of the net as part of the state.
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Fig. 21. Private Mailing Lists.
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Fig. 22. Private Mailing Lists after firing t with colours (as1 , dm1).

Regarding the abstract semantics, it is clear that the description of the abstract
view associated to a dynamic zs net – in particular the characterization of a
process in such an evolving structure – remains as an open problem.

On the other hand, the extensions proposed here account only for flat transac-
tions. We plan to investigate alternative extensions of dynamic nets for modelling
nested transactions. In particular, by exploiting the capability of creating new
subnets to describe sub-transactions. Moreover, the description of compensations
in this framework is an ambitious goal that we leave to future work.
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Finally, we think that the distributed two phase commit protocol proposed
in [8] (used to encode zs nets in Join) can be reused or extended to implement
dynamic zs nets.
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A Survey on Non-interference with Petri Nets
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Abstract. Several notions of non-interference have been proposed in
the literature to study the problem of confidentiality in nondeterministic
and concurrent systems. Here we rephrase some of them – notably SNNI
and BNDC – over the model of safe Place/Transition Petri Nets. The
common feature of these non-interference properties is that they are all
defined as extensional properties based on some notion of behavioural
equivalence on systems. Here we also address the problem of defining
non-interference by looking at the structure of the net systems under
investigation. We define structural non-interference properties based on
the absence of particular places in the net. We characterize structural
properties that are slight refinement of well-known properties such as
SNNI and SBNDC. We then argue that, in order to capture all the intu-
itive interferences at the structural level, it is necessary to consider the
net originated by the region construction, yielding the property RBNI
we advocate.

1 Introduction

Non-interference has been defined in the literature as an extensional property
based on some observational semantics: the high part of a system is non-inter-
fering with the low part if whatever is done at the high level produces no visible
effect on the low part of the system. The original notion of non-interference in [8]
was defined, using trace semantics, for system programs that are deterministic.
Generalized notions of non-interference were then designed to include (nondeter-
ministic) labeled transition systems and finer notions of observational semantics
such as bisimulation (see, e.g., [12, 6, 11, 13, 7]). Relevant properties in this class
are the trace-based properties SNNI and NDC, as well as the bisimulation-based
properties BSNNI, BNDC and SBNDC proposed by Focardi and Gorrieri some
years ago [6, 7] on a CCS-like process algebra. In particular, SNNI states that a
system R is secure if the two systems R \H (all the high level actions are pre-
vented) and R/H (all the high level actions are permitted but are unobservable)
are trace equivalent. BNDC intuitively states that a system R is secure if it is
bisimilar to R in parallel with any high level process Π w.r.t. the low actions
the two systems can perform. And SBNDC tells that a system R is secure if,
whenever a high action h is performed, the two instances of the system before
and after performing h are bisimilar from a low level point of view.

The first part of the paper is devoted to show that these non-interference
properties, originally proposed on the Security Process Algebra, can be naturally
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defined also on Petri Nets; in particular – to keep the presentation as simple as
possible – we use 1-safe Place/Transition Petri Nets [10]. The advantage of this
proposal is the import in the Petri Net theory of security notions that makes
possible the study of security problems. Technically, what we do is to introduce
two operations on nets, namely parallel composition (with synchronization in
TCSP-like style) and restriction, and suitable notions of observational equiva-
lences on the low part of the system (low trace equivalence and low bisimulation);
then, five security properties are defined and compared in a rather direct way.
In particular, the two properties based on low trace semantics, namely SNNI
and NDC, are equivalent. On the contrary, in the bisimulation case, BSNNI is
weaker than BNDC, which turns out to be equivalent to SBNDC.

In this approach, the security property is based on the dynamics of systems;
they are all defined by means of one (or more) equivalence check(s); hence, non-
interference checking is as difficult as equivalence checking, a well-studied hard
problem in concurrency theory.

In the second part of the paper, instead, we address the problem of defining
statically non-interference by looking at the structure of the net systems under
investigation:

– in order to better understand the causality and conflict among different
system activities, hence grounding more firmly the intuition about what is
an interference, and

– in order to find more efficiently checkable non-interference properties that
are sufficient conditions for those that have already received some support
in the literature.

We define structural non-interference properties based on the absence of par-
ticular places in the net. We identify two special classes of places: causal places,
i.e., places for which there are an incoming high transition and an outgoing low
transition; and, conflict places, i.e. places for which there are both low and high
outgoing transitions. Intuitively, causal places represent potential source of in-
terference (hilo flow for high input – low output), because the occurrence of the
high transition is a prerequisite for the execution of the low transition. Similarly,
conflict places represent potential source of interference (holo flow for high out-
put – low output), because the occurrence of a low event tells us that a certain
high transition will not occur.

The first result of the paper is that when causal places are absent, we get a
non-interference property which is slightly finer than SNNI. More precisely, if N
has no causal places, then N satisfies SNNI. We present an example that shows
that this structural notion is actually finer than SNNI.

The second result is that when also conflict places are absent, we get a prop-
erty, called Place-Based Non-Interference (PBNI for short), which is slightly finer
than SBNDC. More precisely, if the net N has no causal and no conflict places,
then N satisfies SBNDC. A relevant counterexample shows that the inclusion is
strict. This counterexample also hints that PBNI may still miss some potentially
dangerous interferences.
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In order to capture all the intuitive interferences at the structural level, we
argue that it is necessary to consider nets that are saturated w.r.t. the region
construction [4, 1]. Intuitively, given the marking graph MG(N) of a net N ,
another net N ′ is obtained by adding to N all the possible (useful) places such
that MG(N ′) is isomorphic to MG(N). The final property we propose is called
Region-Based Non-Interference (RBNI for short) that we advocate as the most
intuitive non-interference notion in this setting.

The paper is organised as follows. In Section 2 we recall the basic definitions
about transition systems and Petri Nets. In Section 3 we recast the behavioural
approach to non-interference properties, originally defined in a process algebraic
setting, on Petri Nets. The original structural property PBNI is introduced in
Section 4, while RBNI is presented in Section 5. Finally, some conclusive remarks
are drawn.

2 Basic Definitions

Here we recall the basic definition about transition systems and safe Place/
Transition Petri Nets we will use in the following.

2.1 Transition Systems

Definition 1. A transition system is a triple TS = (St, E,→) where

– St is the set of states
– E is the set of events
– →⊆ St× E × St is the transition relation.

In the following we use s e→ s′ to denote (s, e, s′) ∈→.
A rooted transition system is a pair (TS, s0) where TS = (St, E,→) is a

transition system and s0 ∈ St is the initial state.

Definition 2. Let TS1 = (St1, E1,→1, s1) and TS2 = (St2, E2,→2, s2) be two
rooted transition systems. An isomorphism is a bijection f : St1 → St2 such that

– s e→ s′ iff f(s) e→ f(s′)
– s2 = f(s1).

If there exists an isomorphism between TS1 and TS2 then we say that TS1

and TS2 are isomorphic.

2.2 Petri Nets

Definition 3. Given a finite set S, a multiset over S is a function m : S → ω.
The set of all multisets over S is denoted by M(S) The multiplicity of an element
s in m is the natural number m(s). We write m ⊆ m′ if m(s) ≤ m′(s) for all
s ∈ S. The operator ⊕ denotes multiset union: (m⊕m′)(s) = m(s) +m′(s) for
all s ∈ S. The operator \ denotes multiset difference: (m\m′)(s) = max{m(s)−
m′(s), 0}. We say that s ∈ m if m(s) > 0. If X ⊆ S, with abuse of notation we
use X to denote the multiset X(s) = 1 if s ∈ X and X(s) = 0 otherwise.
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Definition 4. A net is a tuple N = (S, T, F ), where

– S and T are the (finite) sets of places and transitions, such that S ∩ T = ∅
– F ⊆ (S × T ) ∪ (T × S) is the flow relation

A multiset over the set S of places is called marking. Given a marking m and
a place s, we say that the place s contains m(s) tokens.

Let x ∈ S ∪ T . The preset of x is the set •x = {y | F (y, x)}. The postset of
x is the set x• = {y | F (x, y)}. The preset and postset functions are generalized
in the obvious way to set of elements: if X ⊆ S ∪ T then •X =

⊕
x∈X

•x and
X• =

⊕
x∈X x

•. A transition t is enabled at marking m if •t ⊆ m. The firing
(execution) of a transition t enabled atm produces the markingm′ = (m\•t)⊕t•.
This is usually written as m[t〉m′.

A net system is a pair (N,m0), where N is a net and m0 is a marking of N ,
called initial marking. With abuse of notation, we use (S, T, F,m0) to denote
the net system ((S, T, F ),m0).

The set of markings reachable from m, denoted by [m〉, is defined as the least
set of markings such that

– m ∈ [m〉
– if m′ ∈ [m〉 and there exists a transition t such that m′[t〉m′′ then m′′ ∈ [m〉.

The set of firing sequences is defined inductively as follows:

– m0 is a firing sequence;
– if m0[t1〉m1 . . . [tn〉mn is a firing sequence and mn[tn+1〉mn+1 then
m0[t1〉m1 . . . [tn〉mn[tn+1〉mn+1 is a firing sequence.

Given a firing sequence m0[t1〉m1 . . . [tn〉mn, we call t1 . . . tn a transition se-
quence. The set of transition sequences of a net N is denoted by TS(N). We use
σ to range over TS(N). Let σ = t1 . . . tn; we use m[σ〉mn as an abbreviation for
m[t1〉m1 . . . [tn〉mn.

The marking graph of a net N is

MG(N) = ([m0〉, T, {(m, t,m′) | m ∈ [m0〉 ∧ t ∈ T ∧m[t〉m′})

A net is pure if •t ∩ t• = ∅ for all transitions t ∈ T . A net is simple if the
following condition holds for all x, y ∈ S ∪T : if •x = •y and x• = y• then x = y.

A net system is safe if each place contains at most one token in any marking
reachable from the initial marking, i.e., m(s) ≤ 1 for all s ∈ S and for all
m ∈ [m0〉. A net system is reduced if each transition can occur at least one time:
for all t ∈ T there exists m ∈ [m0〉 such that m[t〉.

In the following we consider safe net systems. To lighten the definitions, in
Sections 4 and 5 we we consider safe net systems that are pure, simple and
reduced.

3 A Behavioural Approach to Non-interference

In this section we want to recast some basic properties, proposed by Focardi and
Gorrieri some years ago [6, 7], in our setting. Our aim is to analyse systems that
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can perform two kinds of actions: high level actions, representing the interac-
tion of the system with high level users, and low level actions, representing the
interaction with low level users. We want to verify if the interplay between the
high user and the high part of the system can affect the view of the system as
observed by a low user. We assume that the low user knows the structure of the
system, and we check if, in spite of this, he is not able to infer the behavior of
the high user by observing the low view of the execution of the system.

Hence, we consider nets whose set of transitions is partitioned into two sub-
sets: the set H of high level transitions and the set L of low level transitions.
To emphasize this partition we use the following notation. Let L and H be two
disjoint sets: with (S,L,H, F,m0) we denote the net system (S,L ∪H,F,m0).

The non-interference properties we are going to introduce are based on some
notion of low observability of a system, i.e., what can be observed of a system
from the point of view of low users. The low view of a transition sequence is
nothing but the subsequence where high level transitions are discarded.

Definition 5. Let N = (S,L,H, F,m0) be a net system. The low view of a
transition sequence of N is defined as follows:
ΛN(ε) = ε

ΛN(σt) =
{
ΛN (σ)t if t ∈ L
ΛN (σ) otherwise

The definition of ΛN is extended in the obvious way to sets of transitions
sequences: ΛN (Σ) = {ΛN(σ) | σ ∈ Σ} for Σ ⊆ (L ∪H)∗.

Definition 6. Let N1 and N2 be two net systems. We say that N1 is low-view

trace equivalent to N2, denoted by N1
Λ≈tr N2, iff ΛN1(TS(N1)) = ΛN2(TS(N2)).

We define the operations of parallel composition (in TCSP-like style) and
restriction on nets, that will be useful for defining some non-interference prop-
erties.

Definition 7. Let N1 = (S1, L1, H1, F1,m0,1) and N2 = (S2, L2, H2, F2,m0,2)
be two net systems such that S1 ∩ S2 = ∅ and (L1 ∪ L2) ∩ (H1 ∪H2) = ∅. The
parallel composition of N1 and N2 is the net system
N1 | N2 = (S1 ∪ S2, L1 ∪ L2, H1 ∪H2, F1 ∪ F2,m0,1 ⊕m0,2)

Definition 8. Let N = (S,L,H, F,m0) be a safe net system and let U be a
set of transitions. The restriction on U is defined as N\U = (S,L′, H ′, F ′,m0),
where
L′ = L \ U
H ′ = H \ U
F ′ = F \ (S × U ∪ U × S)

Strong Nondeterministic Non-Interference (SNNI for short) is a trace-based
property, that intuitively says that a system is secure if what the low-level part
can see does not depend on what the high-level part can do.

Definition 9. Let N = (S,L,H, F,m0) be a net system. We say that N is SNNI

iff N
Λ≈tr N\H.
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The intuition is that, from the low point of view, the system where the high
level transitions are prevented should offer the same traces as the system where
the high level transitions can be freely performed. In essence, a low-level user
cannot infer, by observing the low view of the system, that some high-level
activity has occurred.

As a matter of fact, this non-interference property captures the information
flows from high to low, while admits flows from low to high. For instance, the
net N ′ of Figure 1 is SNNI while the net N ′′ is not SNNI.

Fig. 1. The net system N ′ is SNNI while N ′′ is not SNNI.

An alternative notion of non-interference, called Nondeducibility on Compo-
sition (NDC for short), says that the low view of a system N in isolation is not
to be altered when considering each potential interaction of N with the high
users of the external environment.

Definition 10. Let N = (S,L,H, F,m0) be a net system. We say that N is a
high-level net if L = ∅.

Definition 11. Let N = (S,L,H, F,m0) be a net system. N is NDC iff for all

high-level nets K = (SK , ∅, HK , FK ,m0,K): N\H Λ≈tr (N | K)\(H \HK).

The left-hand term represents the low view of the system N in isolation,
while the right-hand term expresses the low view of N interacting with the high
environment K (note that the activities resulting from such interactions are in-
visible by the definition of low bisimulation). NDC is a very intuitive property:
whatever high level system K is interacting with N , the low effect is unob-
servable. However, it is difficult to check this property because of the universal
quantification over high systems. Luckily enough, we will then prove that SNNI
and NDC are actually the same non-interference property.

Theorem 1. Let N = (S,L,H, F,m0) be a net system. N is SNNI if and only
if N is NDC.
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The two properties above are based on (low) trace semantics. It is well-known
[7] that bisimulation semantics is more appropriate than trace semantics because
it captures also some indirect information flows due to, e.g., deadlocks. For this
reason, we now consider non-interference properties based on bisimulation. To
this aim, we first need to introduce a notion of low–view bisimulation.

Definition 12. Let N1 = (S1, L1, H1, F1,m0,1) and N2 = (S2, L2, H2, F2,m0,2)
be two net systems. A low–view bisimulation from N1 to N2 is a relation on
M(S1) × M(S2) such that if (m1,m2) ∈ R then for all t ∈

⋃
i=1,2 Li ∪Hi:

– if m1[t〉m′
1 then there exist σ,m′

2 such that m2[σ〉m′
2, ΛN1(t) = ΛN2(σ) and

(m′
1,m

′
2) ∈ R

– if m2[t〉m′
2 then there exist σ,m′

1 such that m1[σ〉m′
1, ΛN2(t) = ΛN1(σ) and

(m′
1,m

′
2) ∈ R

If N1 = N2 we say that R is a low–view bisimulation on N1.

We say that N1 is low–view bisimilar to N2, denoted by N1
Λ≈bis N2, if there

exists a low–view bisimulation R from N1 to N2 such that (m0,1,m0,2) ∈ R.

The first obvious variation on the theme is to define the bisimulation based
version of SNNI, yielding BSNNI.

Definition 13. Let N = (S,L,H, F,m0) be a net system. We say that N is

BSNNI iff N
Λ≈bis N\H.

Obviously, BSNNI ⊆ SNNI. The converse is not true: the net N in Figure 2
is SNNI but not BSNNI. Note that SNNI misses to capture the indirect infor-
mation flow present in this net: if the low transition l is performed (and hence
low observed), the low user can infer that the high transition h has not been
performed, hence deducing one piece of high knowledge.

Fig. 2. A net system that is SNNI but not BSNNI.

Similarly, BNDC can be defined from NDC, yielding a rather appealing se-
curity property, which is finer than BSNNI.

Definition 14. Let N = (S,L,H, F,m0) be a net system. N is BNDC iff for

all high-level nets K = (SK , ∅, HK , FK ,m0,K): N\H Λ≈bis (N | K)\(H \HK).
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Theorem 2. Let N = (S,L,H, F,m0) be a net system. If N is BNDC then N
is BSNNI.

Unfortunately, the converse is not true: Figure 3 reports a net that is BSNNI
but not BNDC; the reason why can be easily grasped by looking at their respec-
tive marking graphs in Figure 4.

Fig. 3. A net system that is BSNNI but not BNDC.

Fig. 4. The marking graphs of the net systems N , N\H and (N | K)\{h2}.

BNDC is quite appealing but, because of the universal quantification on all
poossible high level systems, it is difficult to check. The next property, called
Strong Bisimulation Non Deducibility on Composition (SBNDC for short), is
actually an alternative characterization of BNDC which is easily checkable.

Definition 15. Let N = (S,L,H, F,m0) be a net system. N is SBNDC iff for
all markings m ∈ [m0〉 and for all h ∈ H the following holds:

if m[h〉m′ then there exists a low–view bisimulation R on N\H such that
(m,m′) ∈ R.

Theorem 3. Let N = (S,L,H, F,m0) be a net system. N is BNDC if and only
if N is SBNDC.
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The theorem above holds because we are in an unlabeled setting: transitions
are not labeled. In [6, 7] it is proved that – for the security Process Algebra –
SBNDC is strictly finer than BNDC.

4 Place-Based Non-interference in Petri Nets

In this section we define a non-interference property based on the absence of some
kinds of places in a net system. Consider a net system N = (S,L,H, F,m0).

Fig. 5. Examples of net systems containing conflict and (potentially) causal places.

Consider a low level transition l of the net: if l can fire, then we know that
the places in the preset of l are marked before the firing of l; as the nets under
investigation are pure nets, we also know that such places become unmarked
after the firing of l. If there exists a high level action h that produces a token
in a place s in the preset of l (see the system N1 in Figure 5), then the low
level user can infer that h has occurred if he can observe the occurrence of the
low level action l. We note that there exists a causal dependency between the
transitions h and l, because the firing of h produces a token is consumed by l.
Consider now the situation illustrated in the system N2 of Figure 5: in this case,
place s is in the preset of both l and h, i.e., l and h are competing for the use
of the resource represented by the token in s. Aware of the existence of such a
place, a low user knows that no high-level action h has been performed, if he
observes the low-level action l. Place s represents a conflict between transitions
l and h, because the firing of l prevents h from firing.

Our idea is to consider a net system secure if it does not contain places of
the kinds illustrated above.

In order to avoid the definition of a security notion that is too strong, and
that prevents systems with no flow of information to be considered secure, we
need to refine the concept of causal place. Let s be a place such that s ∈ h• ∩ •l.
If s is empty in the initial state of the system, then the low user can infer that h
has occurred from the occurrence of l. On the other hand, if s is marked in the
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initial state, then the first occurrence of l can happen even if h has not fired; thus,
the low level user can infer that h has occurred by observing two occurrences
of l. Hence, in this last case, such a place s is a source of a flow of information
only if transition l can be fired at least two times. For example, consider the net
system N3 reported in Figure 5. Place s is a potentially causal place, but the
system has to be considered secure, as the only (maximal) transition sequence
is ll′h.

Definition 16. Let N = (S,L,H, F,m0) be a net system. Let s be a place of N
such that s• ∩ L �= ∅.

The place s ∈ S is a potentially causal place if •s ∩ H �= ∅. A potentially
causal place s is a causal place if the following condition holds: if m0(s) > 0
then there exists a transition sequence t1 . . . tn and i < n s.t. ti, tn ∈ s• ∩ L.

The place s ∈ S is a conflict place if s• ∩H �= ∅.

Definition 17. Let N = (S,L,H, F,m0) be a net system. We say that N is
PBNI (Place Based Non-Interference) if, for all s ∈ S, s is neither a causal
place nor a conflict place.

Now we show that the absence of causal places implies SNNI. We need the
following preliminary lemma.

Lemma 1. Let N = (S,L,H, F,m0) be a net system without causal places.
if m0[σ〉m1 then there exists m2 s.t. m0[ΛNσ〉m2 and m2(s) ≥ m1(s) for all
s ∈ •L.

Theorem 4. Let N = (S,L,H, F,m0) be a net system. If N has no causal
places then N is SNNI.

Fig. 6. A net system containing a causal place, whose marking graph is SNNI.

The converse is not true. For example, consider the net systemN4 in Figure 6:
place s is a causal place, but N4 is SNNI (but not SBNDC). However, as we will
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see in Section 5, in absence of any form of conflicts in the system, SNNI implies
the absence of causal places.

As SBNDC can reveal the presence of conflicts between high-level transitions
and low-level transitions, the absence of causal places in a system is not sufficient
to guarantee SBNDC. Consider for example the system N2 in Figure 5, and its
marking graph MG(N2) reported in Figure 8. The system N2 has no causal
places, but N2 is not SBNDC. In fact, m1

h→m2 and the markings m1 and m2

have different low-level behaviours, becausem1 can perform l whereasm2 cannot
perform any action.

If we take into account also conflict places, we obtain that the absence of
both causal and conflict places is a sufficient condition for SBNDC.

Theorem 5. Let N = (S,L,H, F,m0) be a net system. If N is PBNI then N
is SBNDC.

Fig. 7. Two examples of net systems that illustrate the inadequacy of SBNDC and
PBNI.

On the other hand, the absence of causal and conflict places is not a necessary
condition for SBNDC. Consider the system N5 reported in Figure 7: the system
contains a conflict place, s, hence N5 is not PBNI. However, N5, whose marking
graph is reported in Figure 8, is SBNDC: in fact, the only high-level transition is
m3

h→m4, and m3 and m4 are behaviourally equivalent because both markings
have no low outgoing moves.

In our opinion, the systemN5 is not secure, because the occurrence of the low-
level transition l permits to a low-level user to deduce that no high-level action
has been (and will be) performed. We note that the same kind of information
flow is exhibited by the system N2 of Figure 5, which, on the contrary, is not
SBNDC.

Hence, SBNDC fails to capture some kinds of interference, concerned with the
presence of a conflict between a low-level transition and a high-level one. Indeed,
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Fig. 8. The marking graphs of the systems N2 (Figure 5) and N5 (Figure 7).

also the absence of conflict places, hence PBNI, is not sufficient to ensure the
absence of the kind of interference discussed above. Consider for the example
the system N−

5 of Figure 7, obtained by removing the conflict place s from N5.
The two systems N5 and N−

5 have the same behaviour, as their marking graphs
are isomorphic, but N−

5 is PBNI. The example above suggests us to look for
conflict places not only in the system under investigation, but in all the systems
exhibiting the same marking graph.

5 Region-Based Non-interference in Petri Nets

In this section we enhance PBNI to capture the kind of interference we envisaged
in system N−

5 . We learned from the previous section that in order to capture
some kinds of information flows – arising from conflicts among high and low
transitions – it is necessary to look for the presence of conflict places in all the
systems whose marking graph is isomorphic to the marking graph of the analyzed
system. To construct all such places, we exploit the notion of region, introduced
in [4] and investigated, e.g., in [1, 2] for the synthesis of Petri nets1. A region is a
set of states in the marking graph of a net, corresponding to a real or a potential
place of the net. After recalling some basic notions and results on regions (see,
e.g., [2]), the non-interference notion based on regions is introduced.

5.1 Theory of Regions

Given the marking graph G of a safe net system N , a region of G is basically a
set of markings corresponding to the states where a real or potential place of N
is marked. In other words, a region r groups together all the states of the graph
in which a place r contains a token. Let r be a region of MG(N). Consider a
place s that is necessary for a transition t to happen, i.e., s ∈ •t. Let m ∈ r
1 The restriction to safe Place/Transition nets is essential to keep the presentation of

the region construction as simple as possible.



340 Nadia Busi and Roberto Gorrieri

and assume that m[t〉; then, s is marked in m; as we consider pure nets, s is
no longer marked after the firing of t. Thus, we have a transition m t→m′ in
the marking graph, and m′(s) = 0; hence, m′ �∈ r. So, for each state in r, if a
t-labelled transition exits from it then that transition enters a state that is not
in r. Moreover, if a state m is outside r, then t cannot happen in m, because
the place s in the preset of t is empty; so we do not have t- labelled transitions
exiting from s. To summarize, if s ∈ •t, then each t-labelled transition of the
graph starts inside r and ends outside r. Analogously, if a transition t produces
a token in s, i.e., s ∈ t•, then each t-labelled transition in the graph has source
outside r and target inside r.

Suppose now that place s is unrelated to transition t, i.e., s �∈ •t ∪ t•. If t
fires in a state where s is marked, then place s is marked also after the firing
of t; that is, if a t-labelled transition starts inside r, then it also ends inside r.
Analogously, if t happens in a state where s is empty, then s remains empty
also after the firing of t, i.e., t-labelled transitions that start outside r also end
outside r.

From the above discussion we deduce that t-labelled transitions have a uni-
form behaviour w.r.t. r: either all of them cross r exiting, or all of them cross r
entering, or none of them cross r.

We recall here the notion of region and some relevant results that will be
used later.

Definition 18. Let TS = (St, E,→) be a transition system, a set r ⊆ St is said
to be a region if and only if ∀s1 e→ s′1, s2

e→ s′2 the following conditions hold:

– if s1 ∈ r and s′1 �∈ r then s2 ∈ r and s′2 �∈ r;
– if s1 �∈ r and s′1 ∈ r then s2 �∈ r and s′2 ∈ r.

It is easy to see that both St and ∅ are regions, and they are called the trivial
regions. The set of non-trivial regions of a transition system TS will be denoted
with Reg(TS).

The complementary set of a region is itself a region:

Proposition 1. Let TS = (St, E,→) be a transition system. If r is a region of
TS, then also St \ r is a region of TS.

As t-labelled arcs have a uniform behaviour w.r.t. a region, we can define the
analogous of preset and postset for events and regions

Definition 19. Let TS = (St, E,→) be a transition system and e ∈ E. The
preregionset and the postregionset of e are the sets of regions defined as follows:

◦e = {r ∈ Reg(TS) | ∀(s, e, s′) ∈→: s ∈ r ∧ s′ �∈ r}
e◦ = {r ∈ Reg(TS) | ∀(s, e, s′) ∈→: s �∈ r ∧ s′ ∈ r}

Given a region r of TS, ◦r = {e ∈ E | r ∈ e◦} and r◦ = {e ∈ E | r ∈ ◦e}.

The following proposition explains the relation between the places of a net
system and the regions of its marking graph.
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Definition 20. Let N = (S, T, F,m0) be a net system and let s ∈ S. With rs
we denote the set of states of MG(N) where s is marked: rs = {m ∈ [m0〉 |
m(s) = 1}.

Proposition 2. Let N = (S, T, F,m0) be a net system and let s ∈ S. The set
rs is a region of MG(N).

Proposition 3. Let N = (S, T, F,m0) be a net system and let s ∈ S. We have
that •s = ◦rs and s• = r◦s .

On the other hand, a region not always corresponds to a place of the net,
but may represent a potential place. The addition of such a potential place to
the net system has no influence on its behaviour.

Definition 21. Let N = (S, T, F,m0) be a net system and let r be a region of
MG(N) s.t. the following holds: ∀s ∈ S : ◦r �= •s or r◦ �= s•. Let sr be a place
s.t. sr �∈ S. We net system N+r = (S′, T, F ′,m′

0) is defined as follows:

S′ = S ∪ {sr}
F ′ = F ∪ {(sr, t) | r ∈ ◦t} ∪ {(t, sr) | r ∈ t◦}

m′
0 =

{
m0 ⊕ {sr} if m0 ∈ r
m0 otherwise

Proposition 4. Let N be a net system and r be a region of MG(N). Then
MG(N) is isomorphic to MG(N+r).

Given a net sytem N , we can construct the saturated version of (the marking
graph of) N , obtained by using all the nontrivial regions of MG(N) as places.
Note that the set Reg(MG(N)) is finite, as the set of nontrivial regions of a
transition system is a subset of the powerset of the set of states of the transition
system, and the set of states of the marking graph of a safe Petri net is finite.

Definition 22. Let TS = (St, E,→, s0) be the marking graph of a net system.
The net system Sat(G) = (S, T, F,m0) is defined as follows:

S = Reg(G)
T = E
F = {(r, e) | r ∈ ◦e} ∪ {(e, r) | r ∈ e◦}

m0(r) =
{

1 if s0 ∈ r
0 otherwise

Proposition 5. Let N be a net system. Then MG(N) is isomorphic to
MG(Sat(MG(N))).

5.2 Region-Based Non-interference

We introduce a non-interference property based on the absence of some kinds of
regions in the marking graph of a net system.
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Definition 23. Let N = (S,L,H, F,m0) be a net system. Let r be a region in
Reg(MG(N)) such that r◦ ∩ L �= ∅.

The region r ∈ Reg(MG(N)) is a potentially causal region if ◦r ∩ H �= ∅.
A potentially causal region r is a causal region if the following condition holds:
if m0 ∈ r then there exists a transition sequence t1 . . . tn and i < n s.t. ti, tn ∈
r◦ ∩ L.

The region r is a conflict region if r◦ ∩H �= ∅.

Definition 24. Let N = (S,L,H, F,m0) be a net system. We say that N is
RBNI (Region-Based Non-Interference) if, for all regions r ∈ Reg(MG(N)), r
is neither a causal region nor a conflict region.

Fig. 9. A conflict region of net N−
5 (Figure 7).

Consider the net system N−
5 in Figure 7. We have that the region r =

{m1,m3} illustrated in Figure 9 is a conflict region, as l, h ∈ r◦. Hence, N−
5

is PBNI but it is not RBNI.

Proposition 6. Let N = (S,L,H, F,m0) be a net system. If N is RBNI then
N is also PBNI.

Instead of looking for causal (resp. conflict) regions in the marking graph of
a net system N , we can equivalently check for presence of causal (resp. conflict)
places in the saturated version of N .

Proposition 7. Let N = (S,L,H, F,m0) be a net system. The system N is
RBNI if and only if the system Sat(MG(N)) is PBNI.

In Section 4 we argued that the absence of causal regions is not a necessary
condition for SNNI, because of the existence of places that contain both causal
and conflict relations. Now we show that if no conflict is present, i.e., there exist
no conflict region in the marking graph of the system, then SNNI is equivalent
to the absence of causal places.

Theorem 6. Let N = (S,H ∪ L,F,m0) be a net system such that MG(N) has
no conflict regions. Then N has no causal places if and only if N is SNNI.
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A consequence of the above result is that, in absence of conflicts, PBNI is
equivalent to RBNI.

Corollary 1. Let N = (S,L,H, F,m0) be a net system such that MG(N) has
no conflict regions. Then N is PBNI if and only if N is RBNI.

6 Conclusions

A survey is presented on five behavioural non-interference properties, as well
as on two new structural ones, PBNI and RBNI, that we propose to firm more
strongly the intuition about the nature of interferences and to obtain more ef-
ficiently checkable property. With the help of many examples, we have shown
that RBNI seems to capture all the intuitive interferences that are possible due
to causality and conflict. Moreover, PBNI is a sufficient condition for SNNI and
SBNDC, hence offering a very efficient way to check these observational non-
interference properties.

The two properties PBNI and RBNI are structural because no notion of
observational equivalence is considered in their definition; however, to be pre-
cise, the definition of RBNI requires an exploration of the state space (marking
graph), hence it is in some sense a behavioural property.

The current investigation was conducted for safe Place/transition Petri nets.
The choice of such a restrictive class is due to the fact the we wanted to introduce
our security properties, in particular RBNI with the minimal technical overhead.
The results presented here scales smoothly to elementary net systems [5] as well
as safe nets with self-loops.

The current investigation was conducted in an unlabeled setting: transitions
in the Petri nets are unlabeled. A natural extension of this approach is to consider
labeled systems, also equipped with the unobservable action ε. Labels can be
used to represent an abstraction of the system where different transitions are
considered as equivalent (from the observational point of view). Therefore, we
can model situations where the low user is not able to recognize precisely the low
transition in execution but only its equivalence class w.r.t. observation. Similarly,
label ε is used to model transitions that the low user cannot observe and which
is not interested to. Such an extension would also permit to export our approach
to process algebras, because it is well-known (see e.g., [3]) how to map (some)
process algebras to safe Petri nets.
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Abstract. As semiconductor technology strides towards billions of tran-
sistors on a single die, problems concerned with deep sub-micron process
features and design productivity call for new approaches in the area of be-
havioural models. This paper focuses on some of recent developments and
new opportunities for Petri nets in designing asynchronous circuits such
as synthesis of asynchronous control circuits from large Petri nets gen-
erated from front-end specifications in hardware description languages.
These new methods avoid using full reachability state space for logic syn-
thesis. They include direct mapping of Petri nets to circuits, structural
methods with linear programming, and synthesis from unfolding prefixes
using SAT solvers.

1 Introduction

1.1 Semiconductor Technology Progress

The International Technology Roadmap for Semiconductors (ITRS) [1] predicts
the end of this decade will be marked by the appearance of a System-on-a-Chip
(SoC) containing four billion 50-nm transistors that will run at 10GHz. With
a steady growth of about 60% in the number of transistors per chip per year,
following the famous Moore’s law, the functionality of a chip doubles every 1.5
to 2 years. Such a SoC will inevitably consist of many separately timed commu-
nicating domains, regardless of whether they are internally clocked or not [1].
Built at the deep sub-micron level, where the effective impact of interconnects
on performance, power and reliability will continue to increase, such systems
present a formidable challenge for design and test methods and tools.

The key point raised in the ITRS is that design cost is the greatest threat to
the continued phenomenal progress in microelectronics. The only way to over-
come this threat is through improving the productivity and efficiency of the de-
sign process, particularly by means of design automation and component reuse.
The cost of design and verification of processing engines has reached the point
where thousands of man-years are spent to a single design, yet processors reach
the market with hundreds of bugs [1].

J. Desel, W. Reisig, and G. Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 345–401, 2004.
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1.2 Self-timed Systems and Design Tools

Getting rid of global clocking in SoCs offers potential added values, tradition-
ally quoted in the literature [60]: greater operational robustness, power savings,
electro-magnetic compatibility and self-checking. While the asynchronous design
community continues its battle for the demonstration of these features to the
semiconductor industry investors, the issue of design productivity may suddenly
turn the die to the right side for asynchronous design. Why?

One of the important sub-problems of the productivity and reuse problem
for globally clocked systems is that of timing closure. This issue arises when
the overall SoC is assembled from existing parts, called Intellectual Property
(IP) cores, where each part has been designed separately (perhaps even by a
different manufacturer) for a certain clock period, assuming that the clock signal
is delivered accurately, at the same time, to all parts of the system. Finding the
common clocking mode for SoCs that are built from multiple IP cores is a very
difficult problem to resolve.

Self-timed systems, or less radical, globally asynchronous locally synchronous
(GALS) systems [11, 70], are increasingly seen by industry as a natural way
of composing systems from predesigned components without the necessity to
solve the timing closure problem in its full complexity. As a consequence, self-
timed systems highlight a promising route to solving the productivity problem as
companies begin to realise. But they also begin to realise that without investing
into design and verification tools for asynchronous design the above promise will
not materialise. For example, Philips, whose products are critical to the time-
to-market demands, is now the world leader in the exploitation of asynchronous
design principles [27]. Other microelectronics giants such as Intel, Sun, IBM
and Infineon, follow the trend and gradually allow some of their new products
involve asynchronous parts. A smaller ‘market niche’ company Theseus Logic
has been successful in down-streaming the results of their recent investment in
asynchronous design methods (Null-Convention Logic) [26].

1.3 Design Flow Problem

The major obstacle now is the absence of a flexible and efficient design flow,
which must be compatible with commercial CAD tools, such as for example the
Cadence toolkit. A large part of such a design flow would be typically concerned
with mapping the logic circuit (or sometimes macro-cell) netlist onto silicon
area using place and route tools. Although hugely important this part is outside
our present scope of interest, as it is essentially the same as in the traditional
design flow. What we are concerned with is the stage in which the behavioural
specification of a circuit is converted into the logic netlist implementation.

The pragmatic approach to this stage suggests that the specification should
appear in the form of a high-level Hardware Description Language (HDL). Ex-
amples of such languages are the widely known Vhdl and Verilog, as well as
Tangram [2] or Balsa [22] that are more specific for asynchronous design. The
latter are based on the concepts of processes, channels and variables, similar to
Hoare’s CSP.
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We can in principle be motivated by the success of behavioural synthesis
achieved by synchronous design in the 90s. However, for synchronous design the
task of translating an HDL specification to logic (see, e.g., [47]) is fairly different
from what we may expect in the asynchronous case.

Its first part was concerned with the so-called architectural synthesis, whose
goal was the construction of a register-transfer level (RTL) description. This
required extracting a control and data flow graph (CDFG) from the HDL, and
performing scheduling and allocation of data operations to functional data path
units in order to produce an FSM for a controller or sequencer. The FSM was
then constructed using standard synchronous FSM synthesis, which generated
combinational logic and rows of latches.

Although some parts of architectural synthesis, such as CDFG extraction,
scheduling and allocation, might stay unchanged for self-timed circuits, the de-
velopment of the intermediate level, an RTL model of a sequencer, and its sub-
sequent circuit implementation, would be quite different.

1.4 How Can Petri Net Help?

Two critical questions arise at this point. Firstly, what is the most adequate
formal language for the intermediate (still behavioural) level description? Sec-
ondly, what should be the procedure for deriving logic implementation from such
a description?

The present level of development of asynchronous design flow suggests the
following options to answer those questions:

(1) Avoid (!) answering them altogether. Instead, follow a syntax-driven
translation of the HDL directly into a netlist of hardware components, called
handshake circuits. This sort of silicon-compilation approach was pursued at
Philips with the Tangram flow [2]. Many computationally hard problems in-
volving global optimisation of logic were also avoided. Some local ‘peephole’
optimisation was introduced at the level of handshake circuit description. Petri
nets were used for that in the form of Signal Transition Graphs (STGs) and their
composition, with subsequent synthesis using the Petrify tool [52, 18]. Similar
sort of approach is currently followed by the designers of the Balsa flow, where
the role of peephole optimisation tools is played by the FSM-based synthesis
tool Minimalist [12]. The problem with this approach is that, while being very
attractive from the productivity point of view, it suffers from the lack of global
optimisation, especially for high-speed requirements, because direct mapping of
the parsing tree into a circuit structure may produce very slow control circuits.

(2) Translate the HDL specification into a STG for controller part and then
synthesise this it using Petrify. This approach was employed in [4], where the
HDL was Verilog. This option was attractive because the translation of the
Verilog constructs preserved the natural semantical execution order between
operations (not the syntax structure!) and Petrify could apply logic optimisa-
tion at a fairly global level. If the logic synthesis stage was not constrained by
the state space explosion inherent in Petrify, this would have been an ideal
situation.
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However, the state space explosion becomes a real spanner in the works, be-
cause the capability of Petrify to solve the logic synthesis problem is limited
by the number of logic signals in the specification. STGs involving 40–50 binary
variables can take hours of CPU time. The size of the model is critical not only
for logic minimisation but, more importantly, for solving state assignment and
logic decomposition problems. The state assignment problem often arises when
the STG specification is extracted automatically from an HDL. This forces Pet-
rify into solving Complete State Coding (CSC) using computationally intensive
procedures involving calculation of regions in the reachability graph.

While the logic synthesis powers of Petrify should not be underestimated,
one should be realistic where they can be applied efficiently. Thus the solution lies
where the design productivity similar to that of (1) can be achieved together with
the circuit optimality offered by (2). We believe that the way to such a solution
is through finding more efficient ways of logic synthesis in the framework of the
design flow shown in Fig. 1.

HDL Specification

Control/data splitting

Datapath Spec

Data logic synthesis

Data Logic

Control & data interfacing

HDL Implementation

Present Focus

PN to circuit synthesis Signal Refinement

Control Spec (Petri net)

 Control Logic

Fig. 1. Design Flow with Logic Synthesis from Petri nets.

The original HDL specification is syntactically and semantically analysed,
giving rise to control and data path specifications. Data path can be synthesised
using standard RTL-based (synchronous) design flow, applied to the main frag-
ments of the data path, namely combinational logic and registers. There exist
methods of converting such logic to self-timed implementations, e.g., [43]. This
aspect of design is outside our scope here. The control specification is assumed
to be extracted from the HDL in the form of a Petri net, which will thus act
as the intermediate behavioural representation. Such an extraction is in gen-
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eral non-trivial and relies on rigorous semantic relationship between control-flow
constructs used in typical behavioural HDLs and their equivalents in Petri nets.
For example, if one uses Balsa, such constructs basically include sequencing,
parallelisation, two-way and multi-way selection, arbitration and (forever, while
and for) loops, as well as macro and procedure calls. Those can be translated
into Petri nets quite efficiently as done for example in PEP [3] for the translation
of basic high-level programming language notation, B(PN)2, into Petri nets.

1.5 Methods for Logic Synthesis from Petri Nets

The question of what kind of Petri nets is appropriate for subsequent logic syn-
thesis of control depends on the method used for synthesis. Roughly, synthesis
methods are split into two main categories. The first category comprises tech-
niques of direct mapping of Petri net constructs to logic. In various forms it
appeared in [51, 20, 32, 68, 74, 6, 58]. In the framework of 1-safe Petri nets and
speed-independent circuits this problem was solved in [68], however only for au-
tonomous (no inputs) specification where all operations were initiated by the
control logic specified by a labelled Petri net. Another limitation was that the
technique did not cover nets with arbitrary dynamic conflicts. Hollaar’s one-hot
encoding method [32] allowed explicit interfacing with the environment but re-
quired fundamental mode timing conditions, use of internal state variables as
outputs and could not deal with conflicts and arbitration in the specifications.
Patil’s method [51] works for the whole class of 1-safe nets. However, it produces
control circuits whose operation uses 2-phase (non-return-to-zero) signalling.
This results in lower performance than what can be achieved for 4-phase circuits
used in [68].

The second category considers the Signal Transition Graph refinement of the
Petri net control specification. These methods usually perform an explicit logic
synthesis, by deriving Boolean equations for the output signals of the controller
using the notion of next state functions obtained from the STG [14, 18]. It should
be noted that sometimes the STG specification for control can be obtained di-
rectly from the original specifications, e.g., if those are provided in the form of
Timing Diagrams.

In this paper we will not concentrate on the problem of synthesis of Petri nets
for logic synthesis of controllers and refer the reader to most recent literature,
such as [4].

Our focus will be on the most recent advances in logic synthesis from Petri
nets and Signal Transition Graphs. These methods try to avoid using the state
space generated by the Petri net model directly. They follow two possible ap-
proaches. The first one, called a structural approach, performs graph-based trans-
formations on the STG and deals with the approximated state space by means
of linear algebraic representations. The second one, called an unfolding-based
method, represents the state space in the form of true concurrency (or partial
order) semantics provided by Petri net unfoldings.

The remaining structure of the paper is as follows. Section 2 introduces the
problem of synthesis of control circuits from Petri net based specifications. It will
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y := 0;
loop

x := READ (IN);
WRITE (OUT, (x + y)/2);
y := x;

end loop
Ain

Rin
Aout

Rout

OUT
filter

IN

Fig. 2. High-level specification of a filter.

do it in an informal way by considering two characteristic examples of control
logic to be designed by this sort of methodology. Section 3 provides an overview
of the traditional state-based synthesis, which is currently implemented in the
Petrify tool. Section 4 describes structural methods and use of integer linear
programming in logic synthesis. Section 5 presents how Petri nets unfoldings
and Boolean satisfiability problem (SAT) solvers can be used in the synthesis
of asynchronous control logic. Section 6 briefly overviews some other related
methodologies and outlines the important current and future research directions.

2 Synthesis Problem: Simple Examples
and Signal Transition Graph Definition

We shall introduce the problem of synthesis of control circuits from Petri nets
specifications using two simple but realistic design examples. This will also help
us to present the two main types of control hardware that can be designed with
the methods described in this paper. The first example, a simple data processing
controller, will illustrate the design flow starting from an algorithmic, HDL-
based, specification. The second one, an interface controller, will show the design
starting from a waveform, Timing Diagram based, specification. Algorithmic and
waveform specifications are most popular forms of behavioural notation amongst
hardware designers. While describing the second example we will introduce our
main specification model, Signal Transition Graph (STG ).

2.1 A Simple Filter Controller

We illustrate a typical design flow by means of the example shown in Fig. 2. The
algorithm describes a simple filter that reads data items from an input channel
(IN) and writes the filtered data into an output channel (OUT) by averaging
the last two samples, x and y. (Note that the first output value in this case may
be invalid and should be ignored by the environment.) The interaction with the
environment is asynchronous, using a four-phase protocol implemented by a pair
of 〈Request,Acknowledge〉 signals, as shown in Fig. 3.

One of the possible implementations of the filter is depicted in the block
diagram of Fig. 4. It contains two level-sensitive latches, x and y, and one adder
(the averaging of x and y is achieved simply by a one-bit right shift of the bits
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DATA

Req

Ack

item  i item  i+1

Fig. 3. Four-phase handshake protocol.

Rin
Ain

AxRx Ry Ay Ra Aa

Aout

Rout

+
x y

control

IN
OUT

Fig. 4. Block diagram for the filter.

of the sum x + y). Each of the components operates according to a four-phase
protocol as follows:

– The latches are transparent when R is high and opaque when low. A being
high indicates that the data transfer through the latch has been completed.

– The adder starts its operation when R goes high. After a certain delay,
signal A will be asserted, indicating that the addition has been finished and
the output is valid. After that, R and A go low to complete the four-phase
protocol.

The acknowledge signals of the latches and the adder can be implemented
in many different ways, depending on how the blocks are designed. One way
of doing that is by simply inserting a delay between R and A that mimics the
worst-case delay of the corresponding block, as typically done for bundled-data
components in micropipelines [64].

The signals 〈Rin, Ain〉 and 〈Rout, Aout〉 perform the synchronisation of the
IN and OUT channels, respectively. Rin indicates the validity of IN. After Ain

goes high, the environment is allowed to modify IN. On the other side, Rout and
Aout should be able to control a level-sensitive latch in a similar way as described
above for the latches x and y.

Synthesis of control. The synchronisation of the functional units depicted in
Fig. 4 is performed by the control block, which is responsible for circulating the
data items in the data-path in such a way that the required computations are
performed as specified by the algorithm.

In this paper, we use a specially interpreted Petri nets, called Signal Transi-
tion Graphs (STGs), to specify the behaviour of asynchronous controllers. The
transitions represent signal events (i.e., rising or falling edges of signals), whereas
the arcs and places represent the causality relations among the events.
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Ain+

Rin+

Rin−

Ain−

Rx+

Ax−

Rx−

Ax+

Ry+

Ay−

Ry−

Ay+

Ra+

Aa−

Ra−

Aa+

Rout+

Aout+

Rout−

Aout−

Fig. 5. Behavioural specification of the control.

Fig. 5 describes one possible behaviour of the control that results in a correct
operation of the circuit. In this cases, the behaviour can be described by a
marked graph, a subclass of Petri nets without choice. Marked graphs are often
represented by omitting the places between transitions.

Each pair of req/ack signals commit a four-phase protocol, determined by
the arcs R+ → A+ → R− → A− → R+. The rest of the arcs are the ones that
define how data items move along the data-path. For the sake of brevity, only a
couple of them are discussed.

The arc R+
in → R+

x indicates that the latch x can become transparent when
there is some valid data at the IN channel. Moreover, the data can only be read
once the latch y has captured the previous data from x. This is guaranteed by
the arc A−

y → R+
x .

On the other hand, the adder will start a new operation every time the latch
x has acquired new data. This is indicated by the arc A+

x → R+
a . The result will

be sent to the OUT channel when the addition has completed (arc A+
a → R+

out).

CAin

inR

Rout

Aout

Rx Ax Ay Ry Ra Aa

Fig. 6. Asynchronous controller for the filter.

From the specification of the control, a logic circuit can be synthesised. The
circuit shown in Fig. 6 has been obtained by the Petrify tool.

2.2 VME Bus Controller

Our second example is a fragment of a VME bus slave interface [75]. It will
help us to illustrate how the STG specification of an asynchronous controller
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can be derived from its original Timing Diagram specification. Fig. 7(a) depicts
the interface of a circuit that controls data transfers between a VME bus and
a device. The main task of the bus controller is to open and close the data
transceiver through signal d according to a given protocol to read/write data
from/to the device.

VME Bus

Controller

Transceiver
Data

dsr

dsw

dtack

lds

ldtack

d
Device

Bus

(a)

dsr

lds

ldtack

d

dtack

(b)

lds+

d+

dtack+ lds-

dsr-

d-

dtack-

dsr+ ldtack+ ldtack-

(c)

Fig. 7. VME bus controller: interface (a), the timing diagram for the read cycle (b)
and the STG for the read cycle (c).

The input and output signals of the bus controller are as follows:

– dsr and dsw are input signals that request to do a read or write operation,
respectively.

– dtack is an output signal that indicates that the requested operation is ready
to be performed.

– lds is an output signal to request the device to perform a data transfer.
– ldtack is an input signal coming from the device indicating that the device

is ready to perform the requested data transfer.
– d is an output signal that enables the data transceiver. When high, the data

transceiver connects the device with the bus. The direction of the transfer
(read or write) is defined by the high or low level of a special (RW) signal,
which is part of the address/data bundle.

Fig. 7(b) shows a timing diagram of the read cycle. In this case, signal dsw
is always low and not depicted in the diagram. The behaviour of the controller
is as follows: a request to read from the device is received by signal dsr . The
controller transfers this request to the device by asserting signal lds . When the
device has the data ready (ldtack high), the controller opens the transceiver
to transfer data to the bus (d high). Once data has been transferred, dsr will
become low indicating that the transaction must be finished. Immediately after,
the controller will lower signal d to isolate the device from the bus. After that,
the transaction will be completed by a return-to-zero of all interface signals,
seeking for a maximum parallelism between the bus and the device operations.
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Our controller also supports a write cycle with a slightly different behaviour.
For the sake of simplicity, we have described in detail only the read cycle.

The model that will be used to specify asynchronous controllers is based on
Petri nets [53, 49]. It is called Signal Transition Graph (STG ) [55, 13]. Roughly
speaking, an STG is a formal model for timing diagrams. Now we explain how
to derive an STG from a timing diagram.

From timing diagrams to signal transition graphs. A timing diagram specifies the
events (signal transitions) of a behaviour and their causality relations. An STG
is a formal model for this type of specifications. In its simplest form, an STG can
be considered as a causality graph in which each node represents an event and
each arc a causality relation. An STG representing the behaviour of the read
cycle for the VME bus is shown in Fig. 7(c). Rising and falling transitions of a
signal are represented by the superscripts + and −, respectively.

Additionally, an STG can also model all possible dynamic behaviours of the
system. This is the rôle of the tokens held by some of the causality arcs. An
event is enabled when it has at least one token on each input arc. An enabled
event can fire, which means that the event occurs. When an event fires, a token
is removed from each input arc and a token is put on each output arc. Thus,
the firing of an event produces the enabling of another event. The tokens in the
specification represent the initial state of the system.

The initial state in the specification of Fig. 7(c) is defined by the tokens on
the arcs dtack− → dsr+ and ldtack− → lds+. In this state, there is only one
event enabled, viz. dsr+. It is an event on an input signal that must be produced
by the environment. The occurrence of dsr+ removes a token from its input arc
and puts a token on its output arc. In that state, the event lds+ is enabled. In
this case, it is an event on an output signal, that must be produced by the circuit
modelled by this specification.

After firing the sequence of events ldtack+, d+, dtack+, dsr− and d−, two
tokens are placed on the arcs d− → dtack− and d− → lds−. In this situation,
two events are enabled and can fire in any order independently from each other,
i.e., these events are concurrent, which is naturally modelled by the STG .

Choice in signal transition graphs. In some cases, alternative behaviours, or
modes, can occur depending on how the environment interacts with the sys-
tem. In our example, the system will react differently depending on whether the
environment issues a request to read or a request to write.

Typically, different behavioural modes are represented by different timing
diagrams. For example, Fig. 8(a) and 8(b) depict the STG s corresponding to
the read and write cycles, respectively. In these pictures, some arcs have been
split and circles inserted in between. These circles represent places that can hold
tokens. In fact, each arc going from one transition to another has an implicit
place that holds the tokens located in that arc.

By looking at the initial markings, one can observe that the transition dsr+

is enabled in the read cycle, whereas dsw+ is enabled in the write cycle. The
combination of both STG s models the fact that the environment can non-
deterministically choose whether to start a read or a write cycle.
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Fig. 8. VME bus controller: read cycle (a), write cycle (b), read and write cycles (c).

This combination can be expressed by a single STG with a choice place,
as shown in Fig. 8(c). In the initial state, both transitions, dsr+ and dsw+,
are enabled. However, when one of them fires, the other is disabled since both
transitions are competing for the token in the choice place. This type of choice
is called free choice because the transitions, dsr+ and dsw+, connected to the
choice place have no other input places that could affect the process of choice
making.

Here is where one can observe an important difference between the expres-
siveness of STG s and timing diagrams: the former are capable of expressing
non-deterministic choices while the latter are not.

2.3 More Formal Definition of Signal Transition Graphs

To be able to introduce the methods of synthesis of asynchronous circuits in
subsequent sections, we will need a more formal definition of an STG . STG s are
a particular type of labelled Petri nets, where transitions are associated with the
changes in the values of binary variables. These variables can for example be
associated with wires, when modelling interfaces between blocks, or with input,
output and internal signals in a control circuit.

A net is a triple N df= (P, T, F ) such that P and T are disjoint sets of respec-
tively places and transitions, and F ⊆ (P × T ) ∪ (T × P ) is a flow relation. A
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marking of N is a multisetM of places, i.e.,M : P → {0, 1, 2, . . .}. We adopt the
standard rules about representing nets as directed graphs, viz. places are repre-
sented as circles, transitions as rectangles, the flow relation by arcs, and markings
are shown by placing tokens within circles. As usual, •z df= {y | (y, z) ∈ F} and
z• df= {y | (z, y) ∈ F} denote the pre- and postset of z ∈ P ∪ T . We will assume
that •t �= ∅, for every t ∈ T . A net system is a pair Σ df= (N,M0) comprising a
finite net N and an initial marking M0. We assume the reader is familiar with
the standard notions of the theory of Petri nets, such as the enabledness and
firing of a transition and marking reachability, as well as other standard notions
and classification associated with Petri nets [49].

A Signal Transition Graph (STG ) is a quadruple Γ df= (N,M0, Z, λ), where

– Σ = (N,M0) is a Petri net (PN) based on a net N = (P, T, F ),
– Z is a finite set of binary signals, which generates a finite alphabet Z± =
Z × {+,−} of signal transitions

– λ : T → Z± is a labelling function.

Labelling λ does not need to be 1-to-1 (some signal transitions may occur
several times in the PN), and it may be extended to a partial function, in order
to allow some transitions to be “dummy” ones (denoted by ε), that is to denote
“silent events” that do not change the state of the circuit.

When talking about individual signal transitions, the following meaning will
be associated with their labels. A label x+ is used to denote the transition of
signal x from 0 to 1 (rising edge), while x− is used for a 1 to 0 transition (falling
edge). In the following it will often be convenient to associate STG transitions
directly with their labels, “bypassing” their Petri net identity. In such cases if the
labelling is not 1-to-1 (so called multiple labelling), we will also use a subscript
or an index separated by slash denoting the instance number of the x±.

Sometimes, when reasoning on a pure event-based level, it will also be con-
venient to hide the direction of a particular edge and use x± to denote either a
x+ transition or an x− transition.

An STG inherits the basic operational semantics from the behaviour of its un-
derlying Petri net. In particular, this includes: (i) the rules for transition enabling
and firing, (ii) the notions of reachable markings, traces, and (iii) the tempo-
ral relations between transitions (precedence, concurrency, choice and conflict).
Likewise, STG s also inherit the various structural (marked graph, free-choice,
etc.) and behavioural properties (boundedness, liveness, persistency, etc.), and
the corresponding classification of PNs. Namely:

– Choice place. A place is called a choice (or conflict) place if it has more
than one output transition.

– Marked graph and State machine. A PN is called a marked graph (MG )
if each place has exactly one input and one output transition. Dually, a PN
is called a state machine (SM) if each transition has exactly one input and
one output place. MG s have no choice. Safe SMs have no concurrency.
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– Free-choice. A choice place is called free-choice if every its output transition
has only one input place. A PN is free-choice if all its choice places are free-
choice.

– Persistency. A transition t ∈ T is called non-persistent if some reachable
marking enables t together with another transition t′, and t becomes disabled
after firing t′. Non-persistency of t with respect to t′ is also called a direct
conflict between t and t′. A PN is persistent if it does not contain any non-
persistent transition.

– Boundedness and safeness. A PN k-bounded if for every reachable mark-
ing the number of tokens in any place is not greater than k (a place is called
k-bounded if for every reachable marking the number of tokens in it is not
greater than k). A PN is bounded, if there is a finite k for which it is k-
bounded. A PN is safe if it is 1-bounded (a 1-bounded place is called a safe
place).

– Liveness. A PN is live if for every transition t and every reachable marking
M there is a firing sequence that leads to a marking M ′ enabling t.

The signal transition labelling of an STG may sometimes differentiate be-
tween input and non-input signals, thus forming two disjoint subsets, ZI (for
inputs) and ZO (for non-inputs, or simply outputs), such that Z = ZI ∪ZO. An
STG is called autonomous if it has no input signals (i.e., ZI = ∅).

Graphically, an STG can either be represented in the standard form of a
labelled PN, drawing transitions as bars or boxes and places as circles, or in
the so-called STG shorthand form. The latter, as was first shown in the above
examples, designates transitions directly by their labels and omits places that
have only one input and one output transition.

Examples of STG s, in their shorthand notation, were shown in Fig. 8, describ-
ing a simple VME bus controller example. It was assumed in them that ZI =
{dsr, dsw, ldtack} and ZO = {lds, dtack, d}. The first two STG s, in Fig. 8(a)
and 8(b), are marked graphs (they do not have choice on places). The third one,
in Fig. 8(c), modelling both read and write operation cycles, is not a marked
graph because it contains places with multiple input and output transitions. It
is not a free-choice net either, because one of its choice places, the input to
transitions lds+/1 and lds+/2, is not a free-choice place. The latter is however
a unique choice place because whenever one of the above two transitions is en-
abled the other is not, which is guaranteed by the other choice place, which is a
free-choice one. Thus, behaviourally, this net does not lead to dynamic conflicts
(arbitration) or confusion, as it is free from any interference between choice and
concurrency.

3 State-Based Synthesis from Signal Transition Graphs

The main purpose of this section is to present a state-based method to design
asynchronous control circuits, i.e., those circuits that synchronise the operations
performed by the functional units of the data-path through handshake protocols.
The method uses the STG model of a circuit as its initial specification. The key
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Fig. 9. Reachability graph of read cycle (a), its binary partitioning for signal lds (b),
and the encodings of the reachable states (c). The order of signals in the binary en-
codings is: dsr , dtack , ldtack , d , lds .

steps in this method are the generation of a state graph, which is a binary
encoded reachability graph of the underlying Petri net, and deriving Boolean
equations for the output signals via their next state functions obtained from the
state-graph. This method is surveyed here very briefly and informally, using our
VME bus controller example. For more details the reader is referred to the book
and the Petrify tool [18].

3.1 State Graphs

State space. An STG is a succinct representation of the behaviour of an asyn-
chronous control circuit that describes the causality relations among the events.
However, the state space of the system must be derived by exploring all possible
firing orders of the events. Such exploration may result in a state space much
larger than the specification.

Unfortunately, the synthesis of asynchronous circuits from STG s requires an
exhaustive exploration of the state space. Finding efficient representations of
the state space is a crucial aspect in building synthesis tools. Other techniques
based on direct translation of Petri Nets into circuits or on approximations of the
state space exist [42, 50], but usually produce circuits with area and performance
penalty.

Going back to our example of the VME bus controller, Fig. 9(a) shows the
reachability graph corresponding to the behaviour of the read cycle. The initial
state is depicted in gray.

For simplicity, the write cycle will be ignored in the rest of this section. Thus,
we will consider the synthesis of a bus controller that only performs read cycles.

Binary interpretation. The events of an asynchronous circuit are interpreted
as rising and falling transitions of digital signals. A rising (falling) transition
represents a switch from 0 (1) to 1 (0) of the signal value. Therefore, when
considering each signal of the system, a binary value can be assigned to each
state for that signal. All those states visited after a rising (falling) transition
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and before a falling (rising) transition represent situations in which the signal
value is 1 (0).

In general, the events representing rising and falling transitions of a signal
induce a partition of the state space. As an example, let us take signal lds of
the bus controller. Fig. 9(b) depicts the partition of states. Each transition from
LDS=0 to LDS=1 is labelled by lds+ and each transition from LDS=1 to LDS=0 is
labelled by lds−.

It is important to notice that rising and falling transitions of a signal must
alternate. The fact that a rising transition of a signal is enabled when the signal
is at 1 is considered a specification error. More formally, a specification with
such problem is said to have an inconsistent state coding.

After deriving the value of each signal, each state can be assigned a binary
vector that represents the value of all signals in that state. A transition system
with a binary interpretation of its signals is called a state graph (SG). The SG
of the bus controller read cycle is shown in Fig. 9(c).

3.2 Deriving Logic Equations

In this section we explain how an asynchronous circuit can be automatically ob-
tained from a behavioural description. We have already distinguished two types
of signals in a specification: inputs and outputs. Further, some of the outputs
may be observable and some internal. Typically, observable outputs correspond
to those included in the specification, whereas internal outputs correspond to
those inserted during synthesis and not observable by the environment. Synthe-
sising a circuit means providing an implementation for the output signals of the
system.

This section gives an overview of the methods used for the synthesis of asyn-
chronous circuits from an SG.

System behaviour. The specification of a system models a protocol between its
inputs and outputs. At a given state, one or several of these two situations may
happen:

– The system is waiting for an input event to occur. For example, in the state
00000 of Fig. 9(c), the system is waiting for the environment to produce a
rising transition on signal dsr .

– The system is expected to produce a non-input (output or internal) event.
For example, the environment is expecting the system to produce a rising
transition on signal lds in state 10000.

In concurrent systems, several of these things may occur simultaneously. For
example, in state 00101, the system is expecting the environment to produce
dsr+, whereas the environment is expecting the system to produce lds−. In
some other cases, such as in state 01101, the environment may be expecting the
system to produce several events concurrently, e.g., dtack− and lds−.

The particular order in which concurrent events will occur will depend on the
delays of the components of the system. Most of the synthesis methods discussed
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Fig. 10. Excitation and quiescent regions for signal lds (a) and the corresponding
next-state function (b).

here aim at synthesising circuits whose correctness does not depend on the actual
delays of the components. These circuits are called speed-independent.

A correct implementation of the output signals must be in such a way that
signal transitions on those signals must be generated if and only if the environ-
ment is expecting them. Unexpected signal transitions, or not generating signal
transitions when expected, may produce circuit malfunctions.

Excitation and Quiescent Regions. Let us take one of the output signals of
the system, say lds . According to the specification, the states can be classified
into four regions:

– The positive excitation region, ER(lds+), includes all those states in which a
rising transition of lds is enabled.

– The negative excitation region, ER(lds−), includes all those states in which
a falling transition of lds is enabled.

– The positive quiescent region, QR(lds+), includes all those states in which
signal lds is at 1 and lds− is not enabled.

– The negative quiescent region, QR(lds−), includes all those states in which
signal lds is at 0 and lds+ is not enabled.

Fig. 10(a) depicts these regions for signal lds . It can be easily deduced that
ER(lds+) ∪ QR(lds−) and ER(lds−) ∪ QR(lds+) are the sets of states in which
signal lds is at 0 and 1, respectively.

Next-State Functions. Excitation and quiescent regions represent sets of
states that are behaviourally equivalent from the point of view of the signal
for which they are defined. The semantics of these regions are the following:

– ER(lds+) is the set of states in which lds is at 0 and the system must change
it to 1.

– ER(lds−) is the set of states in which lds is at 1 and the system must change
it to 0.
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– QR(lds+) is the set of states in which lds is at 1 and the system must not
change it.

– QR(lds−) is the set of states in which lds is at 0 and the system must not
change it.

According to this definition, the behaviour of each signal can be determined
by calculating the next value expected at each state of the SG. This behaviour
can be modelled by Boolean equations that implement the so-called next-state
functions (see Fig. 10(b)).

Let us consider again the bus controller and try to derive a Boolean equation
for the output signal lds . A 5-variable Karnaugh map for Boolean minimisation
is depicted in Fig. 11. Several things can be observed in that table. There are
many cells of the map with a don’t care (−) value. These cells represent binary
encodings not associated to any of the states of the SG. Since the system will
never reach a state with those encodings, the next-state value of the signal is
irrelevant.
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Fig. 11. Karnaugh map for the minimisation of signal lds .

The shadowed cells correspond to states in the excitation regions of the signal.
The rest of cells correspond to states in some of the quiescent regions. If we call
flds the next-state function for signal lds , here are some examples on the value
of flds :

flds(10000) = 1 state in ER(lds+)
flds(10111) = 1 state in QR(lds+)
flds(00101) = 0 state in ER(lds−)
flds(01000) = 0 state in QR(lds−)

3.3 State Encoding

At this point, the reader must have noticed a peculiar situation for the value of
the next-state function for signal lds in two states with the same binary encoding:
10101. This binary encoding is assigned to the shadowed states in Fig. 9(c).

Unfortunately, the two states belong to two different regions for signal lds ,
namely to ER(lds−) and QR(lds+). This means that the binary encoding of



362 Josep Carmona et al.

lds+

d+

dtack+ lds-

dsr-

dtack-

dsr+ ldtack+ ldtack-

csc+

d-

csc-

(a)

dsr+

dsr+

dsr+

dtack+ dsr-

dtack-

dtack-

dtack-

ldtack- ldtack- ldtack-

lds-lds-lds-ldtack+

d+

100011

101111 111111 011111

011010

011000

010000
000000

001010

001000101000

d-

lds+

csc+
100000100001

011110

101010
101011

csc-

(b)

Fig. 12. An STG (a) and its SG (b) satisfying the CSC property.

the SG signals alone cannot determine the future behaviour of lds . Hence, an
ambiguity arises when trying to define the next-state function. This ambiguity
is illustrated in the Karnaugh map of Fig. 11.

Roughly speaking, this phenomenon appears when the system does not have
enough memory to “remember” in which state it is. When this occurs, the system
is said to violate the Complete State Coding (CSC) property. Enforcing CSC is
one of the most difficult problems in the synthesis of asynchronous circuits.

Fig. 12 presents a possible solution for the SG of the VME bus controller. It
consists of inserting a new signal, csc, that adds more memory to the system.
After the insertion, the two conflicting states are disambiguated by the value of
csc, which is the last value in the binary vectors of Fig. 12.

Now Boolean minimisation can be performed and logic equations can be ob-
tained (see Fig. 13). In the context of Boolean equations representing gates we
shall liberally use the “=” sign to denote “assignment”, rather than mathemat-
ical equality. Hence csc on the left-hand side of the last equation stands for
the next value of signal csc, while csc on the right-hand side corresponds to its
current value. The resulting circuit contains cycles: the combinational feedbacks
play the rôle of local memory in the system.

The circuit shown in Fig. 13 is said to be speed-independent, i.e., it works
correctly regardless of the delays of its components. For this to be true, it is
required that each Boolean equation is implemented as one complex gate. This
roughly means that the internal delays within each gate are negligible and do
not produce any externally observable spurious behaviour. However, the external
delay of the gates can be arbitrarily long.
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dtack = d

d = ldtack · csc
csc = dsr · (csc+ldtack)
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Fig. 13. Logic equations and implementation of the VME bus controller.

Note that signal dtack is merely implemented as a buffer, and a wire is
enough to preserve that behaviour. But note that the specification indicates
that the transitions of dtack must occur always after the transitions of d . For
this reason, the resulting equation is dtack = d and not vice versa. Thus, the
buffer introduces the required delay to enforce the specified causality.

3.4 Properties for Implementability

In conclusion to this section let us summarise the main properties required for
the STG specification to be implementable as a speed-independent circuit [18]:

– Boundedness of the STG that guarantees the SG to be finite.
– Consistency of the STG , that ensures that the rising and falling transitions

of each signal alternate in all possible runs of the specification.
– Completeness of state encoding (CSC) that ensures that there are no two

different states with the same signal encoding but different behaviour of the
output or internal signals.

– Persistency of signal transitions in such a way that no signal transition
can be disabled by another signal transition, unless both signals are inputs.
This property ensures that no short glitches, known as hazards, will appear
at the disabled signals. (Arbitration is implemented by ‘factoring out’ the
arbiter into the environment and using a special circuit able to resolve meta-
stability.)

4 Synthesis Using Structural Methods,
Linear Programming and STG Decomposition

4.1 Rationale

Structural methods provide a way to avoid the state space explosion problem,
given that they rely on succinct representations of the state space. The main
benefit of using structural methods is the ability to deal with large and highly
concurrent specifications, that cannot be tackled by state-based methods. On the



364 Josep Carmona et al.

other hand, structural methods are usually conservative and approximate, and
can only be exact when the behaviour of the specifications is restricted in some
sense. For instance, in [66] structural methods for the synthesis of asynchronous
circuits are presented for the class of marked graphs, a very restricted class of
Petri nets where choices are not allowed. In this section we present structural
methods to solve some of the main problems in the synthesis of asynchronous
control circuits from well-formed specifications.

As it was explained in previous sections, the synthesis of asynchronous cir-
cuits from an STG can be separated into two steps [18]: (i) checking and (possi-
bly) enforcing implementability conditions and (ii) deriving the next-state func-
tion for each signal generated by the system. Most of the existing CAD tools
for synthesis perform steps (i) and (ii) at the underlying state graph level, thus
suffering from the state space explosion problem.

In order to avoid the state explosion problem, structural methods for steps (i)
and (ii) have been proposed in the literature. Approaches like the ones presented
in [66, 50, 9, 8] can be considered purely structural. Among the methods applied
by these approaches, graph theoretic-based and linear algebraic are the essential
techniques. The work presented in this section uses both linear algebraic methods
and graph theoretic-based methods.

Regarding step (i), in this section an encoding technique to ensure imple-
mentability is presented. It is inspired by the work of René David [20]. The main
idea is to insert a new set of signals in the initial specification in a way that
unique encoding is guaranteed in the transformed specification.

To the best of our knowledge, the results reported in [38, 29] are the first
ones that use linear algebraic techniques to approach the encoding problem. In
the former approach, a complete characterisation of the encoding problem is
presented, provided that, like in Section 5, unfoldings are used to represent the
underlying state space of the net. Linear algebraic methods to verify the encod-
ing are presented in this section, where the computation of the unfolding is not
performed, at the expense of checking only sufficient conditions for synthesis.
However, the experimental results indicate that this approach is highly accu-
rate and often provides a significant speed-up compared with [38, 39]. One can
imagine a design flow where the methods presented in this section are used to
pre-process the specifications, and complete methods like the ones presented in
Section 5 are only used when purely structural methods fail.

Another alternative to alleviate the state space explosion problem is by us-
ing decomposition techniques. We apply them when performing step (ii). More
specifically, in this section an algorithm for computing the set of signals needed
to synthesise a given signal is presented, which also uses linear algebraic tech-
niques. This allows to project the behaviour into that set of signals and perform
the synthesis on the projection.

In summary, this section covers the two important steps (i) and (ii) in the
synthesis of asynchronous circuits: it proposes powerful methods for checking
CSC/USC and a method for decomposing the specification into smaller ones
while preserving the implementability conditions.
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4.2 Structural Technique to Ensure a Correct Encoding

The first example of use of structural methods is presented in this section. The
technique is inspired by previous work on using a special type of cells, called
David cells. This type of cells, first introduced in [20], were used in [69] to mimic
the token flow of a Petri net. Fig. 14 depicts a very simple example on how
these cells can be abutted to build a distributor that controls the propagation
of activities along a ring.

ai âi

cici−1

Fig. 14. Distributor built from David cells [42].

The behaviour of one of the cells in the distributor can be summarised by
the following sequence of events:

· · · → c−i−1︸ ︷︷ ︸
i-th cell

excitation

→ a+
i → â−

i︸ ︷︷ ︸
i-th cell setting

→

→ â+
i−1 → a−

i−1 → c+
i−1︸ ︷︷ ︸

(i − 1)-th cell resetting

→ c−i︸ ︷︷ ︸
(i + 1)-th cell

excitation

→ · · ·

Let us explain how one can use David Cells to ensure a correct encoding of the
system specified by a given STG . The main idea is to add a new signal for each
place of the original net. The semantics of the new signal inserted is to mimic
the token flow of the corresponding place in the original net. The technique is
shown in Fig. 15.

For instance place p4 induces the creation of signal sp4. Moreover, provided
that when transition dtack+ is enabled, it adds a token to p4, in the transformed
net it will induce that near (preceding) dtack+ there must be an sp+

4 . A similar
reason makes to have sp−

4 near (following) dsr−. New transitions are inserted
in a special way: internal signal transitions must not be inserted in front of an
input signal transition. The reason for that is to try to preserve the I/O interface
(see more on this in [7]).

The derived STG is guaranteed to have a correct encoding (in the example,
the right STG is guaranteed to satisfy the USC property). The theory underlying
the technique can be found in [9]. It can be applied for any STG with the
underlying free-choice live and safe Petri net (FCLSPN).
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Fig. 15. Encoding rule applied to the VME Bus Controller example.

4.3 ILP Models for Fast Encoding Verification

The main drawback of this technique is that a correct encoding is ensured at the
expense of inserting a lot of new signals into the net, and thus the final imple-
mentation can be very inefficient in terms of area and/or performance. Therefore
it would be nice to have an oracle that could tell us when the application of the
encoding technique is needed, provided that the computation of the state space
and subsequent checking cannot be done for the specification at hand due to
efficiency reasons.

This section presents Integer Linear Programming (ILP) models as oracles
that we can use to verify the encoding in an STG . The good news is that when
we query such oracles, usually it takes short time for them to answer, even for
very large STG s. The bad news is that they are not perfect oracles: we can only
trust them when they say “Yes, your STG is correctly encoded”.

In this section we assume some basic knowledge of Linear Programming (see,
e.g., [56]). The rest of this section has three main parts: first it is shown how to use
linear algebraic techniques for deciding whether a given markingM is reachable
in a Petri net. Second, using this technique, models for finding encoding conflicts
are presented, and third, experimental results are shown.

Approximation of the reachability set of a PN. Computing the reachability graph
from a given PN is a very hard problem, because the size of the reachability graph
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may grow exponentially with respect to the size of the PN, or it even can be
infinite. The main reason is that the concurrency in the PN leads to a blow up
in the reachability graph. The reader can find in [65] an in-depth discussion on
the rôle of concurrency in relation to the size of the reachability graph.

Therefore, it is interesting to approach the problem of reachability using other
models or techniques. In this section we describe how to use ILP techniques to
compute approximations of reachable markings of a PN.

Given a firing sequence M0
σ→ M of a PN N , the number of tokens for each

place p in M is equal to the number of tokens of p in M0 plus the number
of tokens added by the input transitions of p appearing in σ minus the tokens
removed by the output transitions of p appearing in σ, which can be expressed
as the following token conservation equation:

M(p) =M0(p) +
∑
t∈•p

#(σ, t)F (t, p) −
∑
t∈ p•

#(σ, t)F (p, t) .

Definition 1 (Incidence matrix of a PN). The matrix N ∈ {−1, 0, 1}|P |×|T |

defined by N(p, t) df= F (p, t) − F (t, p) is called the incidence matrix of N .

Definition 2 (Parikh vector). Let σ be a feasible sequence of N . The vector
σ

df= (#(σ, t1), ...,#(σ, tn)) is called the Parikh vector of σ.

Using the previous definitions, the token conservation equations for all the
places in the net can be written in the following matrix form:

M =M0 + N · σ .

This equation allows to approximate the reachability set of a Petri net by means
of an ILP:

Definition 3 (Marking Equation). If a marking M is reachable from M0,
then there exists a sequence σ such that M0

σ→M , and the marking equation

M =M0 + N ·X

has at least one solution X ∈ N|T |.

Note that the marking equation provides only a necessary condition for reach-
ability. If the marking equation is infeasible, then M is not reachable from M0,
but the inverse does not hold in general: there are markings satisfying the mark-
ing equation which are not reachable. Those markings are said to be spuri-
ous [59]. Fig. 16(a,b,c) presents an example of spurious marking: the Parikh
vector σ = (320011) and the marking M = (00020) are a solution of the mark-
ing equation shown in Fig. 16(b) for the Petri net in Fig. 16(a)1. However,
M is not reachable: only sequences visiting negative markings can lead to M .
Fig. 16(c) depicts the graph containing the reachable markings and the spurious
markings (shadowed). This graph is called the potential reachability graph. The
initial marking is represented by the state (10000).
1 Both in the figure and the explanation, we abuse the notation and skip the commas

in the definition of Parikh vectors and markings.



368 Josep Carmona et al.

p5

t2

p4

t1

p1

t5 t6

p3p2

t3 t4

(a)

1

0

0

0

0

−1

+1

+1

−1

−1

+1

+1

+1

−1

+1

−1

−1

−1

−1

−1

+1 +1

0

0

0 0

0 0

0

0

0

0 0

0

0

3

2

0

0

1

1

σ

+

0

0

0

2

0

=

0m   =  m    +                   N                         

(b)

10000

01100

00011

01001 00101

t3 t4

t3 t4 t3
t4

t1

t2

t4

t5 t6

t3

01010

00002

00110

00200

00020

02000

(c)

Fig. 16. A Petri net (a), a spurious solution M = (00020)T (b), and the potential
reachability graph (c).

ILP models to find encoding conflicts. Let us explain with the example of the
VME Bus Controller how to derive an ILP formulation that detects USC/CSC
conflicts in a given STG .

The incidence matrix of the STG corresponding to the VME example is as
as follows:

lds+ dsr+ ldtack+ ldtack− d+ dtack− dtack+ lds− drs− d−

p1 +1 0 -1 0 0 0 0 0 0 0
p2 0 0 +1 0 -1 0 0 0 0 0
p3 0 0 0 0 +1 0 -1 0 0 0
p4 0 0 0 0 0 0 +1 0 -1 0
p5 0 0 0 0 0 0 0 0 +1 -1
p6 0 0 0 0 0 -1 0 0 0 +1
p7 0 -1 0 0 0 +1 0 0 0 0
p8 -1 +1 0 0 0 0 0 0 0 0
p9 0 0 0 0 0 0 0 -1 0 +1
p10 0 0 0 -1 0 0 0 +1 0 0
p11 -1 0 0 +1 0 0 0 0 0 0
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The initial marking of the underlying Petri net is M0
df= (00000010001), and the

vector x = (1110000000) is a solution of the marking equation (M1 =M0 +Nx).
It means that the sequence of transitions corresponding to the Parikh vector x
is fireable at M0, and it leads to M1, where M1 = (01000000000). From M1, the
vector z = (0100111011) is a solution of the marking equation, (M2 =M1+Nz),
whereM2 = (00000001100) �=M1. The non-zero positions of vector z correspond
to transitions d+, dtack+, dsr−, d−, dtack− and dsr+. Looking at vector z, one
can realise that for each signal appearing in it, the same number of rising and
falling transitions of the signal appear (for instance, d+ and d− occur once).
This type of sequences are called complementary sequences. The importance
of finding complementary sequences is due to the fact that they connect two
markings (M1 and M2 in the example) that have the same encoding, since that
each signal appearing in the sequence ends up with the same value that it had
at the beginning. The reader can assign any meaningful value to each signal in
marking M1 and check that M2 will have the same encoding.

So, according to the marking equation, there are two different markings,M1

andM2, such thatM2 is reachable fromM1 by firing a complementary sequence,
i.e., both markings have the same encoding. We found an USC conflict. The
corresponding ILP model is:
ILP model for USC checking:

Reachability conditions:
M1 =M0 + Nx
M2 =M1 + Nz
M1,M2, x, z ≥ 0, x, z ∈ Z|T |

z is complementary seq.
M1 �=M2

(1)

Note, that as it was said in the previous section, the marking equation pro-
vides only sufficient conditions for a marking to be reachable. Therefore the
markings M1 and M2, that are solution for model (1), can indeed be spurious,
and the corresponding model will incorrectly use them as example of encoding
conflicts. This is why in the introduction we said that our ILP models are non-
perfect oracles: only when the model finds no solution (a conflict between two
markings) one can be sure that the STG is free of conflicts. On the contrary,
when they find a conflict, only for very restricted classes of nets (marked graphs
or live, safe and cyclic free-choice nets [21]) one can be sure that the conflict is
a real one.

Now let us show how to find CSC conflicts using ILP techniques. Informally,
for a given signal a of the STG , a CSC conflict exists for a if the following
conditions hold: let a±i be a transition of signal a. Then, a CSC conflict exists
if: (i) M2 is reachable from M1, (ii) M1 and M2 have the same code, (iii) a±i is
enabled in M1 and (iv) for every transition a±j of signal a, a±j is not enabled in
M2. For safe systems, the enabledness of a transition x at a marking M can be
characterised by the sum of tokens of the places in •x at M : x is enabled at M
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if and only if the sum of tokens of the places in •x is equal to the number of
places in •x:
ILP model for CSC checking:

(i) Reachability conditions (same as in (1))
(ii) z is complementary seq.
(iii)

∑
p∈ •a±

i
M1(p) = |•a±i |

(iv) ∀a±j :
∑

p∈ •a±
j
M2(p) < |•a±j |

(2)

Note that the constraint M1 �= M2 is not needed in (2). If we continue
with the example of the VME Bus Controller, it can be shown that the USC
conflict described in the previous section is also a CSC conflict for signal d.
Given that it has been shown before that the assignments x = (1110000000) and
z = (0100111011) satisfy the first two constraints, now we show that constraints
(iii) and (iv) are also satisfied by x and z. The former constraint is satisfied
because ∑

p∈ •d+

M1(p) =M1(p2) = 1 = |{p2}| = |•d+| ,

and constraint (iv) is also satisfied since∑
p∈ •d+

M2(p) =M2(p2) = 0 < 1 = |{p2}| = |•d+| .

Note that constraint (iv) is not verified for transition d−, because the consistency
of the STG is assumed. Thus, a CSC conflict has been detected in the VME Bus
Controller example.

Experimental Results on Using ILP to Verify the Encoding. The ILP
methods presented have been implemented in Moebius, a tool for the synthe-
sis of speed-independent circuits. The experiments have been performed on a
PentiumTM 4/2.53 GHz and 512M RAM.

The experiments for CSC/USC detection are presented in Tables 1 and 2.
Each table reports the CPU time of each approach in seconds. We use ‘time’
and ‘mem’ to indicate that the algorithm had not completed within 10 hours or
produced a memory overflow, respectively. The following tools were compared:

– CLP: the approach presented in [38] for the verification of USC/CSC. It uses
non-linear integer programming methods and works on STG unfolding.

– SAT: the approach presented in [39] for the verification of CSC2. It uses a
satisfiability solver and works on STG unfolding.

– ILP: the approach presented in this section.

From the results one can conclude, as it was expected, that checking USC
is easier than checking CSC, given the different nature of the two problems: for
2 Checking for USC is not implemented in our version of SAT
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Table 1. CSC detection for well-structured STG s.

Benchmark |P | |T | |Z| CLP SAT ILP

PpWk(2,9) 71 38 19 < 1 < 1 < 1
PpWk(2,12) 95 50 25 < 1 < 1 < 1
PpWkCsc(2,9) 72 38 19 3 < 1 < 1
PpWkCsc(2,12) 96 50 25 246 1 < 1
PpWk(3,6) 70 38 19 < 1 < 1 < 1
PpWk(3,9) 106 56 28 11 < 1 < 1
PpWk(3,12) 142 74 37 933 < 1 < 1
PpWkCsc(3,6) 72 38 19 3 < 1 < 1
PpWkCsc(3,9) 108 56 28 2075 < 1 < 1
PpWkCsc(3,12) 144 74 37 time 1 < 1
PpArb(2,9) 86 48 23 < 1 < 1 < 1
PpArb(2,12) 110 60 29 < 1 < 1 < 1
PpArbCsc(2,9) 88 48 23 41 < 1 < 1
PpArbCsc(2,12) 112 60 29 1022 16 < 1
PpArb(3,6) 92 54 25 < 1 < 1 < 1
PpArb(3,9) 128 72 34 < 1 < 1 < 1
PpArb(3,12) 164 90 43 < 1 < 1 < 1
PpArbCsc(3,6) 95 54 25 61 < 1 < 1
PpArbCsc(3,9) 131 72 34 time 2 < 1
PpArbCsc(3,12) 167 90 43 time 16 1
TangramCsc(3,2) 142 92 38 < 1 < 1 1
TangramCsc(4,3) 321 202 83 < 1 < 1 9
Art(10,9) 216 198 99 < 1 < 1 < 1
Art(20,9) 436 398 199 5 10 < 1
Art(30,9) 656 598 299 38 82 < 1
Art(40,9) 876 798 399 138 265 < 1
Art(50,9) 1096 998 499 377 630 1
ArtCsc(10,9) 752 630 315 time 861 182
ArtCsc(20,9) 1532 1270 635 time mem 1623
ArtCsc(30,9) 2312 1910 955 time mem 5413
ArtCsc(40,9) 3092 2550 1275 time mem 12602
ArtCsc(50,9) 3872 3190 1595 time mem 25210

verifying USC only one ILP model is needed to be solved, whereas for verifying
CSC n models are needed, where n is the number of non-input signals in the
STG . Moreover, when some encoding conflict exists, the ILP solver can find it in
short time. This is explained by the fact that proving the absence of encoding
conflicts requires an exhaustive exploration of the branch-and-bound tree visited
by ILP solvers.

The speed-up shown by ILP with respect to the unfolding approach of SAT
or CLP are because in ILP approximations of the state space are used, whereas
SAT or CLP (as will be explained in the next section) are exact. However, our
conservative approach has proven to be highly accurate in the experimental
results.

4.4 Computing the Necessary Support for a Given Signal

In this section we are going to adapt model (2) to derive a decomposition method
for the synthesis of a given signal. The main idea is to try to compute those
signals in the STG that are needed to ensure that a given signal will be free of
encoding conflicts, if we abstract away of the rest of the STG . We will call such
a set of signals a support.
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Table 2. USC detection for well-structured STG s.

Benchmark |P | |T | |Z| CLP ILP

PpWk(3,9) 106 56 28 10 < 1
PpWk(3,12) 142 74 37 876 < 1
PpWkCsc(3,9) 108 56 28 2002 < 1
PpWkCsc(3,12) 144 74 37 time 1
PpArb(3,9) 128 72 34 < 1 < 1
PpArb(3,12) 164 90 43 < 1 < 1
PpArbCsc(3,9) 131 72 34 time 1
PpArbCsc(3,12) 167 90 43 time 1
Tangram(3,2) 142 92 38 < 1 1
Tangram(4,3) 321 202 83 < 1 6
Art(40,9) 876 798 399 146 1
Art(50,9) 1096 998 499 328 2
ArtCsc(40,9) 3092 2550 1275 time 851
ArtCsc(50,9) 3872 3190 1575 time 1387

Let us use as example the STG shown in Fig. 12(a), where a new signal
(csc) has been inserted in the original STG of the VME Bus Controller to solve
the encoding conflict. A possible support for signal d is {ldtack , csc}. Fig. 17(a)
shows the projection induced by this support, and the final implementation of
d is shown in Fig. 17(b). The rest of this section is devoted to explaining how
to compute efficiently a support for a given output signal a.

ldtack−

csc+

d−

csc−

d+

ldtack+

(a)

ldtack

csc
d

(b)

Fig. 17. Projection of the STG in Fig. 12 for signal d (a) and a circuit implemen-
ting d (b).

The computation of a support can be performed iteratively: starting from an
initial assignment, ILP techniques can be used to guide the search. Suppose we
have an initial candidate set of signals Z ′ ⊆ Z, candidate to be a support of a
given signal a. A way of determining whether Z ′ is a support for signal a is by
solving the following ILP problem:
ILP model for checking support:

(i), (iii) and (iv) from (2)
z is complementary seq. for signals in Z ′ (3)

If (3) is infeasible, then Z ′ is enough for implementing a. Otherwise the set
Z ′ must be augmented (from signals in Z \ Z ′) with more signals until (3) is



Synthesis of Asynchronous Hardware from Petri Nets 373

infeasible. Moreover if (3) is feasible, adding a complemented signal b from Z \Z ′

will not turn the problem infeasible because z is still a complementary sequence
for signals in Z ′ ∪ {b}. On the contrary, adding a uncomplemented signal will
assign a different code to markings M1 and M2 of (3). Therefore, the uncomple-
mented signals in z will be the candidates to be added to Z ′. The algorithm for
finding a support set for a non-input signal a is the following:

Algorithm for the calculation of support:

Support (STG S, Signal a) returns support of a

Z ′ := Trig(a) ∪ {a}
while (3) is infeasible do

Let b be an uncomplemented signal in z
Z ′ := Z ′ ∪ {b}

endwhile
return Z ′

where Trig(a) is the set of signals that directly cause the switching of signal a.
In the next section we are going to present an example of using this algorithm
for the synthesis of the VME Bus Controller STG specification.

4.5 Synthesis of the VME Bus Controller Using Structural Methods

Let us show how to use the structural methods to synthesise the VME example.
In addition to the methods presented in this section, we use Petri net transfor-
mations for stepwise transformation and projection. For a formal presentation
of the kit of transformations used in the example, see [9].

First, as shown in Section 4.3, we can use the ILP model (1) to realise that the
original STG of the VME Bus controller has encoding conflicts. Consequently
we apply the encoding technique presented in Section 4.2 to enforce CSC.

Afterwards, in order to derive a efficient implementation, we can try to elimi-
nate as many signals inserted by the encoding technique as possible, while keep-
ing a correct encoding. The idea is to eliminate a signal and only accept the
removal if the transformed STG still has a correct encoding. Fig. 18 shows how
the removal of the first five signals is done, using the USC ILP model (1) as an
oracle.

The process can be iterated until no more signals can be removed. The final
STG is shown in the centre of Fig. 19. From that STG , the algorithm for support
computation is run for every output signal, and the corresponding projection is
found. This is shown also in Fig. 19.

And finally, from each projection the corresponding circuit is obtained. Given
that the projections are usually small (the support for a given signal is often very
small in practice, and the corresponding projections are usually quite small),
state-based algorithms for synthesis introduced in Section 3 can be applied. The
final synthesis of each projection is shown in Fig. 20.
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Fig. 18. Greedy removal of signals sp1, sp11, sp2, sp3 and sp4.

Table 3 shows the results of experiments on synthesis to check the quality
of the generated circuits. The column ’Lit’ reports the number of literals, in
factored form, of the netlist. The results are compared with the circuits ob-
tained by Petrify [18], a state-based synthesis tool, on the same controllers.
From the reported CPU time, the time needed for computing a support and
the corresponding projection was negligible compared with the time needed for
deriving logic equations. Table 3 shows that the quality of the circuits obtained
by the ILP-based technique is comparable to that of the circuits obtained by
Petrify. Moreover it is clear that the structural approach can deal with larger
specifications.

Table 3. Support computation, projection and synthesis compared to state-based ap-
proach.

benchmark states |P | |T | |Z| Lit. CPU

Pfy ILP Pfy ILP

PPWKCSC(2,6) 8192 47 26 19 57 57 5 1

PPWKCSC(2,9) 524.288 71 38 19 87 87 49 2

PPWKCSC(3,9) 2.7 × 107 106 56 28 mem 130 mem 3

PPWKCSC(3,12) 2.2 × 1011 142 74 37 time 117 time 3

PPARBCSC(2,6) 61440 62 36 17 77 77 21 83

PPARBCSC(2,9) 3.9 × 106 110 60 29 107 107 185 59

PPARBCSC(3,9) 3.3 × 109 131 72 34 163 165 10336 289

PPARBCSC(3,12) 1.7 × 1012 167 90 43 time 210 time 608

TANGRAMCSC(3,2) 426 142 92 38 97 103 56 146

TANGRAMCSC(4,3) 9258 321 202 83 mem 247 mem 7206
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Fig. 19. Support computation and projection for the VME Bus Controller example.

4.6 Conclusions

Several examples of using structural methods are presented in this section. We
have given intuition on how these methods are used for the problem of synthesis
of control circuits from STG specifications. Although in some cases they can
provide only sufficient conditions, in general those methods are highly accurate
and provide a significant speed-up with respect to other approaches, as has been
demonstrated by the experimental results shown for the problem of verifying the
encoding.

In conclusion, structural methods are necessary for being able to handle
large and concurrent specifications. We advocate for their use, either isolated or
in combination with approaches like the one presented in the next section.

5 Synthesis Using Petri Net Unfoldings

While the state-based approach is relatively simple and well-studied, the issue of
computational complexity for highly concurrent STG s is quite serious due to the
state space explosion problem. This puts practical bounds on the size of control
circuits that can be synthesised using such techniques, which are often restrictive,
especially if the STG models are not constructed manually by a designer but
rather generated automatically from high-level hardware descriptions.
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Fig. 20. Speed-independent synthesis of the VME Bus Controller.

In order to alleviate this problem, Petri net analysis techniques based on
causal partial order semantics, in the form of Petri net unfoldings, are applied to
circuit synthesis. In particular, the following tasks are addressed: (i) detection
of encoding conflicts; (ii) resolution of encoding conflicts; and (iii) derivation
of Boolean equations for output signals. We show that the notion of an encod-
ing conflict can be characterised in terms of satisfiability of a Boolean formula
(SAT), and the resulting algorithms solving tasks (i) and (iii) achieve significant
speedups compared with methods based on state graphs. Moreover, we propose a
framework for resolution of encoding conflicts (task (ii)) based on conflict cores.

5.1 STG Unfoldings

A finite and complete unfolding prefix π of an STG Γ is a finite acyclic net
which implicitly represents all the reachable states of Γ together with transitions
enabled at those states. Intuitively, it can be obtained through unfolding Γ , by
successive firings of transition, under the following assumptions: (a) for each
new firing a fresh transition (called an event) is generated; (b) for each newly
produced token a fresh place (called a condition) is generated. The unfolding is
infinite whenever Γ has an infinite run; however, if Γ has finitely many reachable
states then the unfolding eventually starts to repeat itself and can be truncated
(by identifying a set of cut-off events) without loss of information, yielding
a finite and complete prefix. We denote by B, E and Ecut ⊆ E the sets of
conditions, events and cut-off events of the prefix, respectively. Fig. 21(b) shows
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a finite and complete unfolding prefix (with the only cut-off event is depicted as
a double box) of the STG shown in Fig. 21(a).

Efficient algorithms exist for building such prefixes [25, 31, 36, 37], which en-
sure that the number of non-cut-off events in a complete prefix can never exceed
the number of reachable states of Γ . However, complete prefixes are often ex-
ponentially smaller than the corresponding state graphs, especially for highly
concurrent Petri nets, because they represent concurrency directly rather than
by multidimensional ‘diamonds’ as it is done in state graphs. For example, if the
original Petri net consists of 100 transitions which can fire once in parallel, the
state graph will be a 100-dimensional hypercube with 2100 nodes, whereas the
complete prefix will coincide with the net itself.

Due to its structural properties (such as acyclicity), the reachable markings of
Γ can be represented using configurations of π. A configurationC is a downward-
closed set of events (being downward-closed means that if e ∈ C and f is a causal
predecessor of e, then f ∈ C) without structural conflicts (i.e., for all distinct
events e, f ∈ C, •e ∩ •f = ∅). Intuitively, a configuration is a partial-order
execution, i.e., an execution where the order of firing of concurrent events is not
important.

After starting π from the implicit initial marking (whereby one puts a single
token in each condition which does not have an incoming arc) and executing
all the events in C, one reaches the marking denoted by Cut(C). We denote by
Mark (C) the corresponding marking of Γ , reached by firing a transition sequence
corresponding to the events in C. It is remarkable that each reachable marking
of Γ is Mark (C) for some configuration C, and, conversely, each configuration
C generates a reachable marking Mark (C). This property is a primary reason
why various behavioural properties of Γ can be re-stated as the corresponding
properties of π, and then checked, often much more efficiently (in particular,
one can easily check the consistency and deadlock-freeness of Γ [57, 35]). The
experimental results in Table 4 demonstrate that high levels of compression are
indeed achieved in practice.

For the unfolding of a consistent STG we define by Codez(C) the value
(0 or 1) corresponding to signal z in the encoding of the state Mark (C); we
also define Outz(C) to be 1 if z ∈ Out(M) and 0 otherwise, and Nxtz(C) df=
Codez(C) ⊕ Outz(C), where ‘ ⊕ ’ is the ‘exclusive or’ operation.

5.2 Visualisation and Resolution of State Encoding Conflicts

A number of methods for resolution of CSC conflicts have been proposed so far
(see, e.g., [16] for a brief review). The techniques in [67, 75] introduce constraints
within an STG , called lock relation and coupledness relation, which provide some
guidance. These techniques recognise that if all pairs of signals in the STG are
‘locked’ using a chain of handshaking pairs then the STG satisfies the CSC
property. The synthesis tool Petrify uses the theory of regions [16] for this
purpose.

The above techniques work reasonably well. However, they may produce
sub-optimal circuits or fail to solve the problem in certain cases, e.g., when



378 Josep Carmona et al.

dtack−
dsr+

lds−

d−ldtack−

csc− csc+

ldtack+

lds+ dtack+ dsr−d+

(a)

1e 2e 4e 5e 6e 7e3e

8e 10e

9e 11e

e12

lds+ d+ dtack+ dsr− d−dsr+ ldtack+

core

lds−

dtack− dsr+

lds+

csc−

ldtack−

csc+

C’ C’’

(b)

inputs: dsr , ldtack ; outputs: lds, d , dtack ; internal: csc

Fig. 21. VME bus controller: STG for the read cycle, with the dotted lines appearing
in the final STG satisfying the CSC property (a) and unfolding prefix with a conflict
pair of configurations and a new signal csc resolving the CSC conflict (b). The order
of signals in the binary encodings is: dsr , dtack , lds, ldtack , d .

a controller specification is defined in a compact way using a small number
of signals. Such specifications often have CSC conflicts that are classified as
irreducible by Petrify. Therefore, manual design may be required for finding
good synthesis solutions, particularly in constructing interface controllers, where
the quality of the solution is critical for the system’s performance.

According to a practising designer [54], the synthesis tool should offer a way
for the user to understand the characteristic patterns of a circuit’s behaviour and
the cause of each encoding conflict and allow one to interactively manipulate
the model by choosing where in the specification to insert new signals. The
visualisation method presented here is aimed at facilitating a manual refinement
of an STG with CSC conflicts, and works on the level of unfolding prefixes. In
order to avoid the explicit enumeration of encoding conflicts, they are visualised
as cores, i.e., sets of transitions ‘causing’ one or more of them. All such cores
must eventually be eliminated by adding new signals that resolve the encoding
conflicts to yield an STG satisfying the CSC property. Optionally, our method
can also work in a completely automatic or semi-automatic manner, making it
possible for the designer to see what is going on and intervene at any stage
during the process of CSC conflict resolution.

5.3 Encoding Conflicts in a Prefix

A CSC conflict can be represented as an unordered conflict pair of configura-
tions 〈C′, C′′〉 whose final states are in CSC conflict, as shown if Fig. 21(b).
In Section 5.6 a SAT-based technique for detecting CSC conflicts is described.
Essentially, it allows for efficiently finding such conflict pairs in STG unfolding
prefixes.

Note that the set of all conflict pairs may be quite large, e.g., due to the
following ‘propagation’ effect: if C′ and C′′ can be expanded by the same event e
then 〈C′ ∪ {e}, C′′ ∪ {e}〉 is also a conflict pair (unless these two configurations
enable the same set of output signals). Therefore, it is desirable to reduce the
number of pairs needed to be considered, e.g., as follows. A conflict pair 〈C′, C′′〉
is called concurrent if C′ � C′′, C′′ � C′ and C′ ∪ C′ is a configuration.
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Proposition 1 ([45]). Let 〈C′, C′′〉 be a concurrent CSC conflict pair. Then
C

df= C′ ∩ C′′ is such that either 〈C,C′〉 or 〈C,C′′〉 is a CSC conflict pair.

Thus concurrent conflict pairs are ‘redundant’ and should not be considered.
The remaining conflict pairs can be classified as follows:

Conflicts of type I are such that C1 ⊂ C2 (Fig. 21(b) illustrates this type of
CSC conflicts).

Conflicts of type II are such that C1 \ C2 �= ∅ �= C2 \ C1 and there exist
e′ ∈ C1 \ C2 and e′′ ∈ C2 \ C1 such that e′#e′′.

The following notion is crucial for the proposed approach:

Definition 4. Let 〈C′, C′′〉 be a conflict pair. The corresponding complemen-
tary set is defined as CS df= C′'C′′, where ' denotes the symmetric set differ-
ence. CS is a core if it cannot be represented as the union of several disjoint
complementary sets. A complementary set is of type I/II if the corresponding
conflict pair is of type I/II, respectively. ♦

For example, the core corresponding to the conflict pair shown in Fig. 21(b)
is {e4, . . . , e8, e10} (note that for a conflict pair 〈C′, C′′〉 of type I, such that
C′ ⊂ C′′, the corresponding core is simply C′′ \ C′).

One can show that every complementary set CS can be partitioned into
C1 \ C2 and C2 \ C1, where 〈C′, C′′〉 is a conflict pair corresponding to CS.
Moreover, if CS is of type I then one of these parts is empty, while the other is
CS itself. An important property of complementary sets is that for each signal
z ∈ Z, the difference between the numbers of z+– and z−–labelled events in
CS is the same in these two parts (and is 0 if CS is of type I). This suggests
that a complementary set can be eliminated by introduction of a new internal
signal and insertion of its transition into this set, as this would violate the stated
property.

It is often the case that the same complementary set corresponds to different
conflict pairs, so the designer can save time by analysing the cores rather than
the full list of CSC conflicts, which can be much longer.

5.4 Framework for Visualisation and Resolution
of Encoding Conflicts

The visualisation is based on showing the designer the cores in the STG ’s un-
folding prefix. Since every element of a core is an instance of the STG ’s transi-
tion, the cores can easily be mapped from the prefix to the STG . For example,
the core {e4, . . . , e8, e10} in Fig. 21(b) can be mapped to the set of transitions
{d+, dtack+, dsr−, d−, dtack−, dsr+} of the original STG shown in Fig. 21(a).

Cores are important for resolution of encoding conflicts. By introducing an
additional internal signal and insertion of its transition, say csc+, one can de-
stroy a core eliminating thus the corresponding encoding conflicts. To preserve
the consistency of the STG , the signal transition’s counterpart, csc−, must also
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be added to the specification outside the core, in such a way that it is neither
concurrent to nor in structural conflict with csc+. It is sometimes possible to
insert csc− into another core thus eliminating it also, as shown in Fig. 22(b).
Another restriction is that an inserted signal transitions cannot trigger an input
signal transition (the reason is that this would impose constraints on the envi-
ronment which were not present in the original STG , making it ‘wait’ for the
newly inserted signal). More about the formal requirements for the correctness
of inserting a new transition can be found in [18].

The core in Fig. 21(b) can be eliminated by inserting a new signal, csc+,
somewhere in the core, e.g., concurrently to e5 and e6 between e4 and e7, and
by inserting its complement outside the core, e.g., concurrently to e11 between
e9 and e12. (Note that concurrent insertion of these two transitions avoids an
increase in the latency of the circuit, where each transition is assumed to con-
tribute a unit delay.) The final STG satisfying the CSC property is shown in
Fig. 21(a) with dotted lines taken into account.

It is often the case that cores overlap. In order to minimise the number of
inserted signals, and thus the area and latency of the circuit, it is advantageous
to insert a signal in such a way that as many cores as possible are eliminated
by it. That is, a signal should be inserted into the intersection of several cores
whenever possible.

To assist the designer in exploiting core overlaps, another key feature of our
method, viz. the height map showing the quantitative distribution of the cores,
is employed in the visualisation process. The events located in conflict cores are
highlighted by shades of colours. The shade depends on the altitude of an event,
i.e., on the number of cores it belongs to. (The analogy with a topographical map
showing the altitudes may be helpful here.) The greater the altitude, the darker
the shade. ‘Peaks’ with the highest altitude are good candidates for insertion of
a new signal, since they correspond to the intersection of maximum number of
cores.

Using this representation, the designer can select an area for insertion of a
new signal and obtain a local, more detailed description of the cores overlapping
with the selection. When an appropriate core cluster is chosen, the designer can
decide how to insert a new signal transition optimally, taking into account the
design constraints and his/her knowledge of the system being developed.

The overview of the process of resolution of CSC conflicts is shown in Fig. 22(a).
Given an STG , a finite and complete prefix of its unfolding is constructed, and
the cores are computed. If there are none, the process stops. Otherwise, the
height map is shown to the designer, who chooses a set of overlapping cores. In
phases one and two, an additional signal transition splitting the core is inserted
together with its counterpart. The inserted transitions are then transferred to
the STG , and the process is repeated. Depending on the number of conflict cores,
the resolution process may involve several cycles.

After completion of phase one, the height map is updated. The altitudes of
the events in the core cluster where the new signal transition has been inserted
are made negative, to prompt the designer that if the counterpart transition is
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Fig. 22. The process of resolution of encoding conflicts (a) and strategies for elimi-
nating conflict cores (b–d). Several possibilities are shown for insertion of csc−, but
only one of them should be used. (The positions where csc− is not allowed are shown
as transitions that are crossed out.)

inserted there, some of the cores in the cluster will reappear. Moreover, in order
to ensure that the insertion of the counterpart transition preserves consistency,
the areas where it cannot be inserted (in particular, the events concurrent to or
in structural conflict with this transition) are faded out.

Typical cases in STG specifications are schematically illustrated in Fig. 22(b–
d). Cores ‘in sequence’, can be eliminated in a ‘one-hot’ manner as depicted in
Fig. 22(b). Each core is eliminated by one signal transition, and its complement
is inserted outside the core, preferably, into another non-adjacent one3.

An STG that has a core in one of the concurrent branches can also be tackled
in a ‘one-hot’ way, as shown in Fig. 22(c). Note that in order to preserve the
consistency the transition’s counterpart cannot be inserted into the concurrent
branch, but can be inserted before the fork transition or after the join one. In
a branch which is in a structural conflict with another branch, the transition’s
counterparts must be inserted in the same branch somewhere between the choice
and the merge points, as shown in Fig. 22(d).

Obviously, the described cases do not cover all possible situations and all
possible insertions (e.g., one can sometimes insert a new signal transition before
the choice point and its counterparts into each branch, etc.), but we hope they
do give an idea how the cores can be eliminated. [45] presents this method of
resolution of CSC conflicts using STG unfoldings in more detail.

5.5 Boolean Satisfiability

Boolean satisfiability problem (SAT) has great theoretical interest as the canon-
ical N P-complete problem. Though it is very unlikely that it can be solved in
3 The union of two adjacent cores is usually a complementary set which will not be

destroyed if both the transition and its counterpart are inserted into it.
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polynomial time, there are algorithms which can solve many interesting SAT in-
stances quite efficiently. SAT solvers have been successfully applied to many prac-
tical problems such as AI planning, ATPG, model checking, etc. The research in
SAT has led to algorithms which routinely solve SAT instances generated from
industrial applications with tens of thousands or even millions variables [78].

Thus it is often advantageous to re-state the problem at hand in terms of
SAT, and then apply an existing SAT solver. In this paper, the SAT approach will
be used for detection of CSC conflicts in Section 5.6 and derivation of equations
for logic gates of the circuit in Section 5.7.

The Boolean satisfiability problem (SAT) consists in finding a satisfying as-
signment, i.e., a mapping A : Varϕ → {0, 1} defined on the set of variables
Varϕ occurring in a given Boolean expression ϕ such that ϕ evaluates to 1. This
expression is often assumed to be given in the conjunctive normal form (CNF)∧n

i=1

∨
l∈Li

l, i.e., it is represented as a conjunction of clauses, which are dis-
junctions of literals, each literal l being either a variable or the negation of a
variable. It is assumed that no two literals in the same clause correspond to the
same variable.

Some of the leading SAT solvers, e.g., zChaff [48], can be used in the incre-
mental mode, i.e., after solving a particular SAT instance the user can modify
it (e.g., by adding and/or removing a small number of clauses) and execute
the solver again. This is often much more efficient than solving these related
instances as independent problems, because on the subsequent runs the solver
can use some of the useful information (e.g., learnt clauses, see [78]) collected
so far. In particular, such an approach can be used to compute projections of
assignments satisfying a given formula, as described in sequel.

Let V ⊆ Varϕ be a non-empty set of variables occurring in a formula ϕ, and
Proj ϕ

V be the set of all restricted assignments (or projections) A|V such that A is
a satisfying assignment of ϕ. Using the incremental SAT approach it is possible
to compute Proj ϕ

V , as follows.

Step 0: A := ∅.
Step 1: Run the SAT solver for ϕ.
Step 2: If ϕ is unsatisfiable then return A and terminate.
Step 3: Add A|V to A, where A is the computed satisfying assignment.
Step 4: Append to ϕ a new clause

∨
v∈V ∧A(v)=1 ¬v ∨

∨
v∈V ∧A(v)=0 v.

Step 5: Go back to Step 1.

Suppose now that we are interested in finding only the minimal elements of
Proj ϕ

V , assuming that A|V ≤ A′|V if (A|V )(v) ≤ (A′|V )(v), for all v ∈ V . The
above procedure can then be modified by changing Step 4 to:

Step 4’: Append to ϕ a new clause
∨

v∈V ∧A(v)=1 ¬v.

Similarly, if we were interested in finding all the maximal elements of Proj ϕ
V ,

then one could change Step 4 to:

Step 4”: Append to ϕ a new clause
∨

v∈V ∧A(v)=0 v.
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Moreover, in the latter two cases, before terminating an additional pass over the
elements stored in A should be made in order to eliminate any non-minimal (or
non-maximal) projections.

5.6 Detection of State Encoding Conflicts Using SAT

Let C′ and C′′ be two configurations of the unfolding of a consistent STG and z
be an output signal.C′ andC′′ are in Complete State Coding conflict for z (CSC z

conflict) if Codex(C′) = Codex(C′′) for all x ∈ Z and Nxtz(C′) �= Nxtz(C′′).
This notion is very similar to the notion of a CSC conflict; in particular, each
CSC z conflict is a CSC conflict, and each CSC conflict is a CSC z conflict for some
output signal z, i.e., the problem of detection of CSC conflicts is easily reducible
to the problem of detection of CSC z conflicts, and we will mostly concentrate
on the latter problem. A CSC z conflict can be represented as an unordered
conflict pair of configurations 〈C′, C′′〉 whose final states are in CSC z conflict;
for example, the conflict pair of configurations shown in Fig. 21(b) is in CSC lds

and CSC d conflict.

Constructing a SAT Instance. We adopt the following naming conventions.
The variable names are in the lower case and names of formulae are in the upper
case. Names with a single prime (e.g., conf′e and CON F ′) are related to C′,
and ones with double prime (e.g., conf′′e ) are related to C′′. If there is no prime
then the name is related to both C′ and C′′. If a formula name has a single
prime then the formula does not contain occurrences of variables with double
primes, and the counterpart double prime formula can be obtained from it by
adding another prime to every variable with a single prime. The subscript of a
variable points to which element of the STG or the prefix the variable is related,
e.g., conf′e and conf′′e are both related to the event e of the prefix. By a name
without a subscript we denote the list of all variables for all possible values of
the subscript, e.g., conf′ denotes the list of variables conf′e, where e runs through
the set E \ Ecut .

The following Boolean variables will be used in the proposed translations:

– For each event e ∈ E \ Ecut , we create two Boolean variables, conf′e and
conf′′e , tracing whether e ∈ C′ and e ∈ C′′ respectively.

– For each signal x ∈ Z, we create a variable codex to trace the value of x.
Since the values of all the signals must match at the final states of C′ and C′′,
we use the same set of variables for both configurations.

– For each condition b ∈ B \ E•
cut which is an instance of a place from P 1

Z

(defined later), we create two Boolean variables, cut′b and cut′′b , tracing
whether b ∈ Cut(C′) and b ∈ Cut(C′′) respectively.

– For each event e ∈ E which is an instance of the output signal z for which
the CSC z condition is being checked, we create two Boolean variables, en′e
and en′′e , tracing whether e is ‘enabled’ by C′ and C′′ respectively. Note that
unlike conf′ and conf′′, such variables are also created for the cut-off events.

Our aim is to build a Boolean formula CSCz such that: (i) CSCz is satisfiable
iff there is a CSC z conflict; and (ii) for every satisfying assignment, the two sets
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of non-cut-off events of the prefix, C′ df= {e ∈ E \ Ecut | conf′e = 1} and C′′ df=
{e ∈ E \ Ecut | conf′′e = 1}, constitute a conflict pair 〈C′, C′′〉 of configurations.
CSCz will be the conjunction of constraints described below.

For example, these variables will assume the following values for the CSC d

conflict depicted in Fig. 21(b) (the order of signals in the binary codes is: dsr ,
dtack , lds , ldtack , d): conf′ = 111000000000, conf′′ = 111111110100, code =
10110, en′e4

= 1, en′e7
= 0, and en′′e4

= en′′e7
= 0 (the values of cut′ and cut′′ are

not shown).

Configuration constraints. The role of first two constraints, CON F ′ and
CON F ′′, is to ensure that C′ and C′′ are both legal configurations of the prefix
(not just arbitrary sets of events). CON F ′ is defined as the conjunction of the
formulae∧

e∈E\Ecut

∧
f∈•(•e)

(conf′e ⇒ conf′f ) and
∧

e∈E\Ecut

∧
f∈Ee

¬(conf′e ∧ conf′f ) ,

where Ee
df= ((•e)• \ {e}) \Ecut . The former formula ensures that if e ∈ C′ then

all the direct causal predecessors of e are also in C′, which in turn ensures that
C′ is a downward closed set of events. The latter one ensures that C′ contains no
structural conflicts. (One should be careful to avoid duplication of clauses when
generating this formula.) CON F ′′ is defined similarly.

CON F ′ and CON F ′′ can be transformed into the CNF by applying the rules
x ⇒ y ≡ ¬x ∨ y and ¬(x ∧ y) ≡ ¬x ∨ ¬y.

Encoding constraint. First we describe an important STG transformation allow-
ing to capture the current value of each signal in the STG ’s marking. For each
signal z ∈ Z, a pair of complementary places, p0z and p1z, tracing the value of z
is added as follows. For each z+–labelled transition t, p0z ∈ •t and p1z ∈ t•, and
for each z−–labelled transition t′, p1z ∈ •t′ and p0z ∈ t′•. Exactly one of these two
places is marked at the initial state, accordingly to the initial value of signal z.
One can show that at any reachable state of an STG augmented with such places,
p0z (respectively, p1z) is marked iff the value of z is 0 (respectively, 1). Thus, if a
transition labelled by z+ (respectively, z−) is enabled then the value of z is 0 (re-
spectively, 1), which in turn guarantees the consistency of the augmented STG .
Such a transformation can be done completely automatically (one can easily
determine the initial values of all the signals from the unfolding prefix). For a
consistent STG , it does not restrict the behaviour and yields an STG with an
isomorphic state graph; for a non-consistent STG , the transformation restricts
the behaviour and may lead to (new) deadlocks. In what follows, we assume
that the tracing places are present in the STG , and denote P 0

Z
df= {p0z | z ∈ Z},

P 1
Z

df= {p1z | z ∈ Z}, and PZ
df= P 0

Z ∪ P 1
Z .

The role of encoding constraints, CODE ′ and CODE ′′, is to ensure that the
signal codes of the final markings of configurations C′ and C′′ are equal. To build
a formula establishing the value codez of each signal z ∈ Z at the final state of
C′, we observe that codez = 1 iff p1z ∈ Mark (C′), i.e., iff b ∈ Cut(C′) for some
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p1z–labelled condition b (note that the places in PZ cannot contain more than
one token). The latter can be captured by the constraint:∧

z∈Z

(codez ⇐⇒
∨

b∈Bz

cut′b) ,

where Bz
df= {B \ E•

cut | b is an instance of p1z}. We then define CODE ′ as the
conjunction of the last formula and∧

z∈Z

∧
b∈Bz

(cut′b ⇐⇒
∧

e∈•b

conf′e ∧
∧

e∈b•\Ecut

¬conf′e) ,

which ensures that b ∈ Cut(C′) iff the event ‘producing’ b has fired, but no event
‘consuming’ b has fired. (Note that since |•b| ≤ 1,

∧
e∈•b confe in this formula is

either the constant 1 or a single variable.) One can see that if C′ is a configuration
and CODE ′ is satisfied then the value of signal z at the final state of C′ is given
by codez. CODE ′′ is defined similarly.

The use of the same variables code in both CODE ′ and CODE ′′ ensures that
the encodings of the final states of C′ and C′′ are the same, if both constraints
are satisfied.

It is straightforward to build the CNF of CODE ′:

∧
z∈Z

(
(¬codez ∨

∨
b∈Bz

cut′b) ∧
∧

b∈Bz

(codez ∨ ¬cut′b) ∧

∧
b∈Bz

( ∧
e∈•b

(¬cut′b∨conf′e) ∧
∧

e∈b•\Ecut

(¬cut′b∨¬conf′e) ∧ (cut′b∨
∨

e∈•b

¬conf′e∨
∨

e∈b•\Ecut

conf′e)
)⎞⎠,

and the CNF of CODE ′′ can be built similarly.

Next-state constraint. The role of this constraint is to ensure that Nxtz(C′) �=
Nxtz(C′′). Since all the other constraints are symmetric w.r.t. C′ and C′′, one
can rewrite it as Nxtz(C′) = 0 ∧ Nxtz(C′′) = 1. Moreover, it follows from the
definition of Nxtz that Nxtz(C) ≡ ¬Codez(C) ⇐⇒ Outz(C), and so the next-
state constraint can be rewritten as the conjunction of Codez(C′) ⇐⇒ Outz(C′)
and ¬Codez(C′′) ⇐⇒ Outz(C′′).

We observe that an output signal z is enabled by Mark (C′) iff there is a
z+- or z−–labelled event e /∈ C′ ‘enabled’ by C′, i.e., such that C′ ∪ {e} is a
configuration (note that e can be a cut-off event). We then define the formula
N EX T ZERO′, ensuring that Nxtz(C′) = 0, as the conjunction of

code′z ⇐⇒
∨

e∈Ez

en′e and
∧

e∈Ez

(en′
e ⇐⇒

∧
f∈•(•e)

conf′f ∧
∧

f∈(•e)•\Ecut

¬conf′f ) ,

where Ez
df= {e ∈ E | e is an instance of z±}. The former conjunct ensures that

Codez(C′) ⇐⇒ Outz(C) (it takes into account that z is enabled by the final
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state of C′ iff at least one its instance is enabled by C′) and the latter one states
for each instance e of z that e is enabled by C′ iff all the events ‘producing’
tokens in •e are in C′ but no events ‘consuming’ tokens from •e (including e
itself) are in C′.

The formula N EX T ON E ′′, ensuring that Nxtz(C′′) = 1, is defined as the
conjunction of

¬code′′z ⇐⇒
∨

e∈Ez

en′′e

and a constraint ‘computing’ en′′e , which is similar to that for N EX T ZERO′.
Now the next-state constraint can be expressed as
N EX T ZERO′∧N EX T ON E ′′.

The CNF of N EX T ZERO′ is

(¬code′z∨
∨

e∈Ez

en′e)∧
∧

e∈Ez

(code′z∨¬en′
e) ∧

∧
e∈Ez

( ∧
f∈•(•e)

(¬en′e∨conf′f )∧
∧

f∈(•e)•\Ecut

(¬en′e∨¬conf′f ) ∧ (en′e∨
∨

f∈•(•e)

¬conf′f ∨
∨

f∈(•e)•\Ecut

conf′f )
)
,

and the CNF of N EX T ON E ′′ can be built similarly.

Translation to SAT. Finally, the problem of detection of CSC z conflicts can be
formulated as the SAT problem for the formula

CSCz df= CON F ′∧CON F ′′∧CODE ′∧CODE ′′∧N EX T ZERO′∧N EX T ON E ′′ ,

and the CSC problem is reduced to checking the CSC z condition for each output
signal z. In principle, the CSC problem can also be reduced to a single SAT
instance [39], but according to our experiments the method presented here tends
to be more efficient.

Computing All Cores. The method for resolution of CSC conflicts described
in Section 5.2 requires to compute all conflict cores. This can be done by com-
puting all the solutions of CSC z for all output signals z using the incremental
SAT approach. However, as the same complementary set can correspond to mul-
tiple conflict pairs, this approach is unnecessarily expensive. A better approach
would be to eliminate all the solutions corresponding to a newly computed com-
plementary set CS each time it is computed, by appending new clauses to the
formula. This can be done as follows. For each event e ∈ E \ Ecut we create a
variable cse, and the following constraint is added to the formula:( ∧

e∈E\Ecut

(
cse ⇐⇒ (conf′e ⊕ conf′e)

))
∧

∨
e∈E\Ecut

{
¬cse if e ∈ CS

cse otherwise .

Note that the first part of this constraint is the same for all the computed
complementary sets, and thus can be generated just once. The CNF of this
constraint is
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(¬conf′e ∨ conf′′e ∨ cse) ∧ (conf′e ∨ ¬conf′′e ∨ cse) ∧

(conf′e ∨ conf′′e ∨ ¬cse) ∧ (¬conf′e ∨ ¬conf′′e ∨ ¬cse) ∧
∨

e∈E\Ecut

{
¬cs if e ∈ CS

cs otherwise .

The Case of Prefixes without Structural Conflicts. In many cases the
performance of the proposed method can be improved by exploiting specific
properties of the Petri net underlying an STG Γ . For instance, if Γ is free from
dynamic choices (in particular, this is the case for marked graphs) then the union
of any two configurations of its unfolding is also a configuration. This observation
can be used to reduce the search space. Indeed, according to Proposition 2 below,
it is then enough to look only for those cases when the configurations C′ and C′′

being tested are ordered in the set-theoretical sense.

Proposition 2 ([39]). Let 〈C′, C′′〉 be a conflict pair of configurations in the
unfolding of a consistent STG Γ satisfying C′ � C′′, C′′ � C′ and C′ ∪ C′′ is
a configuration. Then C df= C′ ∩ C′′ is such that either 〈C,C′〉 or 〈C,C′′〉 is a
conflict pair.

Note that freeness from structural conflicts can easily be detected: it is enough
to check that |b•| ≤ 1, for all conditions b of the prefix.

Since we do not know in advance whether C′ ⊆ C′′ or C′′ ⊆ C′ (and the order
does matter because the suggested implementation of the next-state constraint
breaks the symmetry), a new Boolean variable, v⊆, is introduced. If its value is 1
then the former possibility is checked, otherwise the latter possibility is tried out.
This is captured by the constraint∧

e∈E\Ecut

(
(v⊆ → (conf′e → conf′′e )) ∧ (¬v⊆ → (conf′′e → conf′e))

)
,

which should be added to the formula. Note that it can easily be transformed
into the CNF by applying the rule x → y ≡ ¬x ∨ y.

Experimental Results. We implemented our method using the zChaff SAT
solver [48]. All the experiments were conducted on a PC with a PentiumTM

IV/2.8GHz processor and 512M RAM.
A few classes of benchmarks have been attempted (the STG s with names

containing the occurrence of ‘Csc’ satisfy the CSC property, the others exhibit
CSC conflicts). The first group of examples comes from the real design practice.
They are as follows:

– LazyRing and Ring – Asynchronous Token Ring Adapters described in [10,
44]. LazyRingCsc and RingCsc have been obtained by resolving CSC con-
flicts in these test cases.

– Dup4ph, Dup4phCsc, Dup4phMtr, Dup4phMtrCsc, DupMtrMod,
DupMtrModUtg, and DupMtrModCsc – control circuits for the Po-
wer-Efficient Duplex Communication System described in [28].
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Table 4. Experimental results: checking CSC.

Problem Net States Prefix Time, [s]
|S| |T | In/Out |B| |E| |Ecut| Pfy Clp Sat

Real-Life STG s
LazyRing 35 32 5/6 160 87 66 5 1 <1 <1
LazyRingCsc 42 37 5/7 187 88 71 5 1 <1 <1
Ring 147 127 11/17 16508 763 498 59 694 <1 <1
RingCsc 185 172 11/18 16320 650 484 55 837 15 <1
Dup4ph 133 123 12/15 169 144 123 11 13 <1 <1
Dup4phCsc 135 123 12/15 171 146 123 11 13 <1 <1
Dup4phMtr 109 96 10/12 121 117 96 8 8 <1 <1
Dup4phMtrCsc 114 105 10/16 149 122 105 8 9 <1 <1
DupMtrMod 129 100 10/11 345 199 132 10 89 <1 <1
DupMtrModUtg 116 165 10/11 323 344 218 65 286 <1 <1
DupMtrModCsc 152 115 10/17 321 228 149 13 116 <1 <1
CfSymCscA 85 60 8/14 6672 1341 720 56 153 16 2
CfSymCscB 55 32 8/8 690 160 71 6 6 <1 <1
CfSymCscC 59 36 8/10 2416 286 137 10 11 <1 <1
CfSymCscD 45 28 4/10 414 120 54 6 3 <1 <1
CfAsymCscA 128 112 8/26 147684 1808 1234 62 1551 439 11
CfAsymCscB 128 112 8/24 147684 1816 1238 62 2602 471 10

Marked Graphs
PpWk(2,3) 23 14 0/7 5·25 = 160 41 23 1 <1 <1 <1
PpWk(2,6) 47 26 0/13 5·25 = 10240 119 62 1 5 <1 <1
PpWk(2,9) 71 38 0/19 5·25 > 6·105 233 119 1 43 <1 <1
PpWk(2,12) 95 50 0/25 5·25 > 4·107 383 194 1 494 1 <1

PpWkCsc(2,3) 24 14 0/7 27 = 128 38 20 1 <1 <1 <1
PpWkCsc(2,6) 48 26 0/13 213 = 8192 110 56 1 4 <1 <1
PpWkCsc(2,9) 72 38 0/19 219 > 5·105 218 110 1 43 3 <1
PpWkCsc(2,12) 96 50 0/25 225 > 3·107 362 182 1 2076 264 <1

PpWk(3,3) 34 20 0/10 13·27 = 1664 63 35 1 1 <1 <1
PpWk(3,6) 70 38 0/19 13·216 > 8·105 183 95 1 103 <1 <1
PpWk(3,9) 106 56 0/28 13·225 > 4·108 357 182 1 2121 12 <1
PpWk(3,12) 142 74 0/37 13·234 > 2·1011 585 296 1 mem 1031 <1

PpWkCsc(3,3) 36 20 0/10 210 = 1024 57 29 1 1 <1 <1
PpWkCsc(3,6) 72 38 0/19 219 > 5·105 165 83 1 44 3 <1
PpWkCsc(3,9) 108 56 0/28 228 > 2·108 327 164 1 7936 2285 <1
PpWkCsc(3,12) 144 74 0/37 237 > 1011 543 272 1 mem time <1

STG s with Arbitration
PpArb(2,3) 48 32 2/13 291·24 = 4656 110 66 2 7 <1 <1
PpArb(2,6) 72 44 2/19 291·210 > 2·105 218 120 2 57 <1 <1
PpArb(2,9) 96 56 2/25 291·216 > 107 362 192 2 1726 <1 <1
PpArb(2,12) 120 68 2/31 291·222 > 109 542 282 2 11493 <1 <1

PpArbCsc(2,3) 48 32 2/13 207·24 = 3312 110 66 2 3 <1 <1
PpArbCsc(2,6) 72 44 2/19 207·210 > 2·105 218 120 2 41 2 <1
PpArbCsc(2,9) 96 56 2/25 207·216 > 107 362 192 2 316 153 <1
PpArbCsc(2,12) 120 68 2/31 207·222 > 8·108 542 282 2 mem 12745 <1

PpArb(3,3) 71 48 3/19 1647·26 > 105 188 114 3 97 <1 <1
PpArb(3,6) 107 66 3/28 1647·215 > 5·107 368 204 3 1726 <1 <1
PpArb(3,9) 143 84 3/37 1647·224 > 2·1010 602 321 3 mem <1 <1
PpArb(3,12) 179 102 3/46 1647·233 > 1013 890 465 3 mem <1 <1

PpArbCsc(3,3) 71 48 3/19 297·28 = 76032 118 114 3 43 1 <1
PpArbCsc(3,6) 107 66 3/28 297·217 > 3·107 368 204 3 1186 379 <1
PpArbCsc(3,9) 143 84 3/37 297·226 > 1010 602 321 3 27512 time <1
PpArbCsc(3,12) 179 102 3/46 297·235 > 1013 890 465 3 mem time <1
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– CfSymCscA, CfSymCscB, CfSymCscC, CfSymCscD, CfAsymCscA,
and CfAsymCscB – control circuits for the Counterflow Pipeline Processor
described in [72].

Some of these STG s, although built by hand, are quite large in size. The results
for this group are summarised in the first part of Table 4. Two other groups,
PpWk(m,n) and PpArb(m,n), contain scalable examples of STG s modellingm
pipelines weakly synchronised without arbitration (in PpWk(m,n)) and with
arbitration (in PpArb(m,n)). (See [40] for a more detailed description.) The
former offers the possibility of studying the effect of the optimisation described
in Section 5.6 (all STG s in the PpWk(m,n) series are marked graphs, and
so their prefixes contain no structural conflicts). These benchmarks come in
pairs: for each test case satisfying the CSC property there is a very similar
one exhibiting CSC conflicts. This allowed us to test the algorithm on almost
identical specifications with and without encoding conflicts. The results for these
two groups are summarised in the last two parts of Table 4.

The meaning of the columns is as follows (from left to right): the name of
the problem; the number of places, transitions, and input and output signals
in the original STG ; the number of conditions, events and cut-off events in the
complete prefix; the number of reachable states in the STG ; the time spent by
a special version of the Petrify tool, which did not attempt to resolve the
encoding conflicts it had identified; the time spent by the integer programming
algorithm proposed in [38]; and the time spent by the proposed method. We use
‘mem’ if there was a memory overflow and ‘time’ to indicate that the test had
not stopped after 15 hours. We have not included in the table the time needed
to build complete prefixes, since it did not exceed 0.1sec for all the attempted
STG s.

Although performed testing was limited in scope, one can draw some conclu-
sions about the performance of the proposed algorithm. In all cases the proposed
method solved the problem relatively easily, even when it was intractable for the
other approaches. In some cases, it was faster by several orders of magnitude.
The time spent on all of these benchmarks was quite satisfactory – it took just
11 seconds to solve the hardest one. Overall, the proposed approach was the
best, especially for hard problem instances.

5.7 Logic Synthesis Based on Unfolding Prefixes

In Section 5.6, the CSC conflict detection problem was solved by reducing it to
SAT. More precisely, given a finite and complete prefix of an STG ’s unfolding,
one can build for each output signal z a formula CSCz which is satisfiable iff there
is a CSC z conflict. Here we modify that construction in the way described below.
We assume a given consistent STG satisfying the CSC property, and consider in
turn each output signal z.

Let C′ and C′′ be two configurations of the unfolding of a consistent STG , z
be an output signal, andX is some set of signals.C′ and C′′ are in Complete State
Coding conflict for z w.r.t. X (CSC z

X conflict) if Codex(C′) = Codex(C′′) for all
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x ∈ X and Nxtz(C′) �= Nxtz(C′′). The notion of CSC z
X is a generalisation of the

notion of CSC z conflict (indeed, the latter can be obtained from the former by
choosing X to be the set of all signals in the STG ). X is a support of an output
signal z if no two configurations of the unfolding are in CSC z

X conflict. In such
a case the next-state value of z at each reachable state of the STG is determined
without ambiguity by the encoding of this state restricted to X , i.e., z can be
implemented as a gate with the supportX . A support X of z is minimal if no set
X ′ ⊂ X is a support of z. In general, a signal can have several distinct minimal
supports.

The starting point of the proposed approach is to consider the set N SUPPz

of all sets of signals which are non-supports of z. Within the Boolean formula
CSCz

nsupp, which we are going to construct, non-supports are represented by vari-
ables nsupp

df= {nsuppx | x ∈ Z}, and, for a given assignment A, the set of
signals X = {x | A(nsuppx) = 1} is identified with the projection A|nsupp.

The key property of CSCz
nsupp is that N SUPPz = Proj

CSCz
nsupp

nsupp , and so it is
possible to use the incremental SAT approach to compute N SUPPz. How-
ever, for our purposes it will be enough to compute the maximal non-supports
N SUPPz

max
df= max⊆ N SUPPz which can then be used for computing the set

SUPPz
min

df= min⊆{X⊆Z | X �⊆X ′, for all X ′∈N SUPPz
max}

of all the minimal supports of z (another incremental SAT run will be needed
for this).

SUPPz
min captures the set of all possible supports of z, in the sense that any

support is an extension of some minimal support, and vice versa, any extension
of any minimal support is a support. However, the simplest equation is usually
obtained for some minimal support, and this approach was adopted in our ex-
periments. Yet, this is not a limitation of our method as one can also explore
some or all of the non-minimal supports, which can be advantageous, e.g., for
small circuits and/or when the synthesis time is not of paramount importance
(this would sometimes allow to find a simpler equation). On the other hand, not
all minimal supports have to be explored: if some minimal support has many
more signals compared with another one, the corresponding equation will almost
certainly be more complicated, and so too large supports can safely be discarded.
Thus, as usual, there is a trade-off between the execution time and the degree
of design space exploration, and our method allows one to choose an acceptable
compromise. Typically, several ‘most promising’ supports are selected, the equa-
tions expressing Nxtz as a function of signals in these supports are obtained (as
described below), and the simplest among them is implemented as a logic gate.

Suppose now that X is one of the chosen supports of z. In order to derive an
equation expressing Nxtz as a function of the signals in X , we build a Boolean
formula EQN z

X which has a variable codex for each signal x ∈ X and is sat-
isfiable iff these variables can be assigned values in such a way that there is a
configuration C in the prefix such that Codex(C) = codex, for all x ∈ X . Now,
using the incremental SAT approach one can compute the projection of the set
of reachable encodings onto X (differentiating the stored solutions according to
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Nxtcsc(C

′) = 1 �= Nxtcsc(C
′′) = 0. The order of signals in the binary encodings is: dsr,

ldtack, dtack, lds, d, csc.

the value of the next-state function for z), and feed the result to a Boolean
minimiser.

To summarise, the proposed method is executed separately for each output
signal z and has three main stages: (I) computing the set N SUPPz

max of maximal
non-supports of z; (II) computing the set SUPPz

min of minimal supports of z;
and (III) deriving an equation for a chosen support X of z. In the sequel, we
describe each of these three stages in more detail.

It should be noted that the size of the truth table for Boolean minimisa-
tion and the number of times a SAT solver is executed in our method can be
exponential in the number of signals in the support. Thus, it is crucial for the
performance of the proposed algorithm that the support of each signal is rela-
tively small. However, in practice it is anyway difficult to implement as an atomic
logic gate a Boolean expression depending on more than, say, eight variables.
(Atomic behaviour of logic gates is essential for the speed-independence of the
circuit, and a violation of this requirement can lead to hazards [14, 18].) This
means that if an output signal has only ‘large’ supports then the specification
must be changed (e.g., by adding new internal signals) to introduce ‘smaller’
supports. Such transformations are related to the technology mapping step in
the design cycle for asynchronous circuits (see, e.g., [18]); we do not consider
them here.

Computing Maximal Non-supports. Suppose that we want to compute
the set of all maximal non-supports of an output signal z. At the level of a
branching process, a CSC z

X conflict can be represented as an unordered conflict
pair of configurations 〈C′, C′′〉 whose final states are in CSC z

X conflict, as shown
in Fig. 23.

As already mentioned, our aim is to build a Boolean formula CSCz
nsupp such

that Proj
CSCz

nsupp
nsupp = N SUPPz, i.e., after assigning arbitrary values to the vari-

ables nsupp, the resulting formula is satisfiable iff there is a CSC z
X conflict, where

X
df= {x | nsuppx = 1}.
The target formula CSCz

nsupp is very similar to the formula CSCz built in
Section 5.6, with the following changes. For each signal x ∈ Z, instead of a vari-
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able codex we create two Boolean variables, code′x and code′′x, tracing the values
of Codex(C′) and Codex(C′′) respectively; CODE ′ and CODE ′′ are amended ac-
cordingly. Moreover, we create for each signal x ∈ Z a variable nsuppx indicating
whether x belongs to a non-support.

Now we need a ensure that code′x = code′′x whenever nsuppx = 1. This can
be expressed by the following constraint:

∧
x∈Z

(
nsuppx ⇒ (code′x ⇐⇒ code′′x)

)
,

with the CNF∧
x∈Z

(
(¬code′x ∨ code′′x ∨ ¬nsuppx) ∧ (code′x ∨ ¬code′′x ∨ ¬nsuppx)

)
.

This completes the construction of CSCz
nsupp. For example, its satisfying assign-

ment (except the variables cut′ and cut′′) for the CSC csc
{dsr ,ldtack} conflict de-

picted in Fig. 23 is as follows: conf′ = 1111000000000, conf′′ = 1111111111110,
code′ = 110101, code′′ = 110000, nsupp = 110000, en′e2

= en′e8
= en′e14

= 0,
en′′e2

= en′′e8
= en′′e14

= 0.
Now the problem of computing the set N SUPPz

max of maximal non-supports
of z can now be formulated as a problem of finding the maximal elements of the
projection Proj

CSCz
nsupp

nsupp . It can be solved using the incremental SAT approach, as
described in Section 5.5.

Computing Minimal Supports. Let N SUPPz
max be the set of maximal non-

supports computed in the first stage of the method. Now we need to compute the
set SUPPz

min of the minimal supports of z. This can be achieved by computing
the set of minimal assignments for the Boolean formula

∧
nsupp∗∈NSUPPz

max

( ∨
x∈Z:nsupp∗x=0

suppx

)
,

which is satisfied by an assignment A iff for all maximal non-supports nsupp∗

in N SUPPz
max, A � nsupp∗. This again can be done using the incremental

SAT approach, as described in Section 5.5. Note that this Boolean formula is
much smaller than that for the first stage of the method (it contains at most
|Z| variables), and thus the corresponding incremental SAT problem is much
simpler.

Deriving an Equation. Suppose thatX is a (not necessarily minimal) support
of z. We need to express Nxtz as a Boolean function of signals in X . This can
be done by generating a truth table for z as a Boolean function of signals in X ,
and then applying Boolean minimisation.
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The set of encodings appearing in the first column of the truth table coincides
with the projections of the formula

EQN z
X

df= CON F ′ ∧ CODE ′
X

onto the set of variables {codex | x ∈ X}, where CODE ′
X is CODE ′ restricted to

the set of signals X (i.e., all the conjunctions of the form
∧

x∈Z . . . are replaced
by

∧
x∈X . . .). It also can be computed using the incremental SAT approach, as

described in Section 5.5. Note that at each step of this computation, the SAT
solver returns information not only about the next element of the projection, but
also the values of all the other variables in the formula. That is, along with the
restriction of some reachable encoding onto the set X we have an information
about a configuration C via which it can be reached. Thus, the value of Nxtz

on this element of the projection can be computed simply as Nxtz(C). This
essentially completes the description of our method.

Optimisations. In [40] we describe optimisations which can significantly re-
duce the computation effort required by our method. In particular, we suggest
a heuristic helping to compute a part of a signal’s support without running the
SAT solver, based on the fact that any support for an output z must include all
the triggers of z, i.e., those signals whose firing can enable z. (The information
about triggers can be derived from the finite and complete prefix.) Moreover,
one can speed up the computation in the case of prefixes without structural
conflicts, as described in Section 5.6.

Experimental Results. We implemented our method using the zChaff SAT
solver [48] and the Espresso Boolean minimiser [5], and the benchmarks from
Section 5.6 satisfying the CSC property were attempted. All the experiments
were conducted on a PC with a PentiumTM IV/2.8GHz processor and 512M
RAM.

The experimental results are summarised in Table 5, where the meaning
of the columns is as follows: the total number of equations obtained by our
method (this is equal to the total number of minimal supports for all the output
signals and gives a rough idea of the explored design space); the time spent by
the Petrify tool; and the time spent by the proposed method. We use ‘mem’ if
there was a memory overflow and ‘time’ to indicate that the test had not stopped
after 15 hours. (Table 4 provides additional data about the benchmarks.)

Although the performed testing was limited in scope, one can draw some con-
clusions about the performance of the proposed algorithm. In all cases the pro-
posed method solved the problem relatively easily, even when it was intractable
for Petrify. In some cases, it was faster by several orders of magnitude. The
time spent on all these benchmarks was quite satisfactory – it took less than 50
seconds to solve the hardest one (CfAsymCscA); note however, that in that
case a total of 450 equations were obtained, i.e., more than 9 equations per
second.



394 Josep Carmona et al.

Table 5. Experimental results.

Real-Life STG s
Problem Eqns Time, [s]

(SAT) Pfy Sat

LazyRingCsc 14 1 <1
RingCsc 63 850 3

Dup4phCsc 48 20 <1
Dup4phMtrCsc 46 13 <1
DupMtrModCsc 165 125 1

CfSymCscA 60 163 16
CfSymCscB 34 10 <1
CfSymCscC 18 13 <1
CfSymCscD 16 3 <1
CfAsymCscA 450 1448 48
CfAsymCscB 93 2323 17

Marked Graphs
Problem Eqns Time, [s]

(SAT) Pfy Sat

PpWkCsc(2,3) 7 <1 <1
PpWkCsc(2,6) 13 4 <1
PpWkCsc(2,9) 19 44 <1
PpWkCsc(2,12) 25 2082 <1

PpWkCsc(3,3) 10 1 <1
PpWkCsc(3,6) 19 43 <1
PpWkCsc(3,9) 28 7380 <1
PpWkCsc(3,12) 37 time 1

STG s with Arbitration
Problem Eqns Time, [s]

(SAT) Pfy Sat

PpArbCsc(2,3) 18 4 <1
PpArbCsc(2,6) 24 42 <1
PpArbCsc(2,9) 30 315 <1
PpArbCsc(2,12) 36 3840 1

PpArbCsc(3,3) 29 45 <1
PpArbCsc(3,6) 38 1001 <1
PpArbCsc(3,9) 47 24941 1
PpArbCsc(3,12) 56 mem 2

It is important to note that these improvements in memory and running
time come without any reduction in quality of the solutions. In fact, our method
is complete, i.e., it can produce all the valid complex-gate implementations of
each signal. However, in our implementation we restricted the algorithm to only
minimal supports. Nevertheless, the explored design space was quite satisfactory:
as the ‘Eqns’ column in Table 5 shows, in many cases our method proposed
quite a few alternative implementations for signals. In fact, among the list of
solutions produced by our tool there was always a solution produced by Petrify
(with, perhaps, only minor differences due to the non-uniqueness of the result of
Boolean minimisation). Overall, the proposed approach turned out to be clearly
superior, especially for hard problem instances.

5.8 Conclusion and Future Work

We have proposed a complex-gate design flow for asynchronous circuits based on
STG unfolding prefixes comprising: (i) a SAT-based algorithm for detection of
encoding conflicts; (ii) a framework for visualisation and resolution of encoding
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conflicts; and (iii) an algorithm for derivation of Boolean equations for the gates
implementing the circuit based on the incremental SAT approach.

Note that in all the test cases (Table 4) the size of the complete prefix was rel-
atively small. This can be explained by the fact that STG s usually contain a lot
of concurrency but relatively few choices, and thus the prefixes are in many cases
not much bigger then the STG s themselves. For the scalable benchmarks, one
can observe that the complete prefixes exhibited polynomial (in fact, quadratic)
growth, whereas the number of reachable states grew exponentially. As a re-
sult, the unfolding-based method had a clear advantage over that based on state
graphs, both in terms of memory usage and running time. The experimental
results demonstrated that the devised algorithms could handle quite large speci-
fications in relatively short time, obtaining high-quality solutions. Moreover, the
proposed approach is applicable to all bounded Petri nets, without any structural
restrictions such as Marked Graph of Free-Choice constraint.

An important observation one can make is that the combination ‘unfolder &
solver’ turns out to be quite powerful. It has already been used in a number of
papers (see, e.g., [30, 38]). Most of ‘interesting’ problems for safe Petri nets are
PSPACE-complete [23], and unfolding such a net allows to reduce this complex-
ity class down to N P (or even P for some problems, e.g., checking consistency).
Though in the worst case the size of a finite and complete unfolding prefix can be
exponential in the size of the original Petri net, in practice it is often relatively
small. In particular, according to our experiments, this is almost always the case
for STG s. A problem formulated for a prefix can usually be translated into some
canonical problem, e.g., an integer programming one [38], a problem of finding a
stable model of a logic program [30], or SAT as here. Then an appropriate solver
can be used for efficiently solving it.

The presented framework for interactive refinement aimed at resolution of
encoding conflicts is based on the visualisation of conflict cores, which are sets
of transitions ‘causing’ state encoding conflicts. Cores are represented at the
level of the unfolding prefix, which is a convenient model for understanding the
behaviour of the system due to its simple branching structure and acyclicity.

The advantage of using cores is that only those parts of STG s which cause
encoding conflicts, rather than the complete list of CSC conflicts, are considered.
Since the number of cores is usually much smaller than the number of encod-
ing conflicts, this approach saves the designer from analysing large amounts of
information. Resolution of encoding conflicts requires the elimination of cores
by introducing additional signals into the STG . The refinement contains several
interactive steps aimed at helping the designer to obtain a customised solution.
The case studies demonstrate the positive features of the interactive refinement
process.

Heuristics for signal insertion based on the height map and exploiting the
intersections of cores use the most essential information about encoding conflicts,
and thus should be quite efficient. In fact, the conflict resolution procedure can
be automated either partially or completely. However, in order to obtain an
optimal solution, a semi-automated resolution process should be employed. For
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example, the tool might suggest the areas for insertion of new signal transitions,
which are to be used as guidelines. Yet, the designer is free to intervene at any
stage and choose an alternative location, in order to take into account the design
constraints.

We view these results as encouraging. In future work we intend to include also
the technology mapping step into the described design flow, as well as incorpo-
rate other methods for resolving encoding conflicts (concurrency reduction [17],
timing assumption [18], etc.) into the proposed framework for visualisation and
resolution of encoding conflicts.

6 Other Related Work and Future Directions

There has been a large amount of research in hardware design using Petri nets
in the last few years. This chapter has covered only the main advances made
recently in logic synthesis from STGs, and some of them, such as the topic of
STG decomposition, only briefly.

The reader is however encouraged to look broader and for that we briefly list
here a number of relevant and interesting developments.

– STG Decomposition. The idea of reducing complexity in logic synthe-
sis from STG by STG decomposition is not new. For example, in [14] the
contraction method was introduced in which the logic equations for output
signal were derived from the projections of the state graph on the set of rele-
vant signals forming the support of the derived function. This idea has been
recently developed further in [71], in order remove some restrictions on the
class of the STG (live and safe free choice). It also approaches the decompo-
sition problem in a powerful equivalence framework, which is a bisimulation
with angelic nondeterminism. Another attempt in this direction, perhaps in
a more practical context of the HDL-based design flow was recently reported
in [77].

– Implementability Checking in Polynomial Time. Another important
source of complexity reduction is a search for polynomial algorithms for
various stages in asynchronous logic synthesis for restricted STG classes, in
particular for free-choice nets. Such an algorithm has been developed in [24].

– Optimisation in Direct Mapping from STG . The advantages of the
direct mapping of Petri nets to circuits can be exploited in the STG level,
although at extra cost in circuit area. The direct mapping does not however
affect performance negatively. In fact in many cases, direct mapping offers
solutions where the latency between input and output signal transitions is
minimal. New techniques of translating STG s into circuits using David cells,
structured into ‘tracker’ and ‘bouncer’, also include optimisation of the logic
size [61].

– Synthesis from STG s in Restricted Bases. While logic synthesis of
speed-independent circuits in complex gates provides a satisfactory solution
for modern CMOS design technologies, in the future it may not be reli-
able enough to guarantee correct operation. The effects of delays in wires
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and parametric instabilities may require a much more conservative approach
to the implementation of control circuits. In this respect, advances in the
synthesis of circuits that are monotonic [62], i.e., having no “zero-delay”
inverters on the inputs, and free from isochronic forks [63] are important.

– Synthesis with Relative Timing Assumptions. Unlike the above, some-
times designing circuits under conservative assumptions can lead to signifi-
cant wastage of area, speed and power. More optimistic considerations can
be made about delays in the system, for example based on the knowledge of
actual delays in the data path or in the environment, or due to information
about relative speeds of system components. Use of relative timing has been
investigated under the notion of lazy transition systems [15].

– Synthesis from Delay-Insensitive Process Specifications. A potential
way to automatic compilation of HDLs based on communicating processes
to asynchronous circuits may be via an important semantical link between
delay-insensitive (DI) process algebras and Petri nets. Such a link has been
established and developed to the level of tool support in [33]. A particularly
interesting contribution has been the definition of the DI process decom-
position which helps avoiding CSC conflicts in the STG that is constructed
automatically from a process-algebraic specification [34].
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Abstract. In this paper, we describe and discuss three different courses
in which Coloured Petri Nets (CPN) is used: (1) an introductory course
on distributed systems and network protocols; (2) an advanced course
on CPN; (3) a course on industrial application of CPN. Courses (1) and
(2) are taught at the Department of Computer Science, University of
Aarhus and course (3) is given for professional software engineers. For
each course, we briefly present contents, format, and role of CPN. Then
we describe a number of lessons learned from teaching the three courses.
We have two aims in mind: In the first place, we want to share our
specific experiences with other teachers. Secondly, we want to contribute
to a more general discussion and exchange of ideas on Petri nets and
education.

1 Introduction

Coloured Petri Nets (CPN) [10] has had a place in the curriculum at the Depart-
ment of Computer Science, University of Aarhus (henceforth abbreviated with
the Danish acronym DAIMI [32]) for the last twenty years. The main reason
is that formal modelling languages like CPN are suitable for many educational
activities within computer science. Another contributing factor is the presence
of professor Kurt Jensen [28], whose PhD work around 1980 defined the first
version [9] of the CPN language and laid the foundation for the research of the
CPN Group [26] at DAIMI.

In the 1980’s, CPN was used at DAIMI as a general system description lan-
guage in the introductory first-year course taken by 150-200 students each year.
One of the main purposes of using CPN was to teach students that making
abstract system descriptions (or models) is an important activity in computer
science. A number of lectures on CPN were given, the students read some intro-
ductory material, and they were required to solve exercises on CPN. Examples
of exercises were to model the flow of customers through the local canteen and
to model a traffic light. These were non-trivial exercises, especially because at
that time, tool support for CPN (and other kinds of Petri nets) was scarce. Mod-
els were drawn on paper and simulations were carried out by playing the token
game with coins or drawing pins on sheets of paper. Another main purpose of
using CPN was to introduce the students to formal semantics of programming
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languages via CPN, e.g., the semantics of various language constructs of Pas-
cal [12].

Around 1990, DAIMI began to offer advanced courses on the CPN language
itself. There were two kinds of courses: (1) application-oriented courses, where
students constructed and analysed fairly large CPN models (made possible by
the emergence of the Design/CPN tool [27] in 1989); (2) theoretical courses,
where students immersed in the mathematical foundation of CPN and typically
pursued formal verification methods like state spaces or place invariants.

In the 1990’s, CPN made up about half of the curriculum in a third-year
course on distributed systems; the mid-1990’s incarnation of that course is de-
scribed in detail in the paper [6]. Two textbooks were used: Jensen’s CPN
book [10] and Tanenbaum’s book on distributed operating systems [24]. The
main emphasis of the CPN part of the course was on CPN modelling and use of
the Design/CPN tool as vehicles for design and analysis of distributed systems,
but students were also thoroughly introduced to the mathematical foundation
and to formal verification methods of CPN.

We, the authors of this paper, are members of the CPN Group at DAIMI.
We have seen CPN in education from different perspectives, starting with our
first encounter in the early and mid 1980’s, when we were students at DAIMI.
From around 1990, we have experienced CPN from the other side of the table:
as teachers in various computer science courses. This paper is based on our
experiences with using CPN in education. We have two aims: In the first place,
we want to share our specific experiences with other teachers, and hopefully
provide some kind of inspiration (and perhaps save computer science students
at other universities from teachers making the same errors as we did). Secondly,
we want to contribute to a more general discussion and exchange of ideas on
Petri nets and education.

In Sect. 2, we describe three courses we have taught and which have used
CPN. In Sect. 3, we report some lessons learned. We draw some conclusions in
Sect. 4.

2 Examples of Courses

Currently, CPN is used at DAIMI in two different courses:

– The distributed systems course: a third-year introductory course on dis-
tributed systems and network protocols [33].

– The advanced course on CPN: a graduate course in which CPN is studied
as a language in its own right.

We describe these two courses more thoroughly in this section. In addition,
we describe:

– The industrial application of CPN course: a course on application of CPN
held for a group of engineers from a software company.
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2.1 Distributed Systems Course

Since the late 1990’s, CPN has been used as an ingredient of a third-year in-
troductory course on distributed systems and network protocols. The course
runs over 15 weeks and is attended by close to 100 students. The course gives a
credit of 10 ECTS points and consists of two parts of equal size. The first part
introduces basic concepts and design techniques for distributed systems. The
second part introduces the basic ideas behind computer networks and network
protocols, including a detailed coverage of the Internet protocols. The textbooks
currently used are Coulouris et al’s on distributed systems [7] and Stallings’ on
networks and network protocols [23].

The format of the course is a combination of lectures for all students and tu-
torials where the students are divided into classes of approximately 20 students,
and where an older student is available as teaching assistant. In average, there
are three hours of lectures and three hours of tutorials each week. Students are
expected to use a total of up to 15 hours on the course each week.

Three two-hour lectures on CPN are given early in the course. The first in-
formally introduces the basic concepts of CPN. The second gives some practical
hints on the construction of CPN models and it introduces basics of the Stan-
dard ML language [17]; some elementary Standard ML programming skills are
necessary in order to properly apply the CPN tool, which is introduced in the
third lecture in an extensive tool demonstration. The CPN literature we have
used over the years is excerpts from Jensen’s book [10] (chapter 1 and parts of
chapter 3) and the practitioner’s guide to CPN [15]. The tools which have been
applied are Design/CPN and the newer CPN Tools [21, 30].

CPN is used to give the students a better understanding of distributed sys-
tems and network protocols than can be provided by the textbooks alone. Thus,
the role of CPN is to be a supplement to the main curriculum. We feel that
the exercises are a weak part of the two textbooks we use. Therefore, we need
additional exercises and CPN helps us to achieve this. CPN exercises are put
forward throughout the course. An example of a CPN exercise aiming at mak-
ing the students better understand fundamental mechanisms of distributed file
systems as described in the textbook (chapter 8 of Coulouris et al’s book [7])
is: (1) Make a CPN model of caching in Sun’s Network File System (NFS); (2)
based on your model, discuss the problem of cache consistency and advantages
and drawbacks of the NFS solution.

In addition to smaller exercises, we have asked the students to solve a larger
mandatory project on CPN over a time period of three weeks. The project varies
from year to year. In 2003, the students were asked to design a protocol ensuring
reliable communication over an unreliable communication channel with appro-
priate use of timers, sequence numbers, retransmissions, etc.

CPN is a suitable language for this course because it allows the students to ex-
plicitly describe their interpretation of the highly prose-based and always slightly
ambiguous and sometimes even vague presentation of algorithms, protocols etc.
from the textbooks. In particular, CPN facilitates the students’ comprehension of
traditionally hard-to-understand issues related to concurrency, resource sharing,
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synchronisation, and conflicts. CPN models give a solid foundation for discus-
sions between students and between students and teaching assistants.

2.2 Advanced Course on CPN

CPN is the subject of an advanced course, which runs over 12-15 weeks and
is typically attended by 10-15 students. The course gives a credit of 10 ECTS
points and comprises three parts. The second part is rather special; it consists
in participation in an international workshop on CPN being held in Aarhus (for
the 2002 incarnation of that workshop, see [31]). Thus, from the students’ per-
spective, the workshop is an integrated part of the course. The first part consists
of introductory lectures and student presentations of the scientific papers on
CPN, which are accepted for the workshop. Together, the first and the second
parts occupy about a month of calendar time, in which the students work inten-
sively with the course. The third part, which takes approximately two months,
consists in carrying out a project. The literature used in the course is excerpts
from volumes 1 and 2 of Jensen’s books [10, 11], the practitioner’s guide [15],
and workshop proceedings (which in 2002 were [8]).

The students choose between two categories of projects: One category is
application-oriented project, i.e., creation and analysis of CPN models of do-
mains of interest for the students. An example of such a project from 2002 is
a group of students who worked together with the large Danish company Dan-
foss to model and investigate the behaviour of control software for an industrial
embedded system. The other category comprises theoretical projects. Examples
of such projects are study of methods for verification by means of state space
analysis. The students read relevant literature and sometimes do small practi-
cal exercises using various tools (depending on availability and quality of such
tools). All students interested in this subject study basic state space analysis.
Subsequently, some choose to pursue more advanced methods, e.g., state space
analysis using equivalence classes or symmetries [11], state space analysis using
stubborn sets [25], or state space analysis by the sweepline method [5].

2.3 Industrial Application of CPN Course

In addition to teaching CPN to computer science students, we have given sev-
eral CPN courses for software engineers from the industry over the years. These
courses are tailored for particular companies and vary in contents and format.
Examples of CPN projects where a course has been an integrated part are analy-
sis of audio/video transmission protocols at Bang and Olufsen as described in [4],
design of alarm systems at Dalcotech [20], and analysis of car control systems
at Peugeot Citroen [18].

Typically, between two and six engineers participate in the course, which
runs over a total of six full days, divided into two parts each comprising three
days in one week and three days in another week. The course is very application-
oriented and no introduction to the formal, mathematical foundation of CPN is
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given. The attendees use most of their time doing practical hands-on exercises
in small groups.

In the first part, the basic CPN concepts and a CPN tool are introduced. The
first day covers the most fundamental CPN concepts (corresponding to chapter
1 of Jensen’s book [10]). The second day covers hierarchical CPN models (corre-
sponding to parts of chapter 3 of Jensen’s book [10]) and on the third day, CPN
models with time are introduced. The introductions are not traditional lecture-
like presentations, but integrated parts of extensive tool demonstrations. It is
always shown how to create, edit, and simulate CPN models (it is often shown
how to carry out simple state space analysis as well). The basic functionality of
the tool is explained and step-by-step instructions on how to carry out modelling
tasks are given. Throughout the first part, the engineers do practical hands-on
exercises with the tool. As example, on the first day, they make various modi-
fications of a small model of a simple communications protocol, e.g., modify a
stop-and-wait protocol to become a more general sliding-window protocol.

On the last day of the first part, much time is allocated for discussion and
determination of the more specific contents of the second part. It is crucial
that the engineers make this choice themselves. They identify problems in their
domain which they would like to address using CPN. CPN instructors often
start to outline model drafts. In the time between the first and the second part,
the engineers and the CPN instructors continue to think about how CPN can be
used for the particular problem that the engineers want to solve. This thinking is
crucial preparation for the second part in which the engineers spend most of the
time creating and analysing larger domain-specific models. The CPN instructors
are available to help the engineers, who, thus, are in a good position to work
efficiently. Quite often, one engineer and one CPN instructor sit together in front
of a computer and build models together.

3 Lessons Learned

In this section, we describe and discuss a number of lessons we have learned from
teaching the three courses described above. The sources include course evaluation
forms that students fill out after having attended a course and feedback from
teaching assistants.

3.1 On Literature

As mentioned in the previous section, in the distributed systems course and the
industrial application course, we have tried two possibilities for introductory lit-
erature on CPN: excerpts of Jensen’s book [10] and the practitioner’s guide [15].

In the distributed systems course, we have experienced that Jensen’s book
work better than the practitioner’s guide. Students seem to prefer the thorough,
step-wise introduction of the basic CPN concepts given in Jensen’s book via
easily understandable place-transition nets (PT nets) and small examples of CPN
models. In the industrial application course, we have better experiences with
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the practitioner’s guide, which is written to be directly appealing to industrial
software engineers. It is non-formal, emphasises the application aspects of CPN,
and advocates CPN as a way to address common software development problems.
As an example, many industrial software engineers have scalability as a main
concern; some may be reluctant to use of formal methods at all because they
have seen approaches that do not scale well (e.g., when they studied computer
science some years ago). One of the main purposes of the practitioner’s guide is
to demonstrate that CPN scales well to the size of problems that the software
industry is dealing with. Therefore, the practitioner’s guide introduces the basic
CPN concept via a quite large example model and without PT nets, which do
not scale well to modelling of industrial systems.

In the advanced course, the students who attend are particularly interested
in CPN and want a thorough and broad coverage of the language. Therefore,
we use both Jensen’s books [10, 11] for a well-founded introduction of the basic
concepts and analysis methods, and the practitioner’s guide to set the stage for
large-scale modelling. In addition, we use workshop proceedings from the current
year. Typically, the range of subjects covered by the papers in these proceedings
is quite broad. Reading the papers gives the students an introduction to research
in CPN and to the process of writing and publishing scientific papers. Workshop
papers often describe early results and work in progress. They may later mature
into conference and journal papers, after more research, writing, and rewriting.
Therefore, it is often possible for students to find errors and shortcomings and to
propose constructive improvements. It is useful for the students to see the authors
present their papers at the workshop and to compare this with the presentation
that they (the students) gave themselves earlier in the course. And the students
are in an excellent position to ask questions and to engage in discussions.

3.2 On Tools

The choice of which tool to use in a particular course may have a high impact
on the quality of the course as experienced by the students.

In the distributed systems course, in which relatively many unexperienced
users use the tool, it must be easy to learn, stable, and well documented. In the
advanced course, the demands to the tools are lower for a number of reasons. In
the first place, the students are older and more mature than the students, who
attend the distributed systems course. Secondly, the students have a particular
interest in CPN, and thirdly, they have a higher willingness to accept the inherent
limitations of research prototypes of tools. In the industrial application course,
the requirements to the tool are very high because industrial software engineers
will inevitably compare it with top-quality commercial tools that they are used
to from their everyday development work.

For the last couple of years, the choice between the new CPN Tools [21, 30]
and the older Design/CPN tool has been difficult in all three courses. The trade-
off between stability and being easy to learn has not been easy. Design/CPN has
a quite steep learning curve; there are a number of obstacles causing troubles for
unexperienced users like young students or software engineers previously unfa-
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miliar with CPN. As an example, Design/CPN does not have a fully incremental
syntax check which often makes it difficult to debug models. On the other hand,
for the last many years, Design/CPN has been a stable and well-tested tool with
many useful and nice features (and a bit old-fashioned user interface). CPN
Tools alleviates many of the problems that are present with Design/CPN. In
particular, it seems to be faster to become a proficient CPN Tools user than
a Design/CPN user. However, sometimes we have been too eager to use new
versions of CPN Tools. They have not always been tested well enough and have
occasionally caused frustration for students (who do not want to spend their
valuable time as alpha or beta testers of a tool, which is not sufficiently mature
for a large group of unexperienced users). In 2003, CPN Tools had reached a
maturity that ensured a successful use by approximately 100 students in the
distributed systems course.

In all the CPN related courses we have taught, we have experienced that it
is important that a long extensive tool demo is given. The students who do not
attend the demo often have had severe problems getting started with the tool.

3.3 On Teacher Skills
The required level of CPN skills for the teacher or teachers varies between the
three courses discussed in this paper. It must of course be solid, but is low-
est for the distributed systems course, in which only basic CPN is taught and
only relatively small exercises are put forward. The skill level required to run
the industrial application course is higher: It is necessary that the teachers are
experienced in building large CPN models and have the ability to understand
the domain of interests for the engineers. The advanced course demands the
highest skill level: It can probably only be taught properly by teachers who are
themselves CPN researchers.

The teaching assistants for the distributed systems course are appointed by
the Faculty of Science, University of Aarhus. We have taught instances of the
course where the teaching assistants were not sufficiently proficient with either
CPN itself or with the applied CPN tool. That problem immediately propa-
gated on to the students, who were not being appropriately helped. To solve
the problem, we now staff the weekly tutorials in the weeks in which CPN are
introduced with older students who we know are well experienced with CPN and
CPN tools (e.g., recruited among the CPN Group’s PhD students and student
programmers). In this way, help is readily available, and students do not have to
spend excessive amounts of time trying to figure out themselves the peculiarities
of CPN and CPN Tools (including the Standard ML programming language,
which is new to the majority of the students).

In the advanced course and the industrial application course, we have always
hand-picked teaching assistants to ensure that they were sufficiently experienced
CPN users.

3.4 On Student Motivation
In the advanced course and the industrial application course, the attendees them-
selves have usually chosen that they want to learn about CPN. Therefore, we
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always teach highly motivated people in these two courses. But in the much
broader distributed systems course, a number of students have seen CPN as a
small and irritating “appendix” that they did not have to take too seriously. This
has caused these students to more or less ignore CPN in the weeks where it was
introduced. As a consequence, it turned out to be very difficult and sometimes
even impossible for them to solve the CPN exercises put forward in conjunc-
tion with the main curriculum. To address this problem, we now require that all
students carry out a larger mandatory CPN project early in the course.

In the advanced course, we have experienced that it is very motivating for
students to participate in an international workshop giving them an opportunity
to meet other students and researchers from foreign universities and companies.
We have also experienced that it is motivating for some students to collaborate
with an industrial partner like Danfoss.

In the industrial application course, it is important that focus is on the
domain-specific problems that the engineers are facing. Therefore, as we saw,
an example model of something that the engineers is familiar with from their
everyday work is always a central ingredient in the course; we have not met
many industrial software engineers, who find the dining philosophers or similar
toy examples very appealing. Moreover, it is essential to present CPN as a useful
supplement to the software development techniques that the engineers are al-
ready using; software engineers do typically not take a CPN course because they
(or their managers) want to make dramatic changes to their company’s software
development practices. They want to improve what they are already good at. To-
day, this means that CPN often must be presented as a supplement to UML [19,
22], the de-facto modelling language of the software industry. CPN models may
supplement, e.g., UML use cases [13], class diagrams, sequence diagrams, and
collaboration diagrams. CPN may be seen as vehicle to make strong descrip-
tions of behaviour and as an alternative to UML state machines and activity
diagrams [14].

3.5 On Integration with Main Curriculum

The discussion in this section only applies to courses in which CPN is one com-
ponent amongst others; not for courses exclusively on CPN. In the scope of this
paper, this means the distributed systems course, where a number of students
have criticized us for not integrating CPN well enough with the main curriculum.
One of their arguments is that CPN is not sufficiently used at the lectures.

We partly agree with the students. As mentioned earlier, CPN mainly play a
role in the tutorials and there are a number of reasons for not using CPN more
extensively at the lectures. In the first place, the course is about distributed
systems and network protocols; CPN is merely a vehicle for gaining a better un-
derstanding, description, and discussion of concepts and problems of the main
curriculum. More extensive use of CPN could cause the course to become a
“CPN Modelling of Distributed Systems and Network Protocols” course. Sec-
ondly, the lectures would deviate more from the textbooks than we feel they
should. Thirdly, there is already plenty of material for the students to digest, so
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expanding the use of CPN would force us to reduce something else, which we do
not believe is a good decision for this particular course.

However, finding the right balance between CPN and the rest of the cur-
riculum is a non-trivial task that we are currently working on and have not yet
solved to our full satisfaction.

4 Conclusions

In this paper, we have described three CPN related courses which we have taught
and a number of lessons we have learned. Naturally, many of the lessons are of a
general kind, applicable not only to the particular courses described here, but to
many other kinds of courses as well: All teachers put an effort into finding good
literature, making sure to have appropriate skills, and worrying about student
motivations; many computer science teachers also have to deal with tools.

At this point in our writing, we would have liked to make a qualified com-
parative discussion of the experiences of colleagues who have taught Petri nets
related courses at other universities. Berthelot and Petrucci report on experi-
ences with education in relation to modelling, simulating, and verifying a train
system using CPN and Design/CPN [2]. However, we have not been able to find
many papers discussing Petri nets and education. Therefore, we encourage oth-
ers to publish their experiences; we would like improve our teaching and to gain
inspiration from an exchange of ideas with other teachers of Petri nets related
courses.

If we take a broader perspective, going from teaching Petri nets to teaching
computer science in general, there is a host of sources for more information, e.g.,
proceedings from the Innovation and Technology in Computer Science Educa-
tion (ITiCSE) conferences, see, e.g., [3], and the ACM Curricula Recommenda-
tions [29]. Putting this paper into a broader perspective using such sources is
future work.

We believe that over the years, DAIMI students and industrial software en-
gineers have developed many useful skills from courses in which CPN has been
used. This may well continue in the future. However, due to the general growth
in computer science knowledge, the competition for a place in computer sci-
ence curricula and for attention from the software industry is getting harder. At
DAIMI, in the 1990’s, CPN constituted about half of the curriculum of the dis-
tributed systems course. The amount of CPN has been decreasing; in 2003, CPN
made up about 10-15 percent of the curriculum. In general, “exotic” subjects
like CPN are at risk of having to leave the curriculum in order to accommo-
date something else, in particular in the undergraduate courses. Two examples
on relatively recent additions to the undergraduate curriculum at DAIMI are a
course on web technology and a course on security – that is tough competition.
When use of Petri nets is considered in broader courses, there seems to always be
good alternatives like process algebras (e.g., CCS [16]) and timed automata [1]
in theoretical courses on concurrency and verification, and UML in software en-
gineering oriented courses. In summary, we believe that it is worthwhile to think
about good arguments to justify Petri nets in computer science curricula.
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Abstract. We address the problem of deciding uniformly for graphs
or languages of a given class whether they are generated by unlabelled
Place-Transition nets whose sets of reachable markings may be infinite.

1 Introduction

Initialized Petri nets may be seen alternatively as graph generators or as language
generators. In the first case, the generated graph is the reachable state graph
of the net, considered up to isomorphisms of graphs (i.e. any set in bijection
with the set of reachable markings may be used equivalently to represent the
vertices of this graph). In the second case, the generated language is the set of
firing sequences of the net (we will not introduce in this paper any labelling of
transitions nor any special subset of accepting states or markings). The Petri
net synthesis problem consists in deciding uniformly for a fixed class of graphs
or languages whether a given member of this class has a Petri net generator
and in producing such a generator if it exists. For classes of graphs or languages
where the decision is not possible, a connected problem is to produce from a
given object a Petri net generator which approximates it at best.

The Petri net synthesis problem may be addressed for several classes of nets,
including notably the Elementary Nets and the Place-Transition Nets. Synthesis
was dealt with originally by Ehrenfeucht and Rozenberg in the context of finite
graphs and Elementary Nets [22] [23]. As the number of (simple) elementary
nets with a fixed set of transitions is finite, the decision problem has an obvious
solution in this context. The goal of the cited authors was to put forward a
graph theoretic and axiomatic solution. The seminal idea which they introduced
for this purpose is the concept of regions of a graph. The regions of a graph
are particular subsets of vertices. The regions of a graph edge-labelled on T
correspond bijectively with the simulations of this graph by elementary nets of
the atomic form ({p}, T, F,M0). A finite and reachable rooted graph (loopfree,
deterministic and simple) is simulated by an elementary net if all walks in the
graph are matched by similar firing sequences of the net, such that two walks
ending at the same vertex are always simulated by firing sequences ending at
the same marking. Each simulation induces thus a (unique) map from vertices
to markings. The regions of the graph are the inverse images of the marking
p = 1 under arbitrary simulations of the graph by atomic nets ({p}, T, F,M0).
Ehrenfeucht and Rozenberg gave a purely graph theoretic characterization of
these regions. Their logical structure was studied further in [11] and [12].
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Given any graph edge-labelled on T , one may synthesize an elementary net
from this graph by gluing together on their common transitions all the simulating
atomic nets ({pl}, T, Fl,Ml,0). A graph is generated by some elementary net if
and only if it is generated by the elementary net constructed in this way. It follows
that the family of graphs with elementary net generators may be characterized
by two axioms: i) for any two distinct vertices v and v′, some region contains
either v or v′ (but not both); ii) for any t ∈ T and for any vertex v, if no edge
labelled with t leaves the vertex v, then the vertex v is outside some region that
contains all sources of edges labelled with t and none of their targets.

Synthesis algorithms based on the above characterization were proposed in
[20], [11], and [17]. In the context of Elementary Nets, synthesis is an NP-
complete problem [3]. Efficient heuristic algorithms have been implemented in
the tool Petrify, with application to Asynchronous Circuit Design [16]. On the
side of theory, a categorical version of the correspondence between Elementary
Graphs (finite and reachable rooted graphs, loopfree, deterministic and simple,
satisfying axioms (i) and (ii) ) and Elementary Nets was given in [38]. The latter
work sheds additional light on synthesis: it indicates that morphisms of nets may
also be synthesized from morphisms of graphs (i.e. net synthesis is functorial).
For more on the synthesis of Elementary Nets, we refer the reader to [22] [23],
to the papers mentionned above, and to the survey [6]. A closely related topic is
the synthesis of labelled one-safe nets from Asynchronous Transition Systems,
which was explored in [44] and [8].

The concept of regions, which was introduced in the context of Elementary
Nets, was quickly adapted to Place-Transition Nets. In this different context,
the regions of a graph edge-labelled on T are in bijective correspondence with
the simulations of this graph by P/T-nets of the atomic form ({p}, T, F,M0). A
rooted, reachable and deterministic graph is simulated by a P/T-net if all walks
in the graph are matched by similar firing sequences of the net, such that two
walks ending at the same vertex are simulated by firing sequences ending at the
same marking. Each simulation of a graph by an atomic P/T-net ({p}, T, F,M0)
induces thus a (unique) map from vertices to non-negative integers. Regions are
no longer subsets of vertices. They are multisets of vertices: a region assigns to
each vertex v the weight defined by this induced map. Multiset regions may still
be given a graph-theoretic characterization, but their logical structure is unclear.
This is compensated for by nice algebraic properties: the (multiset) sum of two
regions is a region, and the (multiset) difference of two regions, when it is defined,
is also a region. We shall intensively exploit this linear algebraic structure in the
body of the paper.

Regions as multisets were introduced independently by several groups of re-
searchers. Slightly different definitions of regions were given, depending on the
amount of concurrency embedded in the classes of labelled graphs considered.
Concurrency by steps was considered in [33] and [37] (the first two papers in
which multiset regions were defined), and regions served there to characterize
respectively the subclass of Local Trace Languages with P/T-net generators
and the subclass of Step Transition Systems with P/T-net generators. Another
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form of concurrency (pairwise independence, which is weaker than step indepen-
dence) was considered in [21], where regions served to characterize the subclass
of Automata with Concurrency Relations that may be generated from P/T-nets.
Multiset regions of ordinary graphs, i.e. graphs without concurrency, were de-
fined in [9], where they served to characterize the subclass of finite graphs with
P/T-net generators. All characterizations are expressed by two axioms akin to
Ehrenfeucht and Rozenberg’s axioms (i) and (ii) . The adaptation of the axiom
(i) is immediate: a multiset region separates two vertices v and v′ if they have
different weights in this region. The adaptation of the axiom (ii) is not so im-
mediate and it depends on the exact definition of regions that is used. Roughly,
the modified axiom requires from any vertex v that, if no edge leaving v bears
the label t, then some region assigns to the vertex v a weight strictly lower than
the weights of all sources of edges labelled with t.

While the accent was set on categorical correspondences between graphs and
nets in [37] and [21], it was set in [9] on the algebraic and combinatorial properties
of regions. It was shown in the latter reference that the minimal regions of a
finite graph provide all the information needed to determine whether this graph
has a P/T-net generator. The decision problem was however left unsolved. It
was actually shown in [2] that the synthesis problem is decidable for pure and
bounded P/T-nets and for finite graphs or for regular languages. The main
principle for the decision is to compute a finite set of regions that generate
all other regions (the regions of a finite graph form a module, and the bounded
regions of a regular language do the same). The synthesis algorithm is polynomial
in the size of the graph, and it is exponential in the size of the regular expression.
This algorithm was extended in [5] to bounded P/T-nets (which may be impure)
and to finite Step Transition Systems. The synthesis algorithm for bounded P/T-
nets has been implemented in the tool Synet, with tentative applications to
the distributed realization of protocols [4]. Another application of the bounded
P/T-net synthesis is the computation of Petri net supervisory controllers [27].
All state-avoidance problems in one-safe Petri nets may in fact be solved in this
way. For more on the synthesis of bounded P/T-nets and applications, we refer
the reader to the above mentioned papers or to the survey [6].

The remaining sections of the paper are devoted to the algorithmic syn-
thesis of unbounded P/T-nets, a topic which was not covered in [6] because it
was studied afterwards. Section 2 deals with the synthesis of unbounded P/T-
nets from languages. Section 3 deals with the synthesis of unbounded P/T-nets
from infinite graphs. The last section summarizes the results and indicates some
directions for future work. The paper is self-contained. No familiarity with the
synthesis of Elementary Nets nor with the synthesis of bounded Place-Transition
Nets is assumed. The presentation of net synthesis given here is simpler than the
general presentation given in [6], but it ignores most of the results reported there.
The presentation below is based on the work of the author and his colleagues
from Irisa (see references in the bibliography).
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2 Net Synthesis from Languages

Let us recall the definition of Place-Transition nets (or P/T-nets for short).

Definition 1 (P/T-nets). A P/T-net is a triple N = (P, T, F ) where P and T
are finite disjoint sets of places and transitions, respectively, and F is a function,
F : (P × T ) ∪ (T × P ) → IN. A marking of N is a map M : P → IN. The state
graph of N is a labelled graph, with markings as vertices, where there is an edge
labelled with transition t from M to M ′ (in notation: M [t〉M ′) if and only if,
for every place p ∈ P , M(p) ≥ F (p, t) and M ′(p) = M(p) − F (p, t) + F (t, p).
The reachable state graph of an initialized P/T-net N = (P, T, F,M0), with
initial marking M0, is the restriction of its state graph induced by the subset of
vertices that may be reached inductively from M0. The net N is unbounded if
its reachable state graph is infinite. The language of an initialized P/T-net is
the set of sequences w ∈ T ∗ that label walks from the root M0 of this graph.
Thus, the language of N is the set {w ∈ T ∗ |M0[w〉} where M0[w〉 means that
the sequence w may be fired inductively from M0.

Example 1. Let P = {1, 2} with M0(1) = 0 and M0(2) = 1. Let T = {a, b} with
F (a, 1) = 1 = F (1, b) and F (2, b) = 1. Let F evaluate to 0 for all the remaining
arguments. The reachable state graph of the specified net is the infinite graph
shown below. The language of this net is the regular language a∗ + aa∗ba∗. ��

(0, 1) (2, 1)

(0, 0) (1, 0)

(3, 1)

(2, 0)

(1, 1)

b

a a a

a a

b b

The P/T-net synthesis problem for a class of languages is the problem whether
one can decide uniformly from any language L in this class whether it coincides
with the language of some (initialized) P/T-net, and construct such a net when
it exists. Uniformity means that the same constructive procedure should apply
to all languages in the considered class. For instance, the P/T-net synthesis
problem has a (positive) solution for L = a∗ + aa∗ba∗ in the singleton class {L},
but this does not mean that the P/T-net synthesis problem has a solution for
L = a∗ + aa∗ba∗ in the class of regular languages over two letters a and b.

We propose in this section a uniform procedure that computes, for any class
of semi-linear languages closed under right quotients with letters, the least over-
approximation of a language in the class by the language of a P/T-net. We
propose moreover a uniform procedure that solves the P/T-net synthesis prob-
lem for classes of semi-linear languages closed under right quotients with letters
and under the max operation (w.r.t. the order prefix). We show that the synthe-
sis problem is decidable for the regular or deterministic context-free languages,
whereas it is undecidable for the context-free languages and for the languages
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of High-level Message Sequence Charts (or HMSCs for short). We argue finally
about the practical relevance of approximating languages by P/T-net languages.

Before we describe the common principles under the two procedures, let us
add two remarks about example 1. First, infinitely many different P/T-nets have
the language a∗ + aa∗ba∗. Therefore, one cannot require from an effective syn-
thesis procedure to produce all of them. Second, any P/T-net with the language
a∗ + aa∗ba∗ has an infinite number of reachable markings. To see this, assume
the opposite. Then the transition a should act as the identity on the markings of
some initialized P/T-net (P, {a, b}, F,M0) generating this language. As M0[ab〉,
necessarily M0[b〉, a contradiction. This remark shows that the synthesis of un-
bounded P/T-nets is a relevant problem for all reasonable classes of languages.

Henceforth in this section T = {t1, . . . , tn} is a fixed alphabet of transitions,
and P/T-nets have always the set of transitions T . The languages L under con-
sideration are always subsets of T ∗. As we are mainly interested in languages of
P/T-nets and these languages are non-empty and prefix-closed, it will always be
assumed that L is non-empty and prefix-closed, i.e. (∀w ∈ L) w = u·v =⇒ u ∈ L
where · denotes the concatenation product in T ∗. In particular, the empty word
ε is always in L. In the sequel, initialized P/T-nets are called P/T-nets for short.
The language of the P/T-net N is denoted L(N ).

2.1 The Regions of a Language

The two essential facts on which is based the synthesis of P/T-nets from lan-
guages are stated in the (almost obvious) propositions 1 and 2 below.

Definition 2 (Atomic subnets). A P/T-net N = (P, T, F,M0) is a subnet
of N ′ = (P ′, T, F ′,M ′

0) if P ⊆ P ′ and F and M0 are the induced restrictions of
F ′ and M ′

0 (respectively on (P ×T ) ∪ (T ×P ) and on P ). The net (P, T, F,M0)
is atomic if |P | = 1. An atomic subnet of N ′ is a subnet of N ′ which is atomic.

Proposition 1. The language of a P/T-net is the intersection of the languages
of its atomic subnets.

Definition 3 (P/T-regions). Given a word w ∈ T ∗, an atomic P/T-net N =
({p}, T, F,M0) is a P/T-region of w if w ∈ L(N ). Given a language L, an atomic
P/T-net N is a P/T-region of L if it is a P/T-region of every word w ∈ L.

Proposition 2. L is the language of a P/T-net if and only if the set of P/T-
regions of L contains a finite subset {N1, . . . ,Nm} such that, for every t ∈ T
and for every w ∈ L, if w · t /∈ L, then some Nl is not a P/T-region of w · t.
When this condition is satisfied, L = L(N ) where N is the P/T-net with the set
of atomic subnets {N1, . . . ,Nm}.

Example 2. The P/T-net described in the example 1 has two atomic subnets
N1 and N2, where 1 is the unique place of N1 and 2 is the unique place of N2.
Both nets are regions of the language a∗ + aa∗ba∗. The word ε · b is not in this
language, but it does not belong either to L(N1), thus N1 is not a region of this
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word. Similarly, N2 is not a region of any word akbal · b for k > 0 and l ≥ 0.
Finally observe that the language a∗ + aa∗ba∗ has an infinite set of regions. For
instance, all the atomic P/T-nets ({p}, {a, b}, F,M0) such that F (p, a) = 0 and
F (p, b) = 0 are regions of this language. ��

In view of proposition 2, the feasability of a procedure for the decision of the
P/T-net synthesis problem (with respect to a fixed class of languages) depends
on the feasability of two subproblems. First, one should compute an effective
representation of the set of regions of a language, notwithstanding the fact that
this set is always infinite. Second, one should decide whether some finite subset
of regions suffices to reject all minimal words (with respect to the order prefix) in
the complement of the given language, even though these unwanted words may
form an infinite set (e.g., the set b+ aa∗bb in example 1).

The above problems cannot be solved without specific assumptions on the
considered classes of languages. Fortunately, the first problem has an easy solu-
tion for semi-linear languages.

2.2 A Procedure for Computing Generating Regions

Let us recall two definitions.

Definition 4 (Commutative image). The commutative image of a word w ∈
T ∗ is the n-vector [w] whose respective entries [w]i count for each i ∈ [1, n] the
occurrences of the letter ti in w. The commutative image of a language L ⊆ T ∗

is the set [L] = {[w] |w ∈ L}.

Definition 5 (Semi-linear subset). Let M = (M, · , 1) be a monoid. A subset
of M is linear if it may be expressed as m ·F∗ where m ∈ M, F is a finite subset
of M, and F∗ is the least submonoid of M containing F . A finite union of linear
subsets of M is called a semi-linear subset.

A language L is said to be semi-linear if its commutative image [L] is a
semi-linear subset of INn, the commutative monoid where the product · is the
addition of n-vectors and where the neutral element 1 is the all-zeroes n-vector.

Example 3. For L = a∗+aa∗ba∗, where we let a = t1 and b = t2 for convenience,
[L] =< 1, 0 >∗ + < 1, 0 > · < 1, 0 >∗ · < 0, 1 > · < 1, 0 >∗. By commutativity
of the product (i.e. addition) in INn, [L] =< 1, 0 >∗ + < 1, 1 > · < 1, 0 >∗,
hence this set is semi-linear (in regular expressions, + denotes set union). ��

The considerations in the above example may be generalized to all regular
expressions. It should therefore be clear that for any language L, [L] is semi-linear
if and only if [L] = [R] for some regular language R. A celebrated theorem by
Parikh shows that this condition holds for the context-free languages (see section
6.9 in [31] for the construction of R from a context-free grammar generating L).

In order to achieve our goals, we shall actually require a little more than
the semi-linearity of [L]. Namely, we require that all right derivatives L/tj are
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semi-linear, where tj ∈ T and L/tj = {v ∈ T ∗ | v · tj ∈ L}. Under this stronger
requirement (which is met by context-free languages), one can effectively com-
pute a finite representation of the infinite set of P/T-regions of L. Moreover, this
representation yields for free a P/T-net N whose language L(N ) is the least net
language larger than L. The construction is explained in the rest of the section.

Recall that a P/T-region of L is an atomic P/T-net N = ({p}, T, F,M0) such
that L ⊆ L(N ). An atomic P/T-net N as above may be represented equivalently
as a (2n+ 1)-vector < M0(p), F (p, t1), . . . , F (p, tn), F (t1, p), . . . , F (tn, p) >. We
claim that a (2n+1)-vector x =< x0, x1, . . . , xn, xn+1, . . . , x2n > defines a region
of L if and only if all its entries xk are non-negative integers, and for each (non
empty) word v · tj in L

x0 +
n∑

i=1

[v]i × (x(n+i) − xi) ≥ xj (1)

Actually, if the vector x is seen as an atomic P/T-net, the above inequality may
be read as M [tj〉 where M is the marking of the net reached after firing the
sequence of transitions v, assuming that v may be fired. Since L is prefix-closed,
this will necessarily be the case if similar inequalities hold for all the non-empty
prefixes u · tk of v. Let us now use the assumption that all derivatives L/tj are
semi-linear. Thus, for each tj ∈ T , the set [L/tj ] is a finite union of linear sets
e · F∗, where e ∈ INn and F is a finite subset of INn. For each tj ∈ T and for
each linear set e · F∗ in [L/tj ], the collection of instances of 1 generated from
words v ∈ L/tj such that [v] ∈ e · F∗ may be replaced equivalently with the
finite linear system:

n∑
i=1

e[i] × (x(n+i) − xi) ≥ xj − x0 (2)

n∑
i=1

f [i] × (x(n+i) − xi) ≥ 0 (3)

where f ranges over the finite set F . Let us justify this claim. For any vector
x which is a solution of the finite linear system, the inequality 1 is obviously
satisfied for all v ∈ L/tj such that [v] ∈ e · F∗. Conversely, the conjunction
of all such inequalities entails 2 and 3. To see that it entails 3, suppose for a
contradiction that 3 does not hold for some f ∈ F . Then, for h large enough,∑n

i=1 ( (e+hf) [i] )× (x(n+i) −xi) < xj −x0. As [e+hf ] = [v] for some v ∈ L/tj
and the inequality 1 cannot hold for the considered v, a contradiction has been
reached. Therefore, the set of P/T-regions of L, seen as vectors x ∈ IN2n+1,
is the set of solutions of a finite system of linear inequalities (T is finite, and
each set [L/tj ] is a finite union of linear subsets). Moreover, all inequalities in
this system are homogeneous, i.e. they may be written equivalently in the form∑2n

k=0 αk × xk ≥ 0 (where the αk are constants in ZZ).

Example 4. For L = a∗+aa∗ba∗, one obtains L/a = L and L/b = aa∗. Therefore
if we let a = t1 and b = t2, [L/t1] =< 1, 0 >∗ + < 1, 1 > · < 1, 0 >∗ and
[L/t2] =< 1, 0 > · < 1, 0 >∗. The P/T-regions L are the solutions of the system
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0 ≥ x1 − x0

(x3 − x1) + (x4 − x2) ≥ x1 − x0

(x3 − x1) ≥ x2 − x0

(x3 − x1) ≥ 0

The atomic net N1 = ({1}, T, F,M0) given by x0 =M0(1) = 0, x1 = F (1, a) = 0,
x2 = F (1, b) = 1, x3 = F (a, 1) = 1, and x4 = F (b, 1) = 0 is a P/T-region of L,
and similarly is the atomic net N2 = ({2}, T, F,M0) given by x0 = M0(2) = 1,
x1 = F (2, a) = 0, x2 = F (2, b) = 1, x3 = F (a, 2) = 0, and x4 = F (b, 2) = 0. ��

Let S be the finite system of linear inequalities in the variables x0, . . . , x2n

which defines the regions of L, augmented with inequalities xk ≥ 0 for all k ∈
[0, 2n]. If one lets the variables xk range over the set Q of rational numbers, the
solutions of S in Q2n+1 form a cone with a finite set of generators x1 . . .xm

(see [41]). This means that a rational vector x is a solution of S if and only if
x =

∑m
l=1 qlxl for some non-negative rational coefficients ql. Moreover, one can

effectively compute a minimal set of generators x1 . . .xm, e.g. using Chernikova’s
algorithm [15]. A finite representation of the set of P/T-regions of L is then
obtained.

——————————————————————————————————
A vector x is a P/T-region of L if and only if x ∈ IN2n+1 and
x =

∑m
l=1 ql xl for some non-negative rational coefficients ql.

——————————————————————————————————

Henceforth in the section, we assume that x1 . . .xm are vectors of integers (this
may be assumed w.l.o.g. since xl may be replaced equivalently with ql xl for any
non-negative ql), and we call them the generating regions of L.

Example 5. For L = a∗ + aa∗ba∗, where a = t1 and b = t2, the generating
regions are the columns of the following table (we let x =< m0,

• a,• b, a•, b• >
for convenience):

m0 1 0 0 1 1 0 1
•a 0 0 0 1 1 0 0
•b 0 0 0 1 0 1 1
a• 0 1 0 1 1 1 0
b• 0 0 1 1 0 0 0

The last two regions correspond to the atomic nets N1 and N2 already seen. ��

Let N be the P/T-net formed by gluing together on transitions tj ∈ T the
atomic P/T-nets N1 . . .Nm defined by the generating regions x1 . . .xm of L.

——————————————————————————————————
L(N ) is the least net language larger than L.

——————————————————————————————————

Let us establish this claim. As each atomic net Nl (l ∈ [1,m]) is a region of L, it
should be clear from definition 3 and proposition 1 that L(N ) is larger than L.
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Now let N ′ be any P/T-net such that L ⊆ L(N ′). Suppose for a contradiction
that some word w belongs to L(N ) \ L(N ′). We may assume w.l.o.g. that w is
minimal w.r.t. the order prefix among the words in that case. Then necessarily,
w = v·tj for some tj ∈ T and v ∈ L(N )∩L(N ′). As v ∈ L(N ′) and v·tj /∈ L(N ′),
the inequality 1 does certainly not hold for some 2n+ 1-vector x′ representing
an atomic subnet of N ′. Since L ⊆ L(N ′), this atomic subnet is a region of L,
thus x′ =

∑m
l=1 ql xl for some non-negative rational coefficients ql. Therefore,

the inequality 1 does not hold for some vector x = xl ∈ {x1, . . . ,xm}. It follows
that v · tj /∈ L(Nl), and hence v · tj /∈ L(N ), a contradiction.

The above construction may be applied to any class of languages with semi-
linear right derivatives. This is the case of every semi-linear full TRIO (by defini-
tion, a full TRIO is closed under homomorphisms, inverse homomorphisms, and
intersection with regular languages). Examples are the regular languages, the
context-free languages, the simple matrix languages of fixed degree [35], the lan-
guages of flip-pushdown automata with a fixed number of reversals [32], and the
full slip AFLs described in [30]. This is also the case of two other classes of lan-
guages generated by parallel systems, namely the languages of parallel communi-
cating grammar systems with terminal transmission and with fully synchronized
mode [25], and the languages of HMSCs [14].

2.3 A Procedure for the Decision of the Net Synthesis Problem

Deciding whether a given language L has a P/T-net generator amounts to de-
ciding whether L = L(N ) where N is the net constructed from the generating
regions of L. We propose now a decision procedure that works under additional
requirements of semi-linearity on the considered class of languages. Namely, we
require that the complements in L of the right derivatives are also semi-linear.
This requirement is significant: the assumption that all sets [L/tj] are semi-linear
does not entail that all sets [L \ (L/tj)] are semi-linear (although [L] must be
semi-linear in this case).

For convenience of notation, let L ( tj = L \ (L/tj), thus L ( tj is the set of
the words v ∈ L such that v · tj /∈ L. Clearly, L = L(N ) if and only if v · tj is
not in L(N ) whenever tj ∈ T and v ∈ (L ( tj). Seeing that N was built up from
the atomic nets defined by the generating regions of L, v · tj is not in L(N ) if
and only if

x0 +
n∑

i=1

[v]i × (x(n+i) − xi) < xj (4)

for some generating region x ∈ {x1, . . . ,xm}. Let y = [v] thus y ∈ [L ( tj ], and
let y =< y1, . . . , yn >, then relation 4 may be rewritten to the linear inequality

x0 +
n∑

i=1

yi × (x(n+i) − xi) < xj (5)

When the xk are fixed constants in IN (for k ∈ [0, 2n]) and the yi are variables
in IN (for i ∈ [1, n]), the formula 5 amounts to a Presburger formula (it may be
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expressed equivalently as a comparison between two sums), hence it defines an
effective semi-linear subset of INn [29]. For each l ∈ [1,m] and for each j ∈ [1, n],
let Yl,j be the semi-linear subset of INn which is defined with formula 5 for the
constants xk = xl[k] (i.e. for x = xl). Now, L = L(N ) if and only if, for all tj ,

[L ( tj ] ⊆ ∪m
l=1 Yl,j (6)

As we assumed that all sets [L(tj ] are semi-linear, and the semi-linear subsets of
INn form an effective boolean algebra [28], one can compute [L(tj ]\∪m

l=1 Yl,j and
decide whether this set is empty. Therefore, one can decide whether L = L(N ).
We have thus obtained a decision procedure for the P/T-net synthesis problem.

——————————————————————————————————
Assuming that all sets [L/tj] and [L \ (L/tj)] are semi-linear,

one can decide whether the language L has a P/T-net generator.
——————————————————————————————————

When the decision is successful, it may occur that L = L(N ′) for some proper
subnet N ′ of the net N constructed from all the generating regions of L. The
procedure may be adapted in order to produce directly some minimal subnet
N ′ of N such that L = L(N ′). The subsets of {x1, . . . ,xm} should be explored
in increasing order until discovering some subset {xl1 , . . . ,xlp} large enough to
make relation 6 valid for all j ∈ [1, n] when l ranges over {l1, . . . , lp}. The solution
net N ′ is then constructed from the atomic nets defined by xl1 . . .xlp .

Example 6. For L = a∗+aa∗ba∗, one obtains (L(a) = ∅ and (L(b) = ε+aa∗ba∗.
Let a = t1 and b = t2, then [L ( t2] =< 0, 0 > + < 1, 1 >< 1, 0 >∗. For the two
regions x1 =< 0, 0, 1, 1, 0 > and x2 =< 1, 0, 1, 0, 0 > (see example 5), the sets
Y1,2 and Y2,2 are defined by the respective formulas y1 − y2 < 1 and 1 − y2 < 1.
Clearly, < 0, 0 >∈ Y1,2 and for any non-negative integer h, < 1 + h, 1 >∈ Y2,2.
Therefore, L is the language of the net formed of the two atomic P/T-nets N1

and N2 from example 4. Seeing that < 0, 0 >/∈ Y2,2 and < 2, 1 >/∈ Y1,2, this net
is a minimal net generator for L. ��

It remains to show classes of languages in which our working assumptions
hold, i.e. where [L/tj ] and [L(tj ] are semi-linear for every prefix-closed language
L and for every tj ∈ T . For any language L of T ∗, define

max(L) = {u ∈ L | (∀v ∈ T ∗)u · v ∈ L =⇒ v = ε}

Then, for any prefix-closed language L of T ∗, v ∈ L and v · tj /∈ L if and only if
v · tj ∈ max(L · tj). Therefore, L ( tj = (max(L · tj))/tj . It follows that the sets
[L ( tj ] are semi-linear in every class of semi-linear languages with the following
properties:
i) the class is closed under right products and right quotients with letters,
ii) the class is closed under max.
Property (i) holds in any full TRIO, but property (ii) does not! As the following
example shows, it does not hold e.g. for the context-free languages.
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Example 7. ([18]) Define context-free languages on the alphabet {a, b, c, d, e} as
follows. First, let A = {anb cm |n �= m}, B = b c∗, C = {cnb cm |n �= m}. Next,
let D = a∗B∗BB b d, E = AB∗B b d e+ a∗B∗b CB∗b d e, and L = D + E. Then
max(L) = E + F , where F = {an(b cn)mb d |n ≥ 0 ∧ m ≥ 2}. Assume that
[max(L)] is semi-linear. Since [E] is semi-linear and [E] and [F ] are disjoint,
[F ] = [max(L)] \ [E] and this set is semi-linear, hence it may be defined by
a Presburger formula. Now [F ] is the set of the integer vectors of the form
< n,m + 1, n × m, 1, 0 >. As multiplication cannot be defined in Presburger
arithmetic, a contradiction has been reached, hence [max(L)] is not semi-linear.

We know actually only two classes of semi-linear languages with properties
(i) and (ii): the regular languages (a full TRIO) and the deterministic context-
free languages (which do not form a full TRIO). The deterministic context-free
languages are indeed closed under right products and quotients with regular
languages (see [31]), and they are closed under the max operation (see [34]).

——————————————————————————————————
The P/T-net synthesis problem is decidable for
regular or deterministic context-free languages.

——————————————————————————————————

2.4 Two Undecidable Cases

We show that it is undecidable i) whether an arbitrary context-free language
has a P/T-net generator, and ii) whether the language of an arbitrary HMSC
has a P/T-net generator. The proofs for the two facts are similar.

We consider first context-free languages. Given any context-free language L of
T ∗, let N be the P/T-net defined by the generating regions of L (see section 2.2).
Then L �= T ∗ if and only if L �= L(N ) or L(N ) �= T ∗. The complement of
a (deterministic) P/T-net language may be generated by a labelled P/T-net
with a finite subset of final partial markings [39]. The reachability of partial
markings is decidable [36]. Therefore one can decide whether L(N ) = T ∗. If one
could decide whether L = L(N ), one could decide whether L = T ∗. Now it is
undecidable for an arbitrary context-free language L of T ∗ whether L = T ∗ (see
e.g. [34]). Therefore, the P/T-net synthesis problem is undecidable for context-
free languages.

We consider now HMSC languages. In this case, the alphabet T has a specific
structure. On the one hand, it is equipped with a map 
 : T → [1,K] that
assigns a specific location to each transition. On the other hand, the transitions
in T are divided into message emissions (emit towards location k), message
receptions (receive from location k), and internal transitions. An HMSC H1

with K locations and with internal transitions only may be simulated by an
HMSC H2 with 2K locations and with no internal transitions, such that L(H1)
is a P/T-net language if and only if L(H2) is a P/T-net language: each internal
transition at location k may be simulated by an emission from k to k +K plus
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a matching reception at k +K. We shall assume below, for simplicity, that all
transitions in T are internal.

Let T = T1 ∪ T2 where 
(t) = k for t ∈ Tk, and let Ek = Tk \ {$k} where $k

is a distinguished symbol in Tk. Whenever a relation R ⊆ (E∗
1 ×E∗

2 ) is accepted
by a finite automaton over the product monoid E∗

1 ×E∗
2 , the relation R · ($1, $2)

is accepted by a finite and trim automaton over T ∗
1 × T ∗

2 . This trim automaton
may be seen as an HMSC over T . For any rational relation R ⊆ (E∗

1 ×E∗
2 ), there

exists therefore an HMSC H over T with the language

L(H) = pref{w | ∃(u, v) ∈ R : w ∈ (u · $1) �� (v · $2)}

where pref denotes prefix closure and �� is the shuffle operation. Let �� be
defined on languages of T ∗ by an additive extension of the latter. There obviously
exists a P/T-net N ′ such that L(N ′) = pref ((T ∗

1 · $1) �� (T ∗
2 · $2)). It follows

from the definition of L(H) that L(H) = L(N ′) if and only if R = (E∗
1 × E∗

2 ).
Now let N be the P/T-net constructed from the generating regions of L(H).

Then R �= (E∗
1 × E∗

2 ) if and only if L(H) � L(N ) or L(N ) � L(N ′). From
the results in [39] and [36] one can decide whether L(N ) = L(N ′). If one could
decide whether L(H) = L(N ), one could decide whether R = (E∗

1 × E∗
2 ). Now,

provided that each subalphabet Ek contains at least two letters, it is undecidable
for an arbitrary rational relation R whether R = (E∗

1 × E∗
2 ), see [26] or [10].

Therefore, the P/T-net synthesis problem is undecidable for HMSC languages.

——————————————————————————————————
The P/T-net synthesis problem is undecidable for
context-free languages and for HMSC languages.

——————————————————————————————————

2.5 Comments and Complements

Many classes of semi-linear languages extend the context-free languages, or are
based on rational relations. The undecidability results presented in section 2.4
apply in both cases. In order to extend the decidability results established in
section 2.3, it appears suitable to focus on sub-classes of languages generated
with deterministic automata, as we have done for the context-free languages.
This way is still open for HMSC languages, since deterministic generators have
not yet been thoroughly investigated in this context.

As concerns applications, one may argue that least over-approximations of
languages by P/T-nets are often more suitable than exact realizations. Two cases
in support of this thesis are discussed below.

Let us come again to HMSCs. As these are intended to serve at an early
stage of design of distributed systems, collections of scenarios defined by HM-
SCs are usually seen as incomplete specifications of a system. P/T-net synthesis
may be used to build a prototype of the specified system, i.e. a distributed
scale model that may be run and model-checked before designing software. Now
model-checking is undecidable for general HMSCs (see [1] or [14]). Therefore,
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one should accept that a prototype system may have a language larger than the
language of the specifying HMSC. Approximating HMSC languages by P/T-net
languages as indicated in section 2.2 is justified, because the model-checking
of P/T-nets w.r.t. linear-time μ-calculus is decidable [24]. Moreover, relations
L(N ) ⊆ R and R ⊆ L(N ) are decidable for arbitrary P/T-nets N and regular
languages R (because R and �R have labelled P/T-net generators with final
markings). A matter not yet discussed is distribution. Recall that P/T-regions
may be seen as vectors x =< x0, . . . , x2n > in IN2n+1, where T = {t1, . . . , tn}.
By simply imposing on vectors x, for some I ∈ P([1, n]), the additional con-
straint (∃I ∈ I)(∀i ∈ I) (xi = 0), distributable P/T-nets may be produced by
the synthesis procedure. In a distributable P/T-net (see [4]), the transitions
have locations, and an input place is never shared by transitions with differ-
ent locations. Because competitions for tokens are local, distributable P/T-nets
may be cut to local subnets communicating by asynchronous message passing.
Distributed prototypes of HMSCs may be obtained in this way.

Another field of application is supervisory control. Let us briefly recall the
framework defined by Ramadge and Wonham [40]. A plant is a finite automaton
over an alphabet A with two orthogonal partitions: A = Ac ∪ Auc where the
transitions in Ac and Auc are respectively controllable and uncontrollable, and
A = Ao∪Auo where the transitions in Ao and Auo are respectively observable and
unobservable. Let Rp be the language of the plant, and let Rl ⊆ Rp be a regular
subset of legal firing sequences. For the sake of simplicity, assume that Rp and
Rl are prefix-closed and Ac ⊆ Ao (unobservable transitions are uncontrollable).
A controller is then a (finite or infinite) automaton that defines a prefix-closed
language K of A∗

o. The problem is to search for some K in a given class of
languages such that {u ∈ Rp |πo(u) ∈ K} ⊆ Rl where πo projects A∗ on A∗

o.
An admissible controller K should moreover satisfy

∀t ∈ (Ao ∩Auc) ∀u ∈ Rp ∀v ∈ K
v = πo(u) ∧ (u · t) ∈ Rp =⇒ (v · t) ∈ K

Deciding whether maximally permissive admissible controllers exist reduces to
deciding whether for some K,

� ∩ πo (Rl) ⊆ K ⊆ �

where� is the largest subset ofA∗
o containing no observation sequence v = πo (u)

such that uw ∈ Rp and uw /∈ Rl for some uncontrollable sequence w ∈ A∗
uc.

Thus, if ·/· denotes quotient of languages,� is the complement in A∗
o of the set

� = πo ( (Rp ∩ � Rl) /A∗
uc )

As � is a regular set, � is regular, hence L = � ∩ πo (Rl) is regular. The
problem amounts to deciding whether there exists some K in the specified class of
languages such that L ⊆ K ⊆ � where L and � are two regular languages.
This problem may be posed w.r.t. the class of P/T-net languages. The solution
is to compute N from L as shown in section 2.2, such that K = L(N ) is the
least P/T-net language larger than L, and then to check whether L(N ) ⊆�
(this is decidable). Maximally permissive P/T-net controllers are then obtained.



426 Philippe Darondeau

3 Net Synthesis from Infinite Graphs

The P/T-net synthesis problem for a class of graphs is the problem whether one
can decide uniformly from any graph in this class whether it is isomorphic to
the reachable state graph of some initialized P/T-net, and construct such a net
when it exists. In this section, T = {t1, . . . , tn} is a fixed alphabet, all P/T-nets
have the set of transitions T , and all graphs have directed edges with labels in
T .

Let G = (V,E, v0) denote a graph with respective sets of vertices and edges
V and E, where v0 ∈ V is the root and E ⊆ (V × T × V ). An edge (v, t, v′) ∈ E
has a source v, a label t, and a target v′. We consider deterministic and reachable
graphs exclusively, i.e. we assume that every vertex v can be reached by some
walk from v0 to v, and that distinct edges with a common source have distinct
labels. A morphism of graphs σ : G → G′, where G′ = (V ′, E′, v′0), is a map
σ : V → V ′ such that σ(v0) = σ(v′0) and (σ(v), t, σ(v′)) ∈ E′ for every edge
(v, t, v′) ∈ E. Note that there is at most one morphism from G to G′. Let G ≤ G′

when this morphism exists. It is easily seen that ≤ is an order relation and that
two graphs G and G′ are isomorphic (G ∼= G′) if and only if G ≤ G′ and G′ ≤ G.
Let G(N ) denote the reachable state graph of the P/T-net N . The problem is
to decide from a given graph G whether G ∼= G(N ) for some P/T-net N .

This problem is a strengthening of the problem dealt with in section 2. Indeed,
G ∼= G(N ) =⇒ L(G) = L(N ) where L(G) is the set of sequences in T ∗ labelling
walks from v0 to arbitrary vertices v in G. The converse implication does not
hold. We show in this section that the P/T-net synthesis problem for graphs may
be solved by a modification of the techniques already presented. The leading idea
is to replace the relation of language inclusion ⊆ used in section 2 with the order
relation ≤ on graphs. The development given hereafter mimics the development
given in this earlier section.

3.1 The Regions of a Graph

To begin with, let us observe that any finite family of graphs Gl = (Vl, El, vl,0),
l ∈ [1,m], has a greatest lower bound

∧
l Gl. This greatest lower bound is a graph

(V,E, v0) where V ⊆ (V1 × . . .× Vm) and v0 = (v1,0, . . . , vm,0). Moreover V and
E are the least sets such that v0 ∈ V and the following closure axiom is satisfied:

if v = (v1, . . . , vm) is in V and for some t ∈ T , (vl, t, v′l) ∈ El for all l ∈ [1,m],
then v′ = (v′1, . . . , v

′
m) is in V and (v, t, v′) is in E.

Proposition 3. The reachable state graph of a P/T-net is isomorphic to the
greatest lower bound of the reachable state graphs of its atomic subnets.

The proposition follows immediately from the firing rule of nets. In view of
this fundamental property of reachable state graphs, the modified definition of
P/T-regions which is proposed hereafter supplies a basis for the synthesis of
P/T-nets from graphs.
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Definition 6 (P/T-regions of a graph). A P/T-region of G is any atomic
P/T-net N = ({p}, T, F,M0) such that G ≤ G(N ).

Example 8. Consider the following graph G:

v 2,1

v 0,0 v 1,0

v 3,1

v 2,0

v 1,1

b

a a a

a a

b b

v 0,1

The atomic nets N1 and N2 defined in example 4 are two P/T-regions of G.
The respective graphs G(N1) and G(N2) are shown below, with G(N1) on the
left hand side.

0 2
01

a a

1
b b

a a
b

The inequalities G ≤ G(N1) and G ≤ G(N2) are established by the respective
morphisms σ1(vi,j) = i and σ2(vi,j) = j. ��

The next proposition follows from proposition 3 and the (obvious) fact that
G(N ) ≤ G(Nl) for every atomic subnet Nl of N .

Proposition 4. G ∼= G(N ) for some P/T-net N if and only if G ∼=
∧

l G(Nl)
for some finite collection {N1, . . . ,Nm} of P/T-regions of G.

Definition 6 and proposition 4 are too abstract and they should be refined.
We aim in the sequel at equivalent statements with better algorithmic contents.
Because G ≤ G(N ) ⇒ L(G) ⊆ L(N ), every region of a graph G is a region of the
language L(G). In example 8, all regions of L(G) are regions of G, but this is not
true in general. For instance, if G has edges (v0, a, v1) and (v0, b, v1), a P/T-net
({p}, T, F,M0) such that F (a, p) − F (p, a) �= F (b, p) − F (p, b) may be a region
of L(G) but it cannot be a region of G. This distinction is clarified below.

Definition 7. Given G = (V,E, v0) and w ∈ L(G), let ∂w denote the vertex at
the end of the walk with label w from the root v0. Two words w and w′ of L(G)
are said to converge in G if ∂w = ∂w′, and they are said to diverge otherwise.

Proposition 5. Given graphs G1 and G2, G1 ≤ G2 if and only if L(G1) ⊆ L(G2)
and every pair of words that converges in G1 converges in G2.

Proof. The two conditions are clearly necessary to the existence of a morphism
of graphs from G1 to G2. Conversely, when both conditions are satisfied, the map
σ defined with σ(∂1w) = ∂2w, where w ∈ L(G1) and ∂1 and ∂2 are interpreted
w.r.t. G1 and G2, respectively, is a morphism of graphs. ��

Corollary 1. Let N = ({p}, T, F,M0) be a region of L(G), then N is a region
of G if and only if every pair of words that converges in G converges in G(N ).
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By definition, G ≤ G(Nl) for every P/T-region Nl of G, hence G ≤
∧

l G(Nl)
for every finite collection {N1, . . . ,Nm} of P/T-regions of G. By proposition 5,
the converse inequality

∧
l G(Nl) ≤ G holds if and only if

⋂
l L(Nl) ⊆ L(G) and

every pair of words that diverges in G diverges in G(Nl) for some l. Proposition 4
may therefore be restated equivalently as follows.

Proposition 6. G ∼= G(N ) for some P/T-net N if and only if there exists a
finite collection {N1, . . . ,Nm} of P/T-regions of L(G) such that:
i) every pair of words that converges in G converges in G(Nl) for all l ∈ [1,m],
ii) for every t ∈ T and for every w ∈ L(G), if w · t /∈ L(G), then w · t /∈ L(Nl)
for some l ∈ [1,m],
iii) every pair of words that diverges in G diverges in G(Nl) for some l ∈ [1,m].
When these conditions are satisfied, G ∼= G(N ) where N is the P/T-net with the
set of atomic subnets {N1, . . . ,Nm}.

A comparison between proposition 6 and proposition 2 indicates that two
new problems should be solved if one wants to decide on the P/T-net synthesis
problem for classes of graphs. First, the computation of the generating regions
defined in section 2.2 should be accomodated to the constraints induced by
the requirement (i) in the above proposition. Second, the procedure defined in
section 2.3 should be augmented so as to decide whether both requirements (ii)
and (iii) in the proposition can be satisfied by the generating regions. The two
problems are examined in sequence in the sections below.

3.2 A Procedure for Computing Generating Regions

Let us introduce two definitions.

Definition 8. Given a graph G = (V,E, v0), a prefix-closed language L ⊆ L(G)
spans G if (∀v ∈ V ) (∃w ∈ L) v = ∂w (in G).

Definition 9. For any vector ψ ∈ IN2n, let ψL and ψR denote the respective
vectors in INn such that ψ decomposes to (ψL,ψR) through the isomorphism
IN2n ∼= (INn × INn). For any pair of words wL and wR in T ∗, let [wL, wR] denote
the (unique) vector ψ ∈ IN2n such that ψL = [wL] and ψR = [wR].

In order to compute effectively from a graph G = (V,E, v0) a finite set of
P/T-regions generating all regions of this graph, we require that G should be
spanned by some (prefix-closed) language L such that:

for every edge label tj ∈ T ,

Ψj = { [w,w′] |w,w′ ∈ L ∧ (∂w, tj , ∂w′) ∈ E}

is a semi-linear subset of IN2n.

Example 9. Let G be the infinite graph depicted below. It is easily seen that this
graph is spanned by the prefix-closed language L = (ab)∗a∗ + (ab)∗b+ (ab)∗bb.
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Let a = t1, b = t2, c = t3 and define the following vectors in IN3 × IN3 ∼= IN6

(where ; is used in place of , for better readability):

0 = < 0, 0, 0 ; 0, 0, 0 >
δab = < 1, 1, 0 ; 1, 1, 0 >
δa = < 1, 0, 0 ; 1, 0, 0 >
δb = < 0, 1, 0 ; 0, 1, 0 >
δbb = < 0, 2, 0 ; 0, 2, 0 >

Let Ψ = 0 · (δab + δa)∗ + δb · (δab)∗ + δbb · (δab)∗, thus Ψ is a semi-linear set.
For t ∈ {a, b, c}, the respective sets Ψt = { [w,w′] |w,w′ ∈ L ∧ (∂w, t, ∂w′) ∈ E}
may be given the semi-linear expressions:

Ψa = < 0, 0, 0 ; 1, 0, 0 > · Ψ (7)
Ψb = < 0, 0, 0 ; 0, 1, 0 > · (δab + δa)∗+ < 0, 0, 0 ; 0, 1, 0 > · δb · (δab)∗ (8)
Ψc = < 2, 1, 0 ; 1, 0, 0 > · (δab + δa)∗ (9)

The requested condition is fulfilled. ��

We define now a procedure that computes the generating P/T-regions of a
graph from a language L spanning this graph and from the associated semi-
linear sets Ψj (j ∈ [1, n]). Recall that an atomic P/T-net N = ({p}, T, F,M0)
may be represented as a (2n + 1)-vector x =< x0, x1, . . . , xn, xn+1, . . . , x2n >
where x0 = M0(p) and for all j ∈ [1, n], xj = F (p, tj) and xn+j = F (tj , p).
We claim that a (2n + 1)-vector x =< x0, x1, . . . , xn, xn+1, . . . , x2n > defines a
region of G if and only if all its entries xk are non-negative integers, and the
following inequalities and equations hold for all tj ∈ T and ψ ∈ Ψj :

n∑
i=1

ψL[i] × (x(n+i) − xi) ≥ xj − x0 (10)

n∑
i=1

ψR[i] × (x(n+i) − xi) = x(n+j) − xj +
n∑

i=1

ψL[i] × (x(n+i) − xi) (11)
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In order to see that both conditions are necessary, let N be the atomic P/T-net
defined by the vector x. If N is a region of G, then L(G) ⊆ L(N ) and therefore
L ⊆ L(N ). The inequality 10 states that whenever u ∈ L and u · tj ∈ L(G),
if u can be fired in N then u · tj can be fired in N . This must be true since
L(G) cannot be included in L(N ) otherwise. Under the same assumptions, the
equation 11 states that whenever u · tj and v converge in G for some v in L, u · tj
and v converge in G(N ). The corollary 1 states that this also must be true.

In order to establish the claim, it remains to show that whenever the conditions
10 and 11 hold for a vector x, the atomic P/T-net N defined by x is a region of
the graph G. By corollary 1, it suffices to prove that L(G) ⊆ L(N ) and that all
pairs of words of L(G) that converge in G converge in G(N ).

Proposition 7. L ⊆ L(N ) and moreover, the pairs of words of L that converge
in G converge also in G(N ).

Proof. As L is prefix-closed, L ⊆ L(N ) follows from 10 by induction on words.
Consider v, w ∈ L such that ∂v = ∂w in G. If v = w, they do converge in G(N ).
If v �= w, at least one of them is non-empty. Assume w.l.o.g. that v = u · tj with
tj ∈ T . As L is prefix-closed, u ∈ L. Therefore, ψ = [u, v] and ψ′ = [u,w] are
vectors in Ψj . It follows from the equation 11 that

∑n
i=1 [v]i × (x(n+i) − xi) =∑n

i=1 [w]i × (x(n+i) − xi). Therefore, v and w converge in G(N ). ��

Proposition 8. For all v′ ∈ L(G) and for all w ∈ L such that ∂v′ = ∂w in G:

i) v′ ∈ L(N ), and
ii) v′ and w converge in G(N ).

Proof. Since L(G) is prefix-closed, one may use an induction on words. As ε ∈ L,
the basis of the induction is clear from proposition 7. For the induction step, let
v′ = u′ · tj where tj ∈ T . Choose u, v ∈ L such that ∂u = ∂u′ and ∂v = ∂v′

(since L spans G, such words must exist). As v′ ∈ L(G), (∂u′, tj , ∂v′) is an edge
of G, and this edge is equal to (∂u, tj, ∂v). By proposition 7, u, v ∈ L(N ) since
u, v ∈ L. Hence u · tj ∈ L(N ), in view of the inequality 10, and u · tj and v
converge in G(N ), in view of the equation 11. From the induction hypothesis,
u′ ∈ L(N ), and u and u′ converge in G(N ). Therefore, u′ · tj ∈ L(N ), and u′ · tj
and u · tj converge in G(N ). This entails that v′ ∈ L(N ), and v′ and v converge
in G(N ). As ∂v = ∂v′ = ∂w and v, w ∈ L, v and w converge in G(N ), by
proposition 7. Therefore, v′ and w converge in G(N ). ��

Corollary 2. N is a P/T-region of G.

Proof. Seeing that L spans G, proposition 8 entails that whenever two words
v′, v′′ of L(G) converge in G, they converge in G(N ). ��

Using the assumption that all sets Ψj are semi-linear, the (possibly) infinite
collection of linear homogeneous constraints that derive as instances of (10) or
(11) for some ψ ∈ Ψj (j ∈ [1, n]) may be reduced to a finite linear system.
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As regards the inequality (10), which is similar to the inequality (1), the
reduction follows the same lines as in section 2.2 (the former set [L/tj] is replaced
with the semi-linear set Σj = {ψL | ψ ∈ Ψj}).

As regards the equation (11), let Δj = {ψR −ψL | ψ ∈ Ψj} for each j ∈ [1, n].
Since Ψj is a semi-linear subset of IN2n, and in view of the definition 5, Δj is a
finite union of linear sets e · F∗, where e ∈ ZZn and F is a finite subset of ZZn.
For each linear subset e ·F∗ of Δj , the set of constraints that derive as instances
of the equation 11 for some ψ ∈ e · F∗ may be replaced equivalently with the
finite linear system:

n∑
i=1

e[i] × (x(n+i) − xi) = x(n+j) − xj (12)

n∑
i=1

f [i] × (x(n+i) − xi) = 0 (13)

where f ranges over the finite set F . Therefore, the collection of instances of the
equation 11 for all j ∈ [1, n] and for all ψ ∈ Ψj reduces to a finite system.

Let S be the finite linear system in the variables x0, . . . , x2n formed of the
reduced systems defined above, plus inequalities xk ≥ 0 for all k ∈ [0, 2n]. One
can compute as was explained in section 2.2 a finite and minimal set of solutions
x1 . . .xm of S in IN2n+1, called the generating regions of the graph G, such that
the regions of this graph may be characterized as follows:

——————————————————————————————————
A vector x is a P/T-region of G if and only if x ∈ IN2n+1 and
x =

∑m
l=1 ql xl for some non-negative rational coefficients ql.

——————————————————————————————————

Example 10. Let us compute the generating regions of the graph G from exam-
ple 9. In order to enhance the readability, let x =< m0,

• a,• b,• c, a•, b•, c• >
where t1 = a, t2 = b, and t3 = c. The respective sets Δ1, Δ2, and Δ3 are the
singleton sets defined with Δ1 = Δa = {< 1, 0, 0 >}, Δ2 = Δb = {< 0, 1, 0 >},
and Δ3 = Δc = {< −1,−1, 0 >}. The finite system derived from equation 11 is:

a• −• a = a• −• a
b• −• b = b• −• b
•a− a• +• b− b• = c• −• c

Two trivial equations may be dropped. The linear constraints generated from the
instances of the inequality 10, where ψL ranges over the respective semi-linear
sets Σj = {ψL | ψ ∈ Ψj} (j ∈ [1, 3]), are as follows.
Σ1 = Σa = 〈0, 0, 0〉 · (〈1, 1, 0〉 + 〈1, 0, 0〉)∗+ 〈0, 1, 0〉 · 〈1, 1, 0〉∗+ 〈0, 2, 0〉 · 〈1, 1, 0〉∗

produces the constraints
0 ≥ •a−m0

b• −• b ≥ •a−m0

2 (b• −• b) ≥ •a−m0

a• −• a ≥ 0
a• −• a+ b• −• b ≥ 0
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Σ1 = Σb = 〈0, 0, 0〉 · (〈1, 1, 0〉 + 〈1, 0, 0〉)∗+ 〈0, 1, 0〉 〈1, 1, 0〉∗ adds two constraints

0 ≥ •b−m0

b• −• b ≥ •b−m0

Σ3 = Σc = 〈2, 1, 0〉 · (〈1, 1, 0〉 + 〈1, 0, 0〉)∗ brings finally one more constraint

2 (a• −• a) + b• −• b ≥ •c−m0

The generating regions computed by Chernikova’s algorithm are the following:

m0 2 1 1 1 0 2 1 0 0 2 1 1 2 1 1
•a 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0
•b 1 0 1 1 0 2 0 0 0 1 0 1 2 1 0
•c 3 1 1 1 1 3 1 2 1 0 0 0 0 0 0
a• 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0
b• 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0
c• 3 1 1 1 0 3 1 1 0 0 0 0 0 0 0

Many generating regions are useless, as we will show later on. ��

We claim that the P/T-net N built up from the atomic subnets N1 . . .Nm

defined by the generating regions x1 . . .xm is the best net-approximation of the
graph G in the following sense:

——————————————————————————————————
G ≤ G(N ) and ∀N ′ G ≤ G(N ′) =⇒ G(N ) ≤ G(N ′)

——————————————————————————————————

The relation G ≤ G(N ) is easily established, as G ≤ G(Nl) for all l ∈ [1,m] (by
definition of the regions of a graph) and G(N ) =

∧
l G(Nl) (by proposition 3).

The two propositions below aim at establishing the second part of the claim.

Proposition 9. ∀N ′ G ≤ G(N ′) =⇒ L(N ) ⊆ L(N ′)

Proof. Assuming the converse, let w ∈ L(N ) ∩ L(N ′) and tj ∈ T such that
w · tj ∈ L(N ) and w · tj /∈ L(N ′). Necessarily,

∑
i [w]i × (x′[n + i] − x′[i]) <

x′[j] − x′[0] for some (2n + 1)-vector x′ representing an atomic subnet of N ′.
As G ≤ G(N ′) and G(N ′) ≤ G(N ′′) for every subnet N ′′ of N ′, this atomic
subnet of N ′ is a region of G. Therefore, x′ =

∑m
l=1 ql xl for some non-negative

rational coefficients ql. Owing to the sign of the coefficients, it must be true for
some l ∈ [1,m] that

∑
i [w]i ×(xl[n+i]−xl[i]) < xl[j]−xl[0]. But this inequality

entails w · tj /∈ L(Nl) and hence w · tj /∈ L(N ), a contradiction. ��

Proposition 10. If G ≤ G(N ′), then two words of L(N ) converge in G(N ′)
whenever they converge in G(N ).

Proof. Assuming the converse, let w,w′ converge in G(N ) and diverge in G(N ′).
Necessarily,

∑
i [w]i × (x′[n+ i] − x′[i]) �=

∑
i [w′]i × (x′[n+ i] − x′[i]) for some
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(2n+ 1)-vector x′ representing an atomic subnet of N ′. Like in the proof of the
former proposition, x′ =

∑m
l=1 ql xl, and it must be true for some l ∈ [1,m] that∑

i [w]i × (xl[n+ i] − xl[i]) �=
∑

i [w′]i × (xl[n+ i] − xl[i]). As a consequence,
w and w′ diverge in G(Nl) and hence in G(N ), a contradiction. ��

In view of these propositions, the second part of the claim follows from the
proposition 5. Optimal net-approximations may therefore be computed in any
class of graphs (V,E, v0) spanned by languages L such that, for every tj ∈ T ,
the transition relation Tj = { (w,w′) |w ∈ L ∧ w′ ∈ L ∧ (∂w, tj , ∂w′) ∈ E }
is semi-linear (i.e. { [w,w′] | (w,w′) ∈ Tj } is semi-linear). A trivial example is
the class of finite graphs. Two other examples are the classes of labelled domains
induced by recognizable sets of Mazurkiewicz traces, or by Finite Automata with
Concurrency Relations [13]. In both cases, the language of a labelled domain G
is a regular language L, and { [w,w′] | (w,w′) ∈ Tj } = { [w,w · tj ] | (w · tj) ∈ L},
hence the transition relations are semi-linear. Optimal net-approximations may
also be computed in any class of graphs where the transition relations Tj may be
defined with finite 2-tape automata (this is the case for deterministic pushdown
graphs [42][43]), or more generally with (non-deterministic) 2-tape pushdown
automata (this particular use of 2-tape pda’s is a suggestion of ours).

3.3 A Procedure for the Decision of the Net Synthesis Problem

We show in this section that under additional conditions on G and the spanning
language L, one can decide whether G has a P/T-net generator, i.e. whether
G ∼= G(N ) where N is the net constructed in section 3.2.

Because G ≤ G(N ) and G(N ) is the least net-approximation of G, the graph
G has a P/T-net generator if and only if G(N ) ≤ G. By proposition 5, the
following two conditions are necessary and sufficient:

i) for every w ∈ L(G) and tj ∈ T , if w · tj /∈ L(G), then w · tj /∈ L(N ),
ii) every pair of words of L(N ) that diverges in G diverges in G(N ).

The condition (i) reads as L(N ) ⊆ L(G), hence when it holds, L(N ) = L(G)
because G ≤ G(N ) =⇒ L(G) ⊆ L(N ). We thus retrieve the respective conditions
(ii) and (iii) stated in proposition 6 (the atomic subnets of N are the generating
regions Nl of G, hence they are regions of L(G) and they satisfy condition (i) in
prop. 6). Recalling that L ⊆ L(G), the above conditions may be simplified to:

i’) for every w ∈ L and tj ∈ T , if w · tj /∈ L(G), then w · tj /∈ L(N ),
ii’) every pair of words of L that diverges in G diverges in G(N ).

(i’) entails (i) : Let w ∈ L(G) and w ·tj /∈ L(G). As L spans G, ∂w = ∂u for some
u in L. As w · tj /∈ L(G), u · tj /∈ L(G), hence u · tj /∈ L(N ). As G ≤ G(N ) and w
and u converge in G, they lead to the same marking of N , hence w · tj /∈ L(N ).
(ii’) entails (ii) : Let w and w′ be words of L(G) such that ∂w �= ∂w′. As L spans
G, ∂w = ∂u and ∂w′ = ∂u′ for some u and u′ in L. As ∂u �= ∂u′, u and u′ lead
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to distinct markings of N . As G ≤ G(N ), w and u lead to the same marking of
N , and similarly do w′ and u′, hence w and w′ diverge in G(N ).

In order to decide whether G ∼= G(N ), we add the following requirements on
G and its spanning language L:

1. Dis = { [w,w′] |w ∈ L ∧ w′ ∈ L ∧ ∂w �= ∂w′ } should be semi-linear,
2. Inhj = { [w] |w ∈ L ∧w · tj /∈ L(G) } should be semi-linear for all j ∈ [1,m].

Assuming these requirements are fulfilled, we propose a decision procedure.
Recall that N has m atomic subnets N1 . . .Nm , viz. the generating regions
of G, represented with (2n + 1)-vectors x1 . . .xm. Thus, for any w ∈ L and
for any l ∈ [1,m], the marking reached after firing w in the atomic subnet
Nl = ({p}, T, F, p = m0) is defined with p = m0 +

∑
i [w]i × (xl[n+ i] − xl[i]).

The condition (ii’) is satisfied if and only if Dis ⊆ ∪m
l=1Disl where:

Disl = { ψ ∈ IN2n |
∑n

i=1 (ψR[i] − ψL[i]) × (xl[n+ i] − xl[i]) �= 0 }
Now, for fixed l, all coefficients (xl[n + i] − xl[i]) are constants in ZZ, hence
the above formula is a Presburger formula and Disl is a semi-linear subset of
IN2n. Such subsets form an effective boolean algebra. Therefore, when Dis is
semi-linear, one can decide whether the condition (ii’) is satisfied.

The condition (i’) is satisfied if and only if, for all j ∈ [1,m],
Inhj ⊆ ∪m

l=1 Inh
l
j where:

Inhl
j = { ψ ∈ INn |

∑n
i=1 ψ[i] × (xl[n+ i] − xl[i]) < xl[j] − xl[0]

As Inhl
j is defined by a Presburger formula, Inhl

j is a semi-linear subset of IN2n.
Therefore, when all inhibitor sets Inhj are semi-linear, one can decide whether
the condition (i’) is satisfied.

——————————————————————————————————
The P/T-net synthesis problem is decidable in classes of graphs spanned by
languages L such that the set Dis and all sets Ψj and Inhj are semi-linear

——————————————————————————————————

Like in section 2, it may occur that G ∼= G(N ′) for some proper subnet N ′ of
N . Minimal nets N ′ may be derived from minimal subsets of generating regions
such that Dis ⊆ ∪lDisl and Inhj ⊆ ∪l Inh

l
j for l ranging over indices of regions

in these subsets.

Example 11. For the graph G in the example 9, L = (ab)∗a∗ + (ab)∗b+ (ab)∗bb,
and Dis = {ψ | ψL ∈ [L] ∧ ψR ∈ [L] ∧ ψL �= ψR} where [L] is the commutative
image of L. As L is a regular language, [L] is a semi-linear set, hence Dis is a
semi-linear set (because it is defined by a Presburger formula). Consider now the
two regions of G represented respectively by the columns 1 and 9 in the table at
the end of the example 10. The respective sets Dis1 and Dis9 are given by the
semi-linear expressions:
Dis1 = {< na, nb, nc ; n′a, n′b, n

′
c > |na − nb �= n′a − n′b }
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Dis9 = {< na, nb, nc ; n′a, n′b, n
′
c > |nb − nc �= n′b − n′c }

Clearly, for any ψ =< na, nb, nc ; n′a, n′b, n
′
c >∈ Dis, nc = 0 and n′c = 0 because

L ⊆ {a, b}∗, and na �= n′a or nb �= n′b. If nb �= n′b then ψ ∈ Dis9. If na �= n′a and
nb = n′b then ψ ∈ Dis1. Thus, Dis ⊆ Dis1 ∪Dis9.

The respective inhibitor sets Inh1 = Inha, Inh2 = Inhb, and Inh3 = Inhc

are given by the semi-linear expressions:

Inh1 = ∅
Inh2 = 〈0, 2, 0〉 · 〈1, 1, 0〉∗
Inh3 = 〈0, 0, 0〉 · 〈1, 0, 0〉∗ + (〈0, 0, 0〉 + 〈0, 1, 0〉 + 〈0, 2, 0〉) · 〈1, 1, 0〉∗

As Inh1
2 = {〈na, nb, nc〉 |na − nb < −1}, it follows that Inh2 ⊆ Inh1

2.
Now Inh1

3={〈na, nb, nc〉 |na −nb < 1}, and Inh9
3={〈na, nb, nc〉 |nb −nc < 1}.

Clearly, 〈0, 0, 0〉 · 〈1, 0, 0〉∗ ⊆ Inh9
3, and Inh3 ⊆ Inh1

3 ∪ Inh9
3.

The graph G is therefore isomorphic to the reachable state graph of the net
built from the atomic nets defined by the respective vectors x1 = 〈2, 0, 1, 3, 1, 0, 3〉
and x9 = 〈0, 0, 0, 1, 0, 1, 0〉. This net is shown in the figure below. ��

a cb

3

3

A well known class of graphs where the requirements 1 and 2 are fulfilled
is the class of the deterministic pushdown graphs. This assertion is not trivial
and it follows from the results establihed by Sénizergues in his unpublished work
[43]. Therefore, the general decision procedure presented in this section may be
considered as an extension of the specific procedure proposed in [19] for the
deterministic pushdown graphs. This extension owes much to Sénizergues’s view
of graphs with an automatic structure. Building on his ideas, a wide class of
graphs where the P/T-net synthesis problem is decidable was proposed in [7].

4 Conclusion

In this paper, we focussed on the problem whether a language or an infinite graph
may be realized exactly by an unbounded P/T-net, a problem which was ignored
in [6]. We have shown that this problem is decidable under strong requirements
of semi-linearity, met by deterministic pushdown languages and graphs, and by
graphs in wider families. We have shown that the exact net-realization problem
is undecidable for pushdown languages and for HMSC languages. These nega-
tive results, and the strong constraints imposed for deciding on the synthesis
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problem when this is possible, indicate that approximate net-realizations of lan-
guages or graphs is often the best one can expect. We have shown that (least)
over-approximations by nets may be computed under mild assumptions of semi-
linearity on languages or graphs. It was argued that such approximations are
particularly adequate in the context of supervisory control problems.

It might be objected that the procedures we have proposed are too limited,
since the P/T-nets produced by these procedures have always semi-linear sets of
reachable markings. We are conscious of this limitation, but we do not see how
it could be removed consistently with our approach.

If one agrees that the exact realization of languages or graphs by nets is not
the central problem, there are two ways for further research. One is to search
for approximate realizations of languages or graphs by nets, as was proposed
in this paper. A second way is to change the data of the P/T-net synthesis
problem, by taking sets of graphs or languages as inputs, in place of individuals.
Then, the problem is to search for a net N such that G(N ) or L(N ) belongs to
the given set. This problem has been solved in [7] for sets of graphs defined by
path-automatic specifications, a combination of modal transition systems and
automatic graphs. We are currently working on a similar problem in the context
of languages.
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Abstract. Software engineering and Petri net theory are disciplines of
different nature. Research on software engineering focuses on a problem
domain, i.e., the development of complex software systems, and tries
to find a coherent set of solutions to cope with the different aspects of
the problem, while research on Petri nets investigates applications and
properties of a specific model (Petri nets).
When Petri nets can solve some problems of software development, the
two disciplines meet with mutual benefits: software engineers may find
useful solutions, while Petri net experts may find new stimuli and chal-
lenges in their domain.
Petri nets and software engineering have similar age: Karl Adam Petri
wrote his thesis in 1962, while the term “software engineering” was coined
in 1968 at a NATO conference held in Germany. The two disciplines met
several times in the past forty years with alternate fortune. Presently,
software engineering and Petri nets do not find many meeting points, as
witnessed by the scarce references to Petri nets in software engineering
journals and conferences and vice versa, but software engineering is facing
many new challenges and the Petri net body of knowledge is extending
with new results.
This paper attempts to illustrate the many dimensions of software en-
gineering, to point at some aspects of Petri nets that have been or can
be exploited to solve software engineering problems, and to identify new
software engineering challenges that may be solved with Petri net re-
sults. This paper does not have the ambition of completely surveying
either discipline, but hopes to help scientists and practitioners in iden-
tifying interesting areas where software engineers and Petri net experts
can fruitfully collaborate1 .

1 Introduction

Software engineering presents several problems that can be attacked with many
different techniques and methodologies. Software engineers do not focus on a
particular technique or model to solve all problems, but select the solutions that
best fit the requirements for each different problem and context. Solutions that
1 This work has been partially funded by the European Union through the EU IST

project SegraVis.
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are excellent in a specific context and at a given time, may be sub-optimal in
other domains, may not suite well other problems, or may become obsolete in
other moments. Software specification and design are typical examples: structure
analysis based solutions that were very popular in the eighties, became less and
less popular in the nineties, and are now substituted by object oriented based
solution; client-server solutions that may solve well many classes of problems,
may be ignored in contexts that benefit from other equally good solutions. A
quick scan of software engineering handbooks, conferences, and journals would
clearly give a variegate picture from the methods and techniques viewpoint.

Disciplines like software engineering that focus on problems and search for the
best solutions regardless of the underlying methods or techniques can be identi-
fied as problem-oriented disciplines. The main characteristic of these disciplines
is the presence of many complex problems and the co-existence of alternative
solutions, none of which optimal per se. Problem-oriented disciplines are eclec-
tic, since problems may be solved in many different ways with radically different
techniques, and fickle, since techniques can be adopted and abandoned as the
field evolves [1].

Conversely, the research on Petri nets focuses on a “solution”: Petri nets. The
research on Petri nets is not driven by a problem domain that asks for successful
solutions, but is rather driven by a theory that is studied for solving problems
of different nature. Research on Petri nets investigates the various possibilities
presented by the theory, and proposes the theory to solve problems in different
domains. Advances in Petri nets can be used for attacking problems in computer
science, chemistry, biology, hardware design, software specification, distributed
computing, multimedia and so forth. Disciplines like Petri net research that
focus on theory and offer it for different application domains can be identified as
solution-oriented disciplines. Solution-oriented disciplines are homogeneous and
have a well-defined theory and a stable set of tools.

The meeting of problem and solution-oriented disciplines may bring enormous
benefits to both fields: problem-oriented disciplines may find efficient solutions
to key problems, while solution-oriented disciplines may find new stimuli in the
field. Unfortunately meeting of different disciplines is difficult: few scientists
understand different fields well enough to be able to see the potentialities for
cross fertilization, and blind attempts to investigate new fields to search for novel
solutions are often frustrated by skepticism and lack of successes. However, when
problem- and solution-oriented disciplines meet, the whole scientific community
can benefit from scientific and technological progresses. This is happening for
example in the meeting of biology and research on algorithms that is opening
enormous opportunities in bioinformatics.

Software engineering and Petri nets met several time in the past and the
meeting seeded interesting ideas in both fields. Useful applications of Petri nets
have been proposed in requirement engineering (e.g., [2]), reverse engineering
(e.g., [3, 4]), design of user interfaces (e.g., [5]), modeling and analysis of safety
critical systems (e.g., [6]), distributed systems (e.g., [7, 8]), real time systems
(e.g., [9–12]), multimedia systems (e.g., [13–17]), software process management
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(e.g., [18, 19]), and software performance evaluation (e.g., [20]). However, the
cross fertilization has never stabilized an the two fields are passing a period of
scarce communication.

Software engineering is characterized by many dimensions that assume dif-
ferent relevance from different perspectives and are difficult to summarize and
frame. Figure 1 suggests three main dimensions: product development, process
support and application domain. Software engineers must find an adequate pro-
cess support to fit the different characteristics of the product for the specific
application domain. Each dimension includes many elements with mutually de-
pendent choices hard to concert in a successful project.

The first dimension considered in the figure is related to the development of
products, i.e., concerns with the development of software, and is characterized
by the specific aspects of the software system, the development phases and the
activities performed during development, and the involved stakeholders.

The aspects of software systems are the relations among components of the
system from different perspectives. They include structure and architecture, i.e.,
relations among components, functions, i.e., relations among values, behavior,
i.e., relations among processes over time, and non-functional properties, i.e.,
relations between the system and its environment. The distinct aspects can be
instantiated in many ways, but instantiations are not independent: the system
structure may strongly impact on the behavior of the system, which may impact
on non-functional properties or functions, and so on. For example, a pipeline
architecture may limit concurrency that may result in low performances. Thus,
factoring aspects independently can be hard and not always possible.

Software development includes different phases that span from requirements
analysis and specification to design, implementation and test. Each phase copes
with specific problems at distinct abstraction levels, and uses suitable tools and
techniques. Phases are not independent. Many activities performed in different
phases overlap and influence each other. The distinction of phases over time, as
postulated by the waterfall model, is merely conventional and does not reflect
the complex intertwining among phases, which characterize real life processes.
The real situation is better represented for example by the process model shown
in Figure 2, which captures the effort allocation among phases and process iter-
ations. The vertical slices of the figure show how effort is concurrently allocated
to different phases. Each vertical slice corresponds to a process iteration that
involves all phases. Each process iteration produces a complete version of the
software that improves the former version: inception and elaboration iterations
produce early prototypes, construction iterations produce beta versions and re-
lease candidates, transition iterations produces software evolutions.

Each development phase requires many activities, analysis, abstraction, mod-
eling, construction, refinement, documenting, testing, comprehension, refactoring,
reverse engineering, etc... System activities must adapt to the different phases
and may require different tools and techniques, depending on the phase in which
they are performed and the aspects of the developed system. For example, mod-
ern modeling methodologies offer many different models suited to distinct de-
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Fig. 1. Software engineering dimensions

velopment stages and to different aspects (Figure 4 at page 447 illustrates this
issue in the case of the Unified Modeling Language.)

Software development involves many stakeholders who are involved with dif-
ferent roles, speak different languages, have different expectations, and focus on
different problems: users, analysts, software architects, developers, test design-
ers, managers, marketing analysts, etc... Software engineering must cope with
the different needs and must provide a suitable means to coordinate stakehold-
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Fig. 2. The unified process model

ers. Lack of communication and comprehension among stakeholders can impact
on the overall costs and even on the success of the whole project. For example,
difficulties of analysts to understand the user language can lead to ill-designed
requirements, while difficulties of users to read design models can lead to poor
validation in the early stages, resulting in a final system that does not meet the
user requirements. Expertise and needs of stakeholders impact on activities, on
phases, and on the way system aspects influence the overall process. For exam-
ple, familiarity of users with specific notations may influence the organization
of system analysis and validation, the presence of an independent quality team
may impact on the planning of activities and phases, the lack of familiarity with
the application domain and the programming languages required by the user
may require specific training, and so forth.

The second dimension considered in the figure is the software process: a
suitable blend of methodologies, languages and tools that support the activities
of the stakeholders through the development phases of the different aspects of
the system.

Software development may involve many languages at different stages of de-
velopment, e.g., specification, design, development, as well as within the same
development phase, e.g., class diagrams, statecharts, interaction diagrams dur-
ing specifications, or different programming languages for different subsystems.
Languages involved in the development process are of different type (operational,
descriptive, executable, etc...) and style (textual, visual, diagrammatic, hybrid,
etc...). Languages affect other factors of the development process. For example,
the presence of code generators or tools for analysis for a given language changes
the effort required in specific phases, while strong user requirements, due for in-
stance to requests of certification agencies or the legacy of the application, may
impact on the organization of activities and roles.
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Human activities are supported and complemented by many tools, which
are responsible for shaping the process: planning and monitoring, configuration
management, design and specification, analysis, test case generators tools are es-
sential in mature development processes. Availability and functionalities offered
by tools may determine choices of methodologies, activities, people and phases.

The third dimension considered in the figure concerns the application do-
mains that emphasize different software characteristics that further impact on
the development process. The development of interactive, reactive, embedded,
real-time, distributed, mobile, batch systems may require different techniques,
tools, languages, phases, and people.

Thus large variety of dimensions and choices that characterize problem ori-
ented disciplines adds a critical dimension to the problems to be solved. Finding
solutions to single problems is not sufficient: single techniques must be suitably
blended within a general context and changes in one solution may affect many
other solutions to different problems. For example, techniques for test and anal-
ysis may require different approaches to specification, design and coding, they
may change the overall organization of the different development phases, they
may require new skills and training, they may be based on new tools that may
in turn impact on organization, methodologies, phases, and so forth.

Petri nets, as any solution-oriented discipline, cannot cope with all software
engineering problems, but they can help for an unexpected variety of problems
that involve all dimensions of software engineering. They can and have been suc-
cessfully used during software development for modeling and analyzing behavior
as well as non functional aspects both in the specification and design phases;
They can support analysis, abstraction, modeling and documenting activities;
They can provide a means for communication among users and analysts. They
have been proposed as specification language for analysis as well as a means for
modeling and enacting software processes. They have been used in many ap-
plication domains that include real-time, workflow, multimedia, and distributed
systems. Figure 3 summarizes the software engineering dimensions that can ben-
efit from Petri nets.

Surveying either of the two disciplines would be impossible in the length of
a single paper and it is out of the scope of this paper. Main goal of this paper is
to illustrate how Petri nets can and have been used through the three outlined
dimensions of software engineering, i.e., as models for software development,
for describing and enacting software processes, and for solving problems in the
specific domain of embedded real time systems.

2 The Role of Models in Software Engineering

The unexpectedly wide spectrum of applicability of Petri nets in software en-
gineering derives from the central role of models in this discipline. Engineering
software means describing and reasoning about the problem domain, the software
solution, and the process evolution: analysts must capture the problem domain
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to understand what has to be solved, designers must describe the system in terms
of its architecture, programmers and test designers must understand the data
and the control flow through the program, architects must capture the struc-
ture of systems to engineer and evolve applications, managers must build a cost
model to plan and monitor the process.
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Models are essential for communicating and reasoning about systems and
must adapt to the people and the properties of interest. Models must capture
the relevant system aspects in the different design phases; They must abstract
from details that hide the overall picture; They must provide a common lan-
guage for the different actors; They must support the analysis of the properties
of interest. No model suites all phases, aspects, activities, stakeholders, and char-
acteristics of software. The development of a single product usually requires the
construction and analysis of many different models. The requirements of a good
model depend from the goal of the model: models used for communication among
people must be easily understandable for all involved specialists; models used for
reasoning about properties must support efficient analysis of the target proper-
ties. For example, a detailed data flow model of a program can hardly be used for
discussing software requirements or design strategies, but may be excellent for
identifying anomalies in the code; conversely, use cases or interaction scenarios
provide little help for analyzing program properties, but are often used to dis-
cuss the system requirements among software specialists, and between software
specialists and domain experts.

During software development we need to discuss and reason about all aspects
of the systems: structure, function, behavior, non-functional properties. These
aspects cover a wide spectrum of elements, relations and views of the system.
Capturing such a variety of elements with a single language requires enormous
flexibility and generality that is hardly available in a single language. Universal
languages, e.g., natural languages, provide such wide-spectrum coverage, but in-
troduce ambiguities that reduce the possibility of analyzing properties. Modern
methodologies, e.g. UML [21], are grounded on sets of complementary languages
that cover different aspects for supporting communication and analysis of many
aspects at different levels. Sets of languages help describing different aspects
at different abstraction levels. In the case of UML, use case and sequence dia-
grams can be used in the early analysis phases to discuss early requirements with
domain experts, class diagrams, collaboration diagrams and Statecharts can sup-
port modeling of behaviors during the detailed design of the system, component
and deployment diagrams can model design and implementation details, as in
Figure 4.

Models are used for communicating design decisions among different stake-
holders. To this end, languages must be comprehensible to the involved people
and must suite goals such as documentation, analysis, testing, early validation
and problem understanding. For example, requirements analysis languages must
provide a means for communication among analysts, users, architects, test de-
signers, as well as software specialists, managers and marketing staff. Different
attitudes and purposes inspired a large variety of languages that span from
textual to visual and diagrammatic, from informal to formal, from detailed to
abstract, etc...

Models are used for systems with different characteristics and requirements,
e.g., interactive, reactive, embedded, real-time, control, workflow, distributed,
mobile, multimedia, web-based systems. Different languages provide means for
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Fig. 4. Support of UML diagram to the software process

dealing with distinct characteristics: for example, Statecharts have been designed
for reactive systems, Petri nets and process algebras for concurrent systems,
UML-RT for real time systems.

Software systems are extremely complex and can change both during and
after development. Constructing a complete and consistent model of the system
is almost impossible and never cost effective. Modeling languages must support
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flexibility, adaptability and instrumentability of specification and design. Soft-
ware developers need a suitable blend of precision, for supporting analysis, and
incompleteness that stems from lack of knowledge of the application domain and
evolving design.

3 Petri Nets for Specification and Verification

The variety of uses of models in software engineering requires modeling lan-
guages with properties that may be very different if not contradicting. It is
difficult to imagine a single language that satisfies all requirements and needs,
rather, software engineers tend to uses different modeling languages through the
many phases of software development, as well as within the same phase. Modern
methodologies, e.g., UML, are based on sets of modeling languages with different
characteristics that are integrated in a unifying framework as in Figure 4.

The main challenge in software engineering is rarely to invent yet another
modeling language, but more often it is to identify modeling languages suitable
to the specific needs, and to integrate them in a coherent framework.

As any other modeling language, Petri nets cannot satisfy all needs of soft-
ware engineering, but present features that can be appealing in many context
within the software development process. The ability of easily modeling concur-
rency and synchronization aspects, the intuitive graphic notation, the formal
semantics that supports powerful analysis capabilities and the availability of
several supporting tools make Petri nets an appealing candidate in many sit-
uations. However, despite these advantages and the success stories in several
application domains, Petri nets are not widely used in software engineering, and
successful methodologies often suggest alternative modeling languages, e.g., SDL
or Statecharts.

Goal of this paper is not to discuss the mutual diffusion of alternative model-
ing language, nor to identify the remote causes of relative successes and failures
that may change in a few years, as happened many times in the still young
history of software engineering. Rather, in this section, we will try to under-
stand limits of Petri nets in coping with software engineering problems aiming
at providing directions for further investigation.

Petri nets are available in many variants and extensions that span from
place/transition nets to high-level nets and timed Petri nets. Here we focus on
untimed models, leaving timed extensions to the next section, where we discuss
the usage of Petri nets in the domain of embedded real-time systems.

Place/transition nets provides an essential model of concurrency that can be
very useful in addressing specific problems. The absence of constructs for dealing
with data and negative conditions results in powerful analysis mechanisms, but
limits the applicability to many interesting software engineering problems, and
affects scalability.

Figure 5 illustrates the limits of place/transition nets from the modeling
viewpoint. The place/transition net of Figure 5 (a) captures the essence of the
problem (a process A that can either synchronize with process B or be inter-
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rupted by an asynchronous interrupt or by the expiration of a timeout), but
cannot model intuitively the duration of the timeout, or the conditions that
may govern the timeout or the interrupt handler: if all places interrupt, process
A, and process B are marked, the transition that fires is chosen non determinis-
tically among interrupt handler, timeout, or synchronization. We cannot easily
specify that transition timeout fires only if the token in place process A has a
given age, or that transition interrupt handler fires only if the interrupt has a
given priority or is of a given type. Figure 5 (b) illustrates the problems of scal-
ing the description to the presence of different handlers for different interrupts.
We can model several instances of interrupts of the same nature increasing the
number of tokens, but we cannot distinguish the single tokens, and thus, to keep
track of the identity of tokens we need to use different subnets.

synchronizationtimeoutinterrupt handler

process Bprocess Ainterrupt

(a) Process A synchronizes with process B unless timed out or interrupted.

synchronizationtimeout

interrupt handler 2interrupt handler 3 interrupt handler 1

interrupt 3 interrupt 2 interrupt 1 process Bprocess A

(b) Presence of different interrupt handlers for different signals.

Fig. 5. Limits of place/transition nets as modeling language. (Transitions and places
are labeled only for easy referencing)

Place/transition nets have been extended in several ways to overcome their
modeling limits: inhibitor arcs, priority, time and predicates help solving different
problems. For example, we can use predicates to distinguish different interrupt
handling routines, like in Figure 6 that shows a colored Petri net model for three
types of interrupt handlers that access resources “L” and “M” in different ways.

The top rectangle groups declarations of colors and variables. In the example,
we have two colors: “IH”, corresponding to tokens of type “Interrupt Handlers”,
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and “R”, corresponding to tokens of type “Resources”. We have three types of
handlers: “i”, “j” and “k”, and two types of resources “l” and “m”. Variable
“x” of type “IH” is used in the expressions that annotate arcs to indicate an
interrupt handler. Places are annotated with the type of tokens they can contain,
and with a marking and an initialization expression. The marking is expressed
as a number in a circle and an expression nearby. Place ”L” is initially market
with three tokens of type “l” and Place “M” is marked with 2 tokens of type
“m”. The figure is a subnet of a larger model, place A is marked by the firing of
“ancestor” transitions. The initialization expression is expressed as an underlined
expression beside places and helps initializing the net. In the figure, the initial
marking corresponds to the effect of applying the initialization expression. Arcs
are annotated with expressions that indicate the number and type of tokens
flowing on the arcs. The firing of transition “T1” removes a token of type “IH”
from place “A” and either a token of type “l” from place “L” if the considered
interrupt is of type “i” or “j”, or two tokens of type “l” if the interrupt is of
type “k”, and produces an “IH” token in place “B” with the same identity of
the token removed from the input place.

The special keyword “empty” indicates that no tokens of that type flows on
the arc. For example, handlers of type “j” and “k” release resources of type “l”
after the firing of transition “T2” (one and two resources, respectively), while
handlers of type “i” returns the resource of type “l” only after the firing of
transition “T3”. Similarly, handlers of type “i” and “k” perform actions “T1”,
“T2” and “T3”, while handlers of type “j” stop after action “T2” and continue
with “T4”.

We can see that colored Petri nets allow identifying different handlers, and
to model handlers of different types without affecting the complexity of the net
structure, capturing identity and actions with colors and annotations.

The information captured by structure and annotations can be balanced in
different ways. For example, we could compact all states of the interrupt handlers
in a single state and use colors and predicates to describe the evolution of the
computation.

The various extensions of Petri nets and in particular colored Petri nets
(or, more generally, high-level Petri nets) are very useful for modeling many
software engineering problems, and find some important applications. Unfortu-
nately, adding modeling capabilities and “compacting” the structure solves only
some of the limits of the modeling language. Software engineers need flexible,
adaptable and scalable modeling notations: they need to change and adapt the
notation to the different abstraction levels, to the different stakeholders involved
in the development, to the different application domains, and to the evolution of
requirements during and after development. They need to cope with large prob-
lems and they look for models that help mastering complexity and size. Petri
nets, as many other formal methods, rarely provide the flexibility, adaptability,
modularity and scalability required in software development. Research in Petri
nets moved in two main directions: adding either modeling power or user-friendly
interfaces to Petri nets.
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Fig. 6. A colored Petri net model for a set of interrupt handling routines that access
resources “L” and “M”

Petri nets have been augmented in many additional ways with hierarchy
and object oriented constructs to add flexibility, adaptability and scalability,
i.e., the modeling power sought by software engineers. Although the different
extensions provide useful capabilities and find interesting applications, none of
them has a prominent role in software engineering yet. All these useful attempts
move in a single direction, ignoring the complexity of the software engineering
domain. Software engineering must consider modeling power, precision, ana-
lyzability, but also costs, understandability, tool support, and familiarity with
the notation. Similarly to programming languages, modeling languages succeed
when they present an appealing balance among the different needs. Stochastic
Petri nets represent a notable case: they do not present specific features that
make them more modular, flexible, adaptable or scalable than other Petri net
extensions, but they address a specific problem, namely performance evaluation.
When performance is prominent, and then the tradeoff among costs, training,
understandability, flexibility, adaptability and scalability is unbalanced towards
analysis, software engineers do not hesitate to use stochastic Petri nets in the
mosaic of notations adopted in the software development. The (limited, but no-
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table) success of stochastic Petri nets in software engineering may indicate a
direction to pursue to increase the applicability of Petri nets, or, from a pes-
simistic viewpoint, a limit of their applicability: finding specific problems where
Petri nets can provide an advantageous solution and adapting Petri nets to the
identified problems.

Recognizing that the main advantage of Petri nets, as well as other formal
methods, relies not in their intuitive modeling power as communication means,
but in their powerful analysis capabilities suggests a different research direction
that has been pursued by many scientists: finding “user-friendly” interfaces.
The approach is somehow similar to high level programming languages that pro-
vide a useful abstraction of the underlying machine and hide the complexity of
machine languages, but allow programmers to execute their code, i.e., to take
full advantage of the underlying machine language. Similarly, several scientists
have been worked on “dual-language” approaches where successful user-friendly
specification and design notations are paired with formal models that support
powerful analysis capabilities. The approach has been investigated with many
specification notations and formal models, including Petri nets. The straightfor-
ward operational semantics of Petri nets that supports different types of analysis
including “partial” analysis that can be obtained from example by executing par-
tial specifications, provide a strong advantage over other formal models, whose
semantics cannot be paired with many specification notations as easily as Petri
nets. Moreover, the huge body of knowledge on Petri nets and the immediate
modeling of concurrency aspects makes them more appealing than other formal
models with operational semantics.

Many scientists defined “compilers” from different specification notations (re-
cently UML, but in the past structured analysis, SDL, etc...) to Petri nets. “Tra-
ditional style compilers” that freeze a notation and provide a specific semantics
through a fix mapping to Petri nets forget the tradeoff among the variety of
aspects to be considered in software engineering: while the primary need of
executing the final code overcomes many other requirements, and thus makes
acceptable the use of programming languages with fixed and precise semantics,
flexibility, understandability and adaptability often overcome the need of ana-
lyzability in specifications, thus making it difficult to accept “frozen specification
notations”. Many projects tried for example to find “the” semantics of structured
analysis and provided tools for automatically capturing the identified semantics
with a mapping to Petri nets. The resulting frameworks allow for formally ana-
lyzing structured analysis, but limit the freedom of the analysts or the architects,
who cannot adapt the notation to the specific needs of the end-users, of the ap-
plication domains or of the changes in requirements. Few attempts survived a
few pilot projects.

Several scientists pursue an interesting alternative that consists of providing
flexible semantics, i.e., mappings from specification notations to formal models
that can be adapted to new needs and requirements. Mappings are given as
sets of rules that can be adjusted to meet different needs that result in different
interpretation of the same syntactic element or in modifications of the notation.
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Flexible approaches seem a better tradeoff for software engineering, but their
success is still bound to the ability of identifying a clear advantage in terms of
analysis capabilities added with Petri nets.

Software engineering is dealing with new problems that derive from the
rapid spread of new applications: pervasive computing, mobile applications, het-
erogeneous environments, software components that are reused in new unfore-
seen frameworks, context awareness and new constraints derived from resource
bounds like screen size (palm devices), variable bandwidth (mobile computing)
present new challenges that may not be easily addressable with traditional tech-
niques. The software engineering community is actively seeking new solutions
and ideas to address these new problems. Petri nets as many other modeling
languages may provide useful support to some new challenges, thus starting a
new time for collaboration among the two communities.

4 Petri Nets for Embedded Real-Time Systems

Petri nets can be used to address the needs of specific application domains. Here
we survey embedded real-time systems, which seem particularly well suited for
time and stochastic extensions of Petri nets. We will try to summarize the state
of art and the future trend in this important domain with respect to possible
uses of Petri nets.

In many application domains, software is embedded in larger systems. The
software is the heart of the systems: it sends control signals and receives feed-
back. The behavior of these systems is time dependent: the correctness of the
software cannot be expressed merely in terms of functional relations between in-
puts and outputs, but depends on the instants at which the results are produced.
A functionally correct result produced too late may be wrong. For example, a
drive-by-wire system that computes the correct maneuver for avoiding an obsta-
cle too late, e.g., after crashing into the obstacle, is obviously wrong regardless
of the produced value. Results produced too early may be wrong as well. For
example the signal for controlling the delivery of power to an electrical engine
cannot be produced too early, otherwise the engine may reach a wrong speed at
a wrong time.

Missing deadlines can have different consequences for different systems. In
some cases, it can be tolerated if it does not happen too frequently, while in
other cases, results must be always available within the deadlines. Although
the distinction is not sharp, we often classify real-time systems as hard and soft.
Hard real time systems do not tolerate missing deadlines. An approximate results
produced within the deadline may be preferable to an exact result produced too
late. This is the case of many control systems that must send control signals
when they are needed by the controlled systems: we prefer a vehicle to break a
bit too suddenly, because the control software computes an approximate control
signal, but avoids the collisions, to a vehicle that crashes because the ideal signal
is computed after the collision.
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Soft real time systems can tolerate some late results. For example, voice pack-
ets must be received with specific frequencies for reproducing the correct voice
signal, but a small percentage of late packets can be ignored without appreciable
degradation of the reproduced voice signal.

Hard and soft real time constraints often coexists in the same systems: the
GPS signal used by the drive-by-wire system as well as by the position display
on the driver console owns hard real time constraints in one case, since a late
signal to the drive-by-wire system may cause the vehicle to crash, and soft real
time constraints in the other, since a late signal to the driver display may not
be even perceivable to the end user.

The distinction between hard and soft real time system is important to iden-
tify suitable analysis techniques: performance analysis may be enough for soft
real time systems, but is rarely sufficient for hard real time systems.

Embedded real time systems can be composed of several concurrent subsys-
tems. They include at least the controller and the controlled system, but more
often, both the software controller and the controlled system include several
concurrent subsystems. Different components are often of different nature, the
behavior of the components of the controlled system is usually time-continuous,
while the behavior of the controlling software is usually time-discrete. The con-
trolled system and the controlling software interact through special purpose de-
vices (sensors and actuators) that may be responsible of failures. Moreover, the
timing of the system depends on elements that are usually not considered in
“traditional” systems: hardware, operating system, and middleware. Abstract-
ing from such elements may not be possible for not trivial real-time systems.

Embedded real time systems present many new challenges. Modeling and
analyzing systems in the early development phases requires models and analy-
sis technique that can capture the subtle intertwining between functional and
timing aspects, and that can model both continuous and discrete timing. The
correspondence between requirement specifications and code must take into ac-
count limited availability of resources and constraints that can derive from the
hardware and software platform. Analysis techniques must cope with new prop-
erties that include timing and safety properties.

Petri nets were originally proposed for modeling concurrent systems abstract-
ing away from timing aspects. Extensions of Petri nets for dealing with time have
been studied since the early seventies. We can identify two different approaches:
timed Petri nets that augment Petri nets with deterministic time, and stochastic
Petri nets that augment Petri nets with time probabilities.

Timed Petri nets have been proposed as early as 1974 by Ramchandani [22],
and by Merlin and Farber in 1976 [9]. Since the early proposals, Petri nets
have been extended with time in several ways, by adding time to either places
or transitions or both, by interpreting time as firing delay or firing duration,
by adding a single time value or a time set (interval) to transitions or places.
Different models satisfy different needs, but they are all substantially equivalent
from the semantic viewpoint.
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Sys1-ready [10,15] Sys2-ready [3,6]

process-signal [1,3]

system ready signal

Fig. 7. A simple timed Petri net. Transitions are augmented with pairs of numeric
values that represent the minimum and maximum firing time relative to the enabling
time, i.e., the instant at which all input places are marked. Labels are added only for
referencing. Marking is represented by black dots in places

Extending Petri nets with time can greatly affect the semantics. While weak
time semantics does not affect the locality of enabling, strong time semantics
violates the locality principle. Informally, weak time semantics considers the time
constraints as instants at which the modeled events will happen, if they happen,
while strong time semantics considers the time constraints as instants at which
the events must happen.

Let us consider for example the timed Petri net of Figure 7 that represents a
simple systems where an incoming signal can be handled by two different signal
handlers (Sys1 and Sys2 ). Sys1 required from 10 to 15 time units to become
ready, Sys2 requires from 3 to 6 time units. The signal is processed in 1 to 3
time units.

If we consider each transition “locally”, i.e., ignoring relations among firings
that may derive from time constraints, both transitions Sys1-ready and Sys2-
ready are enabled. If transition Sys1-ready fires at time e.g. 10, transition process
signal is enabled in the interval 〈11, 13〉, i.e., between 1 and 3 time units after
the enabling at time 10. The firing of transition process-signal at time e.g. 12
consumes the tokens. Thus, the token in place signal is not available any more.
If we now consider again transition Sys1-ready enabled between 3 and 6, it can
fire e.g. at time 5. The considered sequence of firings can be ordered to obtain
a monotonically non-decreasing sequence with respect to time: Sys1-ready at
time 5, Sys2-ready at time 10, process-signal at time 12, obtaining a legal firing
sequence according to weak time semantics. This is true in general: each firing
sequence obtained by considering transitions locally is equivalent to a legal time
monotonically non-decreasing firing sequence according to weak time semantics.
This means that analysis performed on the underlying Petri net produces results
that are valid also for the timed net.

In the considered example, the obtained sequence represents the case in which
Sys1 becomes available for handling the signal at time 5, but does not handle
the signal for some reasons that are not explicitly captured by the model. The
signal is handled later by Sys2 that becomes available at time 10.
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Fig. 8. Weak vs. strong time semantics

Unfortunately, strong time semantics does not have this nice property. The
same firing sequence cannot be ordered according to strong time semantics, as
illustrated in Figure 8. Initially both transitions Sys1 and Sys2 are “locally”
enabled, but transition Sys1 must fire before its deadline (time 6). The firing of
transition Sys2 e.g. at time 5 enables transitions process-signal within the time
interval 〈6, 8〉. Transition process-signal must fire before time 6. Transition Sys1
can fire only after the firing of transition process-signal, e.g., at time 10. Since
transition process-signal is forced to fire before time 8, removing the token from
place signal, the token produced by the firing of transition Sys1 cannot enable
transition process-signal, differently from the case of weak time semantics.

The model used in Figure 7 that associates firing fixed time intervals to
transitions cannot capture all aspects of real time systems. In particular, we
cannot model complex intertwining between timing and functional aspects. Let
us assume for example that the processing of the signal depends on the load of
the system that handles it, and that the choice of the handling system depends on
the characteristics of the incoming signal. The fixed time interval associated to
transition process-signal that indicates the minimum and maximum firing time
as constants can approximate the modeled system by indicating an upper and
a lower bound, and cannot express complex conditions for selecting the signal
handler depending on the nature of the signal.

Complex intertwining between timing and functional aspects can be modeled
by merging timed and high-level Petri nets (HLTPN). HLTPNs associate data
(and timestamps) to the tokens, and predicates, actions and time functions to
transitions, as shown in Figure 9.

Soft real time systems can be modeled and analyzed with stochastic Petri
nets that were first proposed in the late seventies by Sifakis [23] and later ex-
tended by many scientists. Stochastic Petri nets augment transitions with a
distribution of probability that the transition will fire. Figure 10 shows a simple
example of generalized stochastic Petri nets: a processing task that may or may
not require instrumentation, and may or may not require elaboration. The two
choices are represented with the two pairs of conflicting transitions need instru-
mentation, instrumentation ok, and need processing, system ok. Black transitions
indicate immediate transitions, i.e. transitions that fire immediately, represent-
ing instantaneous decisions, while white transitions indicate timed transitions,
representing the termination of actions with given durations. Transitions are
associated with a priority π and a weight W. Immediate transitions fire first,
while timed transitions fire only when no immediate transition is enabled. Pri-
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process-signal
predicate: suited(system_ready.type, signal.type)
action: .....

   tMin: minTime(system_ready.load)
   tMax: maxTime(system_ready.load)

Sys1-ready
      ........

Sys2-ready
      .....

system ready signal

type

type,
load

type,
load

Fig. 9. A simple HLTPN. Data associated with tokens are represented with types.
Predicates, actions and time intervals associated with transitions are partially given
only for transition process-signal. The predicate requires the evaluation of a boolean
function suited that computes the suitability of the system to process the signal. The
time interval can be computed by evaluating functions minTime and maxTime that
compute the minimum and maximum firing time according to the load of the system

p0 p1 p2

p3
need instrumentation

instrumentation ok

instrument

need processing

system ok

1=1

2=1

4=1

5=1

W3 = 

p2

process

W6 = 

W1 = 9

W2 = 1

W4 = 8

W5 = 2

3=0

6=0

Fig. 10. A simple generalized stochastic Petri net

ority defines a (partial) order of firings among transitions of the same kind. The
weight indicates the frequency of firings for immediate transitions with equal
priority, and a distribution of probability that describes the firing time of timed
transitions.

In the example, transitions need instrumentation and instrumentation ok
have the same priority and fire with a ration of 9:1, while transitions need pro-
cessing and system ok, also with equal priority, fires with a ration 8:2.
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Stochastic Petri nets support powerful performance analysis that determines
their success in important application domains. Timed Petri nets support time
reachability analysis.

Real time systems are quickly evolving: the spread of SoC (System on a Chip),
the vanishing distinction of hardware and software components, the increasing
use of COTS (Components-Of-The-Shelf) in complex real time systems, the
introduction of Internet connectivity introduce new challenges that call for new
methodologies and techniques and open new potentialities to Petri nets as well
as other formal methods.

5 Software Processes

Complex software is developed by a set of specialists that use many techniques
and tools, and collaborate over a long period of time to design, develop and
maintain a suitable product. Often, nobody knows all the details of a software
product, but different actors share partial views of the system. For example,
managers and analysts may have an abstract view of some aspects of the overall
system, but may not know all implementation details, while architects, designers,
programmers and test engineers may have a detailed view of part of the software,
but not be familiar with other parts.

People, techniques and tools must be suitably coordinated and organized over
time to assure the success of a project, i.e., the developed of the right product
within time, resource and environmental constraints. The overall organization of
the activities required to develop, test and maintain a software product is called
a software process.

A software process consists of a set of interacting software engineering activ-
ities aimed at producing (and maintaining) a software product. A key property
of a software process is visibility, i.e., the ability of examining progresses and
results. Process visibility gives the possibility to monitor and steer the process
towards its goals. Visibility is often achieved by identifying different phases and
associating activities and phases with the production of intermediate artifacts,
such as, requirements specifications, design specifications, code and quality re-
ports, which are often associated with process milestones.

Large projects span over many months. Requirements are seldom clear at
the beginning of the project. Usually a first core of requirements is detailed
and expanded through the process following the increasing understanding of the
problem and the solution, and adapting to the evolution of the domain. Systems
are rarely developed as single monolithic products. More often, systems are de-
veloped incrementally though several iterations that produce many prototypes
and releases that increasingly approximate the final product. Process phases can
seldom be organized as separate development steps, as postulated by the water-
fall process model. They often overlap with complex interaction patterns that
must be suitable organized and monitored. Software projects usually involve
separated teams that work concurrently on different phases of the process.
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The large variety of situations results in many different requirements that
cannot be fully captured by a standard process. Each project has its own prop-
erties, and requires a specific process. The definition and implementation of a
software process is a complex activity that can and shall be suitably programmed
and executed [24]. Software processes must be suitably described to guide and co-
ordinate the key activities, and to push forward repeatability and controllability
of the processes. Rigorous software process descriptions enable the development
of tools to enact process descriptions thus automating coordination of activities,
tools and people. The definition of precise process models is also referred to as
software process programming.

The goal of software process programming is the creation of process-centered
software engineering environments (PSEEs), i.e., information systems that sup-
port the enactment of software processes. The core of a PSEE is a Process Mod-
eling Language (PML), i.e., the language used to describe the target processes.
Ambriola et al. outline the main requirements for a PML [25], which can be
summarized as follows:

Modeling concurrency: Concurrency is intrinsic in software processes. PMLs
must be able to clearly capture the concurrency of activities and their syn-
chronization.

Modeling products: The artifacts produced during software development are
complex and strictly interrelated. For example, a test report that points
out a failure of a software system must be related to the tested software
version and to the revealing test case, which in turn is related to a number
of implementation artifacts (e.g., test drivers and stubs). PMLs must take
into account the structure of the artifacts involved in the process and their
mutual relationships.

Managing tool integration: Software process activities are supported by sev-
eral tools (e.g., editors, compilers, debuggers, configuration management sys-
tems, and so forth). Mechanisms to control at a fine-grained level the tools
involved with the process are essential for managing the interactions between
a PSEE and its users in an effective way. PMLs must provide both active
and reactive mechanisms to allow the PSEE to send messages to external
tools and to react to messages from external tools, respectively.

Supporting process enactment: Software process descriptions must be in-
terpreted to provide automatic support to processes when they are executed
(process enactment). PMLs must produce operational descriptions with well-
defined non-ambiguous semantics.

Supporting analysis: PMLs must support verification of important proper-
ties, e.g., absence of deadlocks, against process descriptions.

Supporting evolution: Software process improvement is an important issue
in software engineering and has been the target of important industrial and
research activities in the last years. For example, the SEI Capability Matu-
rity Model (CMM [26]) defines a framework for assessing the level of matu-
rity of a software process. This framework consists of five maturity levels.
At the fist level, software processes are chaotic and uncontrolled, activities
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TestCases:
class TestCase
   inherits ModelType
   type tuple
     (public name: String,
      public testData: Text)

UnitUnderTest:
class ExecUnit

   inherits ModelType
   ….

event AllTestCasesRun(CTR, TRS: TestSummary)
   guard CTR->pendingTestsNum > 0
   action {TRS = CTR}

CumulativeTestResults:
class TestSummary
   inherits ModelType
   ….

TestReport:
class TestSummary
   inherits ModelType
   ….

TestData:
class ExecTest

   inherits ExecUnit, TestCase
   ….

TestResults:
class TestResult

   inherits ModelType
   ….

event StartTesting ...

event ExecuteTest (T: TestData)
Action{// calls the testing tool}

event AddToTestResults ...

(“test1", …)

(“test2", …)
(“my unit", …)

Fig. 11. Description of a generic unit test session in SLANG

are carried without any explicit guideline and there is no description of the
process. The introduction of methods and technologies such as configuration
management, quantitative measurement, quality control and process descrip-
tion, is expected to gradually increase the maturity of a software process and
correspondingly its capability of dealing successfully with complex software
projects. At level 5, software processes are continuously improved based on
the experience and data accumulated over time. Mature software processes
must support evolution of the the process descriptions. To this end PMLs
must possess reflexive features allowing to modify process descriptions either
off-line or on-the-fly.

Petri nets present several nice properties that make them particularly ap-
pealing as PML: They have a precise semantics; They provide an intuitive way
of modeling concurrency and non-determinism; Their marking supports easily
modeling of the process state, thus facilitating the representation of milestones
and conditional choices; Their operational semantics allows to easily represent
and analyze process enactment; Their intuitive visualization provides an excel-
lent communication means; There exists a large body of theory that support
analysis of many properties under different assumptions; There are many sup-
porting tools.

Basic Petri nets have been extended and specialized in several ways to cover
all requirements of a PML, by adding reflexivity, features for modeling process
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artifacts, and mechanisms for managing tool integration. Extensions of Petri nets
to cope with process modeling aspects are illustrated in the example of Figure 11
that shows a model of a generic unit test session in SLANG (the PML of the
SPADE PSEE [19]). The availability of both the unit under test and a set of
corresponding test cases triggers the testing activity that starts setting up the
testing environment and starting the tracking of cumulative test results. The
test results are incrementally cumulated while executing the test cases. When
all test cases have been executed, a test report is generated.

SLANG extends high-level Petri nets, using tokens to represent the process
data. SLANG tokens are structured objects whose types are defined in the tradi-
tional object-oriented style, i.e., as a data structure that can be accessed through
a set of exported operations. The net places are associated with a type (a.k.a.
class) and they can contain only objects of the associated type. All SLANG types
are organized in a type hierarchy as specified by the inheritance relation. The
object oriented-paradigm makes it possible to describe the structure of software
artifacts. For example, in the figure, the test cases are described as tuples with
two fields: a string that identifies the test case by name and a text that describes
the test data.

The transitions that in SLANG are called events are associated with guard
predicates that control their execution, and actions that that describes the effect
of the firings on the tokens. A transition can fire if enabled by the associated
guard predicate evaluated on the tokens in the input places. Its firing removes the
tokens from the input places and produces tokens in the output places according
to the associated action. For example, in the figure, the transition AllTestCases-
Run is not enabled (guarded) until there are still test cases to execute. Its firing
produces the test report from the incrementally generated test summary.

SLANG uses special black transitions and user places to integrate CASE
tools. Black transitions send asynchronous messages to external tools as part of
their action. User places (double circles) change their content as a result of an
event that happens in the user environment. For example, in the figure, the event
ExecuteTest is a black transition whose action calls an external testing tool for
executing the test cases. After the execution of each test case, the external tool
will produce a token in the user place TestResults, thus allowing the process to
progress.

SLANG provides reflexive features for dynamically modifying a process de-
scription. Figure 12 shows a SLANG type hierarchy that includes both the pre-
defined SLANG types and the user defined types for the previous examples.
All types that participate to a process description derive from the predefined
type Token that defines the set of properties common to all tokens. All user
defined types inherit (directly or indirectly) from the predefined type ModelType
which is a direct descendent of Token. The set of predefined types includes three
additional types: Activity, Meta type and Active copy that allow to access the
activity definitions, the user type definitions and the instantiated copies of a
process during enactment, respectively. The specification of how to modify the
process can be part of the process description itself.
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Token

ActiveCopy MetaTypeActivity ModelType
SLANG predefined types

User defined types

TestCaseExecUnit

ExecTest

TestResult TestSummary

Fig. 12. A SLANG type hierarchy

Thirty years of research solved many problems in software process model-
ing, but some are still open: tolerability to inconsistencies and incompleteness,
non-intrusiveness of PSEE, inconsistency management are some of the problems
where Petri nets can find new applications.

6 Further Readings

The literature on software engineering and Petri nets is immense and finding a
good compass is hard. Here we try to indicate some doors to access the enormous
body of knowledge for identifying areas of common interest for software engineers
and Petri net experts following the schema of this paper.

A good way for understanding problems and dimensions of software engineer-
ing is the volume “Future of Software Engineering” published in 2000 [27]. The
introduction illustrates the many dimensions of the discipline, while the many
papers present the current trends of the most important areas.

Modeling languages have been widely studied and it is difficult to identify
a good survey. Interested readers can find a general overview in software engi-
neering handbooks, e.g., in [28], [29] or [30]. A good survey of formal methods is
given by Wing [31], while an interesting discussion on the role of formal methods
in software engineering is proposed by Saiedian [32]. The different models that
comprise the UML approach are illustrated in many book, e.g., [21].

A comprehensive overview of Petri nets is given in [33]. Colored Petri nets
together with a sample of industrial applications are presented in Jensen’s books
[34–36]. The volume edited by Agha and De Cindio discusses the use of Petri
nets in the object oriented framework [37].

Approaches for mapping various notations to Petri nets have been proposed
by many authors: [38–42]. Rule based mappings have been proposed by Paige [43]
and Baresi et al. [44].

Stochastic Petri nets are presented in the books by Bause and Kritzinger and
by Ajmone Marsan et al. [45, 46]. Timed Petri nets are discussed in the classic
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paper by Merlin and Farber [9], while high-level timed Petri nets (ER nets, in
the paper) and weak and strong time semantics have been introduced by Ghezzi
et al. [11]. Time Petri nets are overviewed also in in the book by Nissanke [12].
Time reachability analysis is discussed by Berthomieu and Diaz [10] for timed
Petri nets, and by Ghezzi et al. for high-level timed Petri nets [47].

The term “software process” was first proposed by Osterwiel in his seminal
paper [24]. Various PSEE are discusses in many papers, e.g., [48, 49, 19, 18]) The
possibility of using Petri nets as a PML for describing workflows of business
processes and many results related to the use of Petri nets for this purpose have
been described in Chapter 12 of this book.

7 Conclusions

The meeting of problem- and solution-oriented disciplines can lead to important
progresses in both areas. Petri nets provide an excellent means for modeling
concurrent aspects and have been extended in many ways to cope with many
problems. Petri nets have been successfully applied many times to several soft-
ware engineering problems. However, the two disciplines do not go through a
period of particularly strong cross fertilization. This paper tried to overview
some aspects of software engineering, pointing to aspects where Petri nets have
been or can be proposed as solutions to critical problems. We hope to have pro-
vided few ideas to foster new fruitful collaborations between the two disciplines.
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Abstract. This work considers model construction and validation in
controller design. The problem we are interested in is to derive a formal
model of a controlled automation system from a semi-formal description
of the uncontrolled plant and various requirements concerning the plant
and the processes of the controlled system. These requirements are orig-
inally formulated on many different abstraction levels, partly employing
formal notations, partly using just natural language and partly consist-
ing of mixtures of both. Moreover, they are often incomplete, contain
errors, contradict each other and assume some domain knowledge which
is typically not explicitly stated. So a crucial part of the model construc-
tion process is the formalization of the plant and of the requirements as
well as validation of the derived models. We suggest a simulation-based
method which employs formal and graphical representations of process
models and specifications and which involves an iterative process of for-
malization and validation of requirements. The approach is based on
particular Petri nets, called signal nets, as formal process models and
partially ordered runs as their semantics. This contribution also reports
on a case study from the automotive industry.

1 Introduction

This contribution is on model based development of software systems that are
supposed to run in a technical environment. More precisely, we deal with the
development of such systems which is based on formal process models. We use
a tailored variant of Petri nets together with a process net semantics.

Model based system development can only lead to a valuable system if the
underlying models faithfully represent the requirements. The requirements in-
clude information about the existing or the planned environment of the system
as well as the desired system behavior within this environment. These statements
hold true for a wide range of systems. In this work we concentrate on computer
systems which are supposed to function in a given technical environment. These
include automation systems composed of a plant and a control restricting the
plant’s behavior. In particular, we consider embedded systems in cars. In this
setting, the aim is to develop a control algorithm such that the controlled sys-
tem matches the requirements. Unfortunately, the requirement specification is
often formulated on many different abstraction levels, partly employing formal
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notations, partly using just natural language and partly consisting of mixtures
of both. Moreover, it is usually incomplete, contains errors, is contradictory and
assumes some domain knowledge which is not explicitly stated.

Since the general aim is to develop the controller software, one possible ap-
proach would be to start with generating a formal specification of this software.
This software has to run within the environment. Therefore, a formal specifica-
tion of this environment, namely the plant, is necessary as well. This specification
is not easy to obtain because the user is interested in the overall behavior. Thus
he will only provide information concerning the controlled system, i.e. the com-
position of plant and control. Moreover, the precise behavior of the plant might
be unknown as well. Faulty assumptions on the plant specification will lead to
faulty or incomplete control specifications, which eventually leads to controller
software that matches the specification but does not satisfy the user’s needs.

Therefore, we proceed differently; we aim at a model of the entire system,
including both the plant and the control. This model can be viewed as a speci-
fication of the total system. A given control software matches the specification
if its behavior together with the plant precisely corresponds to the behavior of
the model. The model of the entire system is generated from the different spec-
ification items that are given in different form mentioned above. The crucial
steps in model construction are the appropriate formalization of the require-
ments (and their validation) and the correct generation of the model from the
formal specifications.

Model construction is used in controller design for the examination of specifi-
cations w.r.t. feasibility and for creation of reference models for the final system
that are used for verification and tests. These models are also very useful as a
basis for model-based test case generation. So we view model construction, for-
malization and validation as one important early phase in the process of system
development.

This work will present an approach for model construction for controlled
systems that employs different formalization / validation steps and a synthesis
procedure to obtain the model from the specifications in a systematic way. It
also presents a case study developed with the car manufacturing company Audi
(see also [8]) and reports on experiences with applying this method.

The basis of our formal modelling language are signal nets [11, 14, 15], an
extension of Petri nets. In order to adapt our modelling language to industrial
relevance, features for modularity, interaction between modules and differentia-
tion between controllable, observable and internal events had to be integrated.
Extensions also concern a timing concept for representing real time aspects and
real-valued sensor data employing concepts of High-Level nets. The approach is
based on simulation and verification. By simulation we mean construction and
inspection of partially ordered causal runs, represented again by signal nets.

The paper is organized as follows: In the forthcoming section we describe
what we mean by validation of models, in contrast to system validation. We
also distinguish validation from verification and formalization from specification.
Section three is devoted to the steps of our approach in a general setting. In
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section four, our formal modelling language is presented. The causal simulation
of our extension of signal nets, its advantages and some words about algorithmic
aspects is the topic of section five. Section six illustrates applying this approach
to the industrial case study, also providing net models and partially ordered
runs. Finally, experiences from the case study are outlined in section seven.

The first sections of this paper are strongly based on [2] and [5], where more
details can be found. Different aspects of the approach were also adapted to and
presented in various different communities (see [1], [3], and see [4] for using part
of the concept for education purpose).

2 Model Validation

This section is devoted to a general discussion of the term “model validation” in
system design. Validation is usually related to systems. We adapt its meaning to
models. The usual definition of validation of a system in relation to verification
and evaluation reads as follows:

Validation. Validation is the process determining that the system fulfills
the purpose for which it was intended. So it should provide an answer
to the question “Did we build the right system?” In the negative case,
validation should point out which aspects are not captured or any other
mismatch between the system and the actual requirements.

Verification. Verification is the automated or manual creation of a
proof showing that the system matches the specification. A correspond-
ing question is “Did we build the system right?” In the negative case,
verification should point out which part of the specification is not satis-
fied and possibly give hints why this is the case, for example by providing
counter examples. Nowadays, model checking is the most prominent tech-
nique used for automated verification. Proof techniques can be viewed
as manual verification methods.

Evaluation. Evaluation concerns the questions “Is the system useful?”,
“Will the system be accepted by the intended users?” It considers those
aspects of the system within its intended environment that are not for-
mulated or cannot be formulated in terms of formal requirements speci-
fications. The question “How is the performance of the system?” might
also belong to this category, if the system’s performance is not a matter
of specification.

This contribution is about validation of models, namely process models. So re-
placing the term “system” in the above definitions by “process model” should
provide the definitions we need. Models are used as specifications of systems.
Unfortunately, replacing “system” by “specification” in the definitions does not
make much sense. So we need a more detailed investigation of the role of models
and of validation in model-based system development.
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Fig. 1. Model based system development

In Figure 1, the model is an abstract representation of both, the relevant part
of the “real world” and the actual system implementation. It abstracts from
irrelevant details of the considered part of the “real world”, and it abstracts
from implementation details of the system. Verification mainly concerns the
relation between the model and the system implementation, validation concerns
the relation between the model and the “real world”, whereas evaluation directly
relates the system and the “real world”.

The above view ignores that the system to be implemented will have to
function within an environment, which also belongs to the “real world”. So
the left hand side and the right hand side of the picture cannot be completely
separated; they are linked via the “real world”. Figure 2 shows a more faithful
representation of the situation.

model of the
real worldreal

world

 require-
ments

real
world

system
model
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require-
ments

Fig. 2. Capturing the embedding in the real world

Notice that the word “system” is used with different meanings: the “real
world” (environment plant), the software system to be implemented (control)
and the composition of both (the controlled plant). In the sequel we mainly use
the term for the environment together with (part of) the control.

A more detailed view of the model distinguishes requirements specification
and design specifications on the level of the model.

The model of the real world is obtained by analysis of the domain and formal-
ization of its relevant aspects. The requirements specification models the require-
ments and is derived by formalization of the requirements that exist within the
“real world”. The design specification can be viewed as a model of the system im-
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Fig. 3. Capturing requirements and design specifications

plementation, without considering implementation details though. This model
has to satisfy all properties formulated in the requirements specification. The
transformation from the requirements specification to the design specification is
a nontrivial task. Finally, there should be a more or less direct transformation
from the design specification to the system implementation. This implementation
of the system is also said to be specified by the design specification.

Now let us consider the reverse direction. It is a matter of verification to
check whether the design specification actually matches the requirement speci-
fication. It can also be verified whether the system implementation reflects the
design specification. The correctness of the formalization transformations can
only be checked by validation. So “formalization” and “validation” is a related
pair of terms in the same sense as “specification” and “verification”. Finally, re-
quirements that are not captured in the model can only be checked by evaluation
of the system implementation within the “real world”.

In Figure 4, the arrow annotated by “evaluation” points to the “real world”
including the system requirements whereas the lower arrow annotated by “vali-
dation” addresses only the “real world” without system requirements.
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Fig. 4. The position of validation, verification and evaluation



472 Jörg Desel, Vesna Milijic, and Christian Neumair

In our context of controller design, the plant is part of the real world (the
environment, respectively) and the control plays the role of the system imple-
mentation. Formalizing the description of the plant will yield a formal process
model whereas the formalization of the requirements have to be interpreted on
this process model, or, respectively, on its behavior. Both formalization steps
have corresponding validation steps that are supported in our approach.

3 The Approach

How can we derive a valid formal model from a semi-formal description of a
controlled system and of its desired behavior? There is no general answer to this
question, since modelling is a creative process. Creating a model always means
to formalize concepts that have not been formulated that precise before. There-
fore, misunderstandings, errors, missing assumptions etc. can not be avoided in
general. The best we can expect is to provide means for detecting these errors
as soon as possible.

We concentrate on process models that have a dynamic behavior and can
thus be executed. So for each process model there is the notion of a run, i.e.,
one of its executions. Our basic assumption is that the domain expert (the user
of our approach) knows well what the correct runs of the desired system should
look like but might have problems in formalizing an appropriate specification
of this set of runs. We will use causal runs, given by partially ordered sets of
events and local system states. A definition of causal runs and their graphical
representation is deferred to the next sections.

As mentioned in the previous section, formalization tasks appear at different
steps: First, a given or planned system that serves as the environment or plant
has to be modelled. Second, the requirements of the controlled system has to be
specified. Both aspects deserve additional validation procedures. Given a valid
model of the plant and a valid specification of the controlled system, the following
step is to design the control algorithm and to verify its correctness with respect
to the specification. This step is not within the scope of our approach (see [15]).
However, it will turn out that some verification means can also be used for
validation purposes.

We first consider the problem of modelling a given system (the environment).
The behavior of the system should precisely correspond to the behavior of the
model. Assuming that we have a version of this model, our approach generates
the runs of the model, visualizes this behavior in an appropriate way and presents
the result to the expert. This model is often derived directly from the system’s
structure and architecture. If the behavior of the system rather than its structure
is known, then a first version of the system model is constructed from the runs
by folding appropriate representations of runs (this procedure is given in [3] for
workflow models).

The simulation of the system model either shows that the model can be
accepted or that it does not yet match the system. In the latter case, the model
is changed according to identified modelling errors and the procedure is repeated.



Model Validation in Controller Design 473

Only when the simulated runs of the model coincide with the required runs, the
model can be used to obtain information about the system. The procedure for
model validation can be complemented by verification means: If some behavioral
properties of the system are known then the model should satisfy according
properties as well. Since this verification step is sometimes hard to conduct, there
is an intermediate solution for properties that all runs should satisfy: Simulation
is paired with verification of the simulated runs. This requires an analysis method
for runs, which is also the kernel of the formalization of other requirements, to
be discussed next.

We now consider the formalization and validation of requirements. That is,
we assume to have a valid model of the environment (the plant) and add require-
ments that have to be satisfied by the controlled system, i.e., that have to be
guaranteed by the desired control. In our approach, we only consider required
properties that can be formulated as properties of runs (generally, all properties
of a Linear Time Temporal Logic). These requirements are formalized, validated
and implemented step by step. In the first step, we begin with some of the re-
quirements and analyze simulated runs of the existing model with respect to
these requirements. The result is a distinction of those runs that satisfy the re-
quirements and those that do not. This way, the user gets information about
his requirement specification in terms of runs (“did you really want to rule out
precisely those runs that failed the test?”). Figure 5 illustrates this step. After an
iterative reformulation of the first requirements the simulation based approach
should eventually yield a valid specification of this requirement. Thereafter the
system is modified in such a way that it satisfies this requirement. For some
requirement specifications, there is an automated procedure for this task. In
general, however, there is some freedom in how to implement the requirement.
The implementation of the requirement is either verified by appropriate verifi-
cation techniques or checked again by simulation.

After the first step, a second requirement can be formalized, validated and
implemented, based on the modified model, in the same way (see Figure 6), and
so on. Notice, however, that the implementation of the new requirement should
not violate a previously implemented requirement. As long as all requirements
only restrict the set of possible runs, this problem does not occur. But, if liveness
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Fig. 5. A first step in requirements validation
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properties (requiring that something eventually happens) and safety properties
(requiring that something bad does not happen) are added in arbitrary order,
then previous steps might have to be repeated.
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Fig. 6. A second step in requirements validation

4 The Modelling Approach

4.1 The Modelling Language

To model a system, we use signal nets [6, 7, 11, 15, 16] that are an extension of
Petri nets. A signal net is, like a Petri net, a graph with two types of nodes. Our
modelling language extends signal nets to principles like modularity, interaction
between modules and differentiation between controllable, observable and inter-
nal actions. Also a timing concept for representing real time aspects and concepts
of High-Level nets for representing real-valued sensor data are included.

Places. Each place may contain tokens from a place-specific defined set of token
types, called domain. The same token can appear more than once in a place. To
depict output-places, where tokens represent data to be read from outside, grey
background color is used. We distinguish two kinds of places, namely low-level
and high-level places.

– Low-level places are represented by a simple circle. The domain of low-level
places contains a single token type: a black token. The number of black tokens
represents the actual state of the place. If these places represent conditions
then in any reachable state they contain at most one black token: one token
means that the condition is fulfilled, no token means it is not. This will be
the case in the examples given in section six.
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– High-level places are represented by a double-framed circle. The domain
of these places is an arbitrary nonempty set of token types. The state is
symbolized by the number of tokens which belong to each token type. In the
examples, high-level places will only contain one token and the domain will
be always the set of real numbers. Hence, to simplify matters, the state of a
high-level place will be symbolized by a real number.

Transitions, drawn as rectangles, represent actions. Actions that do not underly
the control algorithm, called uncontrollable, like user driven actions or errors
will be symbolized by a darker grey background. Transitions with a light grey
background characterize actions that generate new values, for example for sensor
data. These transitions and the white colored transitions are controllable.

Arcs. Nodes can be connected by different kinds of arcs.

– Flow arcs are black arcs that either connect a place with a transition or a
transition with a place. They may have a time label. In the case they connect
high-level places and transitions or vice versa, they are labelled by a variable.

– Read arcs are double-sided black arcs between transitions and places. If they
connect high-level places and transitions, they are labelled by a variable and
may also have a time label.

– Write arcs are double-sided grey arcs between transitions and high-level
places that are labelled by two variables and possibly a time label.

– Synchronization arcs connect two transitions and are graphically represented
by jagged arcs.

s t s tx
s txo, xn

t1 t2
a) d)c)b)

Fig. 7. a) Flow arc b) Read arc c) Write arc d) Synchronization arc

A state of a signal net is determined by its current distribution of tokens in
the places, also called marking. We denote the initial distribution of tokens by
initial marking. The dynamic behavior of a signal net is given by the firing of
transitions. The surrounding arcs determine whether a transition may fire and
how its firing changes the marking.

Transitions that are not connected to high-level places are called low-level
transitions. If every low-level input place, connected to the low-level transition
by a flow arc or a test arc, contains a token, this transition is enabled and may
fire.

A transition which is connected by labelled arc with at least one high-level
place is called high-level transition. Each variable of the labelled arc can be
substituted by a value of the domain of the connected high-level place (so in
our case by a real number). A high-level transition may have a firing condition,
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Fig. 8. On the left hand side you can see a net where transition t cannot fire because
of the empty place s2. The right hand side shows a net where transition t is able to
fire and the resulting state of the net after firing of t
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Fig. 9. On the left hand side, transition t cannot fire because of the empty place s3.
On the right hand side, firing is possible
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Fig. 10. This net contains two high-level places (s2 and s3). Place s2 contains the
token 2.3. Firing transition t substitutes x and y. While x has to be substituted by 2.3
(as the token of place s2), variable y can be substituted by an arbitrary value but not
the same as x. On the right side you can find the resulting net after firing with x = 2.3
and y = 4.1

i.e., a Boolean term that includes the variables from the labelled arcs connected
with the transition. To fire a high-level transition, values for the variables at
the surrounding arcs have to be substituted in the following way: The variable
of an arc, resp. the first variable in the case of a write arc, leading from a
high-level place to the transition is substituted by a token of this place. The
substituted values must fulfill the firing condition of the transition. Moreover,
each low-level input place, has to contain a token. The firing of a transition
(high- or low-level) deletes a token from each low-level input place connected
with a flow arc and produces a token in each low-level output place connected
with a flow arc. Firing a high-level transition deletes the current value in each
input high-level place and produces in every output high-level place the token
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determined by the substitution of the arc variable. In addition, firing a high-level
transition deletes the current value in every high-level place connected with the
transition by a write arc, and the value that substitutes the second variable of
the write arc is produced. Read arcs do not change the token of the place they
are connected with. If an enabled transition is connected to another enabled

s3 t
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s2

s3
t

s1

s2

xo, xn
2.3 4.2

xo, xn

Fig. 11. This example shows a net with a write arc before and after firing of transition
t with the substitution xa = 2.3 and xn = 4.2

transition by a synchronization arc, both transitions will fire at the same time
(the first transition is synchronizing the second transition). A transition with an
incoming synchronization arc will never fire without the synchronization signal,
whereas a synchronizing transition can also fire alone. Our extension of signal
nets also provides a concept of time. An enabled transition fires immediately
after the time on the label of every arc with time label ingoing to the transition
has expired after enabledness. A time label of an arc leading from a transition to
a place causes that firing the transition produces a token in the place after the
time of the time label has passed. The time label of a write arc between a place
and a transition means that by firing the transition the old value is replaced by
the new value after the time on the label has passed.

Controllable transitions that have only ingoing flow and write arcs without
time label underly the progress assumption. This means that for each set of tran-
sitions which are pairwise in conflict, one will eventually fire. Two transitions,
which are both enabled, are in conflict if after firing one transition the other one
is no more enabled.

4.2 Causal Semantics

We now concentrate on process models, i.e., on specifications of runs of a sys-
tem. Each process model has a dynamic behavior, given by its set of runs. In
a run, actions of the system can occur. We will distinguish actions from action
occurrences and call the latter events. In general, an action can occur more than
once in a single run. Therefore, several events of a run might refer to the same
action. Runs and events of our extension of signal nets can be defined in several
ways. We will discuss sequential runs, given by occurrence sequences and causal
runs, given by process nets.
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Fig. 12. a) In this net, transitions t1 and t2 are enabled to fire. Firing transition t1
synchronizes transition t2, which then also fires. The net state before and after firing
is presented. b) In the second case, only transition t1 can fire and does not synchronize
transition t2 as the place s2 contains no token. c) Transition t1 cannot fire because of
place s1 contains no token. So transition t2 will not fire because it is not synchronized
by transition t1

There are basically two different techniques to describe the behavior of our
signal net model: A single run can either be represented by a sequence of action
names, representing subsequent events, or by a causally ordered set of events.

The first technique is formally described by occurrence sequences. It consti-
tutes the sequential semantics. The main advantage of sequential semantics is
formal simplicity. Sequential semantics generalizes well-known concepts of se-
quential systems. Every occurrence sequence can be viewed as a sequence of
global system states and transformations leading from a state to a successor
state.If transitions fire synchronously due to synchronization arcs, we combine
the names of these transitions and regard them as one event. In sequential seman-
tics, a run is represented by a sequence of events such that causal dependencies
are respected; if an event causally depends on another event, then these events
will not appear in the reverse order in an occurrence sequence.

The second technique employs process nets representing causal runs. It con-
stitutes the causal semantics of our extension of signal nets. Also process nets
are extended signal nets. One of the main advantages of causal semantics is its
explicit representation of causal dependency, represented by paths of directed
arcs in process nets. Consequently, concurrent events are events that are not
connected by a path in a process net.

A causal run consists of a set of events (representing the firing of one or a set
of synchronized transitions each), symbolizing action occurrences of the system.
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An action can only occur in certain system states, i.e. its pre-conditions have to
be satisfied. The occurrence of the action leads to a new system state where some
post-conditions of the action start to hold. An event is therefore causally depen-
dent on certain pre-conditions and might lead to new conditions that are causal
prerequisites for other events. Combining events with their explicitly modelled
pre- and post-conditions yields a causal run, formally represented by a process
net.

Our extensions of signal nets make it necessary to take some further notes
on causal runs concerning causal dependencies of events.

– A read arc either tests if a condition is fulfilled (low-level place) or reads some
value (high-level place) but it does not change the token in the connected
place. Hence, it is possible that more than one transition connected with the
same place by read arcs can simultaneously access the place. Thus, read arcs
do not influence the causal dependencies between events.

– In our modelling language, time aspects are modelled by time labels on some
arcs, which either cause that transitions fire immediately after a certain time
has passed or that tokens are produced after a certain time period. These
time aspects have no effect on the formal system’s behavior, i.e., they do not
influence dependencies of events in a process net.

– Finally, remember that we consider the firing of synchronous transitions as
one event.

In a process net, each token is produced by at most one transition occurrence,
and it is consumed (remember that read arcs just test, but do not consume) by
at most one transition occurrence. Hence, conditions of process nets are not
branched w.r.t. flow and write arcs.

The immediate causal dependency of events is represented by the flow and
write arcs of a process net. No two elements can be mutually causally dependent,
in other words, the flow and write relation has no cycles. So the causal relation
is a partial order that we call causal order. Two different events are causally
ordered if and only if they are connected by a chain of directed flow or write
arcs. Otherwise, they are not ordered but occur concurrently.

A condition of a process net represents the appearance of a token on a place
of the original net and is therefore drawn as a copy of the place labelled by the
name of the place. In case of high-level places, the copy also includes the current
value of the high-level place.

As an event represents the occurrence of at least one transition, it is depicted
as a copy of a transition of the original net. If the event represents the occurrence
of a single transition, it is labelled by the name of the transition. If an event
represents the occurrence of a set of synchronous transitions, it is labelled by
all elements of the set of names of these transitions. Consequently, there are no
synchronization arcs in a process net.

Since events represent transition occurrences, the pre- and post-sets of these
transitions are respected. The initial state of the process net is the characteristic
mapping of the set of conditions that are minimal with respect to the causal
order, i.e., these conditions carry one token each, and all other conditions are
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initially unmarked. We assume that every event has at least one pre-condition
and at least one post-condition. By this assumption, all minimal elements are
conditions. Finally, the initial state of the process net corresponds to the initial
marking of the system net, i.e., each initial token of the system net is represented
by a (marked) minimal condition of the process net. Each process net represents
a single causal run of a system net.

Using acyclic graphs to define partially ordered runs is common for many
computation models. The specific property of process nets is that each process
net is formally a signal net with our extensions and that there is a close con-
nection between a process net representing a run and the extended signal net
modelling the system; the events of a process net are annotated by respective
names of actions of the system. More precisely, mappings from the net elements
of the process net to the net elements of the original net representing the sys-
tem formalize the relations between events of a process net and transitions of a
system net and between conditions of a process net and places of a system net.

Sequential and causal runs have strong relations. Sequences of event occur-
rences of a process net closely correspond to transition sequences of the system
net. Therefore, roughly speaking, the set of occurrence sequences of an extended
signal net coincides with the set of occurrence sequences of its process nets when
only the labels of events of these latter sequences are considered.

5 Simulation by Construction of Runs

By simulation we understand the generation of runs of the process model. For a
valid model, each run should represent a corresponding run of the system, and for
each system run there should exist a corresponding run of the model. Validation
by simulation means generating and inspecting runs of the model with respect
to the desired runs of the modelled system. Since neither the system nor its runs
are given formally, only domain experts can do this comparison. So this task
requires a good and easy understanding of the generated runs of the model.

Usually, the user is supported by a graphical representations of runs: The
extended signal net is represented graphically and sequential runs are depicted
by subsequent occurrences of transitions of the net. We suggest to construct and
visualize causal runs given by partially ordered process nets instead. We argue
that we gain two major advantages, namely expressiveness and efficiency.

Every sequence of events, i.e. transition occurrences, defines a total order
on these events. A transition can either occur after another transition because
there is a causal dependency between these occurrences or the order is just
an arbitrarily chosen order between concurrent transition occurrences. Hence,
an occurrence sequence gives little information on the causal structure of the
system run. Interesting aspects of system behavior such as the flow of control,
possible parallel behavior etc. are directly represented in process nets, but they
are hidden in sequences of events. Causal runs provide full information about
these causal dependencies.

The number of event occurrence sequences of a single run grows dramatically
when a system exhibits more concurrency. Each of these occurrence sequences
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represents the very same causal system run. Hence, the simulation of more than
one of these sequences yields no additional information on the causal behavior of
the system. The gain of efficiency is most evident when all runs of a system can
be simulated, i.e. when there is only a finite number of finite runs. In the case of
arbitrary large runs, a set of process nets allows to represent a larger significant
part of the behavior than a comparable large set of occurrence sequences.

Simulation of a system model means construction of a set of (different) runs.
In general, each causal run corresponds to a nonempty set of occurrence se-
quences. Taking the sequence of labels of events in occurrence sequences of pro-
cess nets yields all occurrence sequences of the system net.

In previous publications, we have described the simulation algorithms [2, 5],
i.e. an algorithm constructing runs. Crucial aspects are a compact representation
of similar runs, completeness with respect to all possible alternatives and in
particular termination conditions for potentially infinite runs.

As described in the third section, we have to provide means to analyze the
constructed runs with respect to specified requirements. These specifications are
formulated on the level of the system net in a graphical way (see [2]), adopting
the well-known fact transitions [10] and introducing analogous graphical repre-
sentations for other properties.

As the specifications are interpreted on runs, we developed algorithms for
analysis of process nets. It turned out that the particular structure of these nets
lead to significant advantages with respect to efficiency, compared to occurrence
sequences, at least for some important classes of requirement specifications.

6 The Case Study

In the context of a new production run of cars, this case study with the car
manufacturing company Audi was concerned with the control system of the fuel
gauge of a car, which is surprisingly complex. The value of the fuel gauge is
sometimes determined by various sensors and sometimes calculated by means
of consumption and an earlier calculated fill level. Numerous parameters like
ignition state, movement of the car, car position and engine on/off are relevant.
Because of the special shape of the tank only the values of some sensors – de-
pending on the current fill level – account for the calculation of the fuel gauge. If
some sensor fails, a plausibility test avoids that the values of this sensor are used
for the calculation. Though the consumption based calculation is rather exact,
the summation of minor measurement errors below a certain threshold may lead
to a significant difference between real and calculated fuel gauge. Already these
problems indicate that complex algorithms are necessary for the control of this
technical system which includes continuous and discrete elements.

Starting point of the case study was an informal, mainly textual document
where functionality of the fuel gauge control system was described. The following
tasks arose in the project:

1. Adaption of appropriate techniques for modelling and model synthesis,
2. development of models of control for the fuel measurement,
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3. simulation and validation of the models,
4. feasibility study for similar tasks but with larger scale,
5. specification of the requirements of software tools to be developed.

6.1 Procedure

When starting the project, we expected to receive a basic model of the uncon-
trolled system and a set of informal and formal requirements [12, 13]. However,
actually the input of Audi corporation was a completely different one: informal
descriptions of scenarios were given, that had to be realized by the algorithm
to be modelled, including some implicit requirements. The basic model of the
plant was partly explained by corresponding automotive components (e.g. the
functionality of the four tank sensors) and partly assumed as well-known (e.g.
possible states of ignition or of car movement). Some of these implicit assump-
tions could easily become completed, others made it necessary to query at Audi
corporation. Interpreting the description of the scenarios, ambiguities were de-
tected. Even by Audi corporation, some ambiguities could not be cleared up
instantly. In general, the (not surprising) assumption was affirmed, that mod-
elling strongly depends on feedback of experts and cannot solely be done by the
given documents. So, in the procedure, the first steps of modelling and especially
of a repeated validation turned out to be of high importance [2, 5].

In the following, we present our intended procedure. In our case study, the
later phases of model based generation of test cases are presented only exem-
plarily.

Procedure

Steps one to six refer only to single modules.

1. Extraction and validation of the model of the plant.
2. Extraction, formulation and validation of the requirements.
3. Modelling of runs from the scenarios comprising the model of the plant.
4. Generation of the complete system by folding the runs. This complete system

includes the given runs but may also have some other (desired or undesired)
ones.

5. Elimination of undesired runs by implementation of the requirements found
in step two. It has to be guarantied that the given runs of step three are still
possible.

6. Validation of the single modules and verification of the requirements.
7. Integration of the modules by composition at certain restrictive interfaces.
8. Verification of the complete system.
9. Application as reference model.

10. Analysis for efficient generation of relevant test data.
11. Application as test reference by simulation, in parallel to the real control.
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6.2 Model of Calculation of Fuel Gauge while Ignition off

In the following three subsections we present the case study. Due to lack of space
not every detail can be explained. Each subsection contains a short description
of the given specification of the corresponding model. Then the model, including
both plant and control is presented. A description of its behavior is visualized
by different process nets.

In each model, the plant is represented by dark grey colored transitions and
the places connected with these transitions. For simplicity, those parts of the
plant, which are not necessary for the control algorithm in the current model
are omitted. If a complete model is desired, the models can be connected by
identifying common parts of the plant.

The calculation of the fuel gauge while ignition off consists of two measure-
ment phases. The first measurement phase starts by turning the ignition off and
returns the mean value MW old. Turning the ignition on starts the second mea-
surement phase and returns the mean value MW new. If the difference between
the two mean values exceeds 4 liters, refuelling is recognized. Then the displayed
fuel is recalculated by adding this difference to the old value. The following
requirements must be fulfilled for calculating the fuel gauge:

1. If the period of time while the ignition is off is too short to finish measurement
phase one, there will be no new calculation of the fuel gauge.

2. The result of measurement phase 1 outlasts if ignition is turned on for a
short time.

In the left part of the model the behavior of the ignition is presented by its
physical (1, 2) and internal (1′, 2′) transitions. When the ignition is off for 6 sec-
onds, measurement phase one starts. 4 seconds later the first phase ends by firing
transition 5 what produces a value in the place MW old. Turning the ignition
on initiates the second measurement phase (transition 6), if measurement phase
one has already been finished (indicated by a token in the place synchroniza-
tion). If the ignition stays turned on for 0.4 seconds, MW new is calculated.
Ignition on and a difference between MW old and MW new greater than 4 liters
are preconditions for a change of the fuel gauge value: the transition with firing
condition |x − y| ≥ 4L fires and the difference is added to the former value in
place old value. If the difference is less than 4 liters, no refuelling is recognized:
the transition with firing condition |x − y| < 4L fires and the marking of the
place displayed fuel remains unchanged.

At this point the calculation is declared finished (token in place calculation
completed), to enable – when the ignition is turned off next time – a new calcu-
lation of the fuel gauge value.

The following three pictures show relevant process nets of the model: first, a
complete calculation and change of the fuel gauge value is done (Fig. 14). In the
second process, calculation is aborted because of turning on ignition before end-
ing of first measurement phase (Fig. 15). The last process shows an interrupted
calculation: after the first measurement phase, when the second is started by
turning ignition on, the driver could turn off again ignition before the second
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Fig. 14. Process net of a complete calculation of the fuel gauge value

measurement phase can happen. In this case, the result of measurement phase
one will be remembered until ignition is turned on and the second measurement
phase is executed (Fig. 16).

After some iteration steps, we came up with the following formalization of
the requirement, which holds for all simulated runs.
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If exactly the places MW old, ignition off, displayed fuel, old value and syn-
chronization are marked and then transitions 2 and 1 fire sequentially within 0.4
seconds, then the marking in place MW old stays unchanged.

The verification of this formalized requirement will be exemplarily shown.
A sufficient precondition is that always exactly one of the three places cal-

culation MW old, MW old and calculation completed is marked. This property
can be formally proved by so called place invariants. As in our requirement place
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MW old is marked, the other two places are not marked. So transitions 3 and 4
cannot fire while MW old remains marked.

The only enabled, not synchronized transition is transition 2 which fires by
assumption. As transition 6 is enabled it will be synchronized by transition 2.
Therefore place calculation MW new is marked. By assumption, transition 1
fires within 0.4 seconds after transition 2. Before transition 8 can fire, the place
calculation MW new is marked for 0.4 seconds. So transition 7 is enabled and
synchronized when transition 1 fires. Thus the token in calculation MW new
is consumed and a token in place synchronization is produced, recovering the
initial marking.

6.3 Model of Calculation of Fuel Gauge
while Ignition on and Vehicle Stops

The calculation of the fuel gauge while ignition on and vehicle stops also requires
two measurement phases. Measurement phase one starts if the vehicle stops for
8 seconds while the ignition is on. This phase lasts 4 seconds and returns the
mean value MW old. Subsequently, measurement phase 2 returns repeatedly a
new mean value MW new. If refuelling is recognized once (difference between MW
old and MW new greater than 4 liters), the fuel level is repeatedly recalculated
by the MW new values by adding the difference of the mean values MW new and
MW old to the old value. Among others, the following (informal) requirements
must be fulfilled:

1. Recognizing refuelling once, the time period for detecting the mean values
of MW new is shortened from 2 seconds to 0.4 seconds.

2. The calculation of the mean value MW new lasts until the vehicle moves
again or the ignition is turned off.

The left part of the model shows the physical and internal states and the possible
changes of states of the ignition and of the vehicle (vehicle stops, vehicle moves).
To start measurement phase 1 (transition 5), the ignition has to be turned off for
8 seconds and the vehicle must not move. After 4 seconds the calculation of MW
old is completed (transition 6). Afterwards the calculation of the mean value
of MW new starts (transition 7) and is completed after 0.4 seconds (transition
8), if the ignition stays turned on during this time period. Directly after the
calculation of MW new (time label 0 seconds), it is checked if the difference
between MW old and MW new is greater than or equal to 4 liters. If this is the
case, refuelling is recognized (transition with firing condition |x− y| ≥ 4L fires).
If this difference is less than 4 liters, no refuelling is recognized (transition with
firing condition |x − y| < 4L fires), and then every two seconds a new mean
value MW new is calculated (transition 9) and the above procedure is repeated
again. Once refuelling has been recognized a new mean value MW new is yet
calculated every 0.4 seconds (transition 10) and then immediately (time label 0
seconds) the value of the fuel gauge is actualized (transition 11). This happens
by adding the difference of the mean values to the old value (transition 11) until
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Fig. 17. Signal net model of fuel gauge while ignition on and vehicle stops

either the ignition is turned off (transition 1) or the vehicle moves (transition
3). In these cases the recalculation of the value of the fuel gauge is stopped and
the initial marking in the right part of the model is restored again. This allows
a new calculation of the fuel level if the car stops the next time for 8 seconds
while the ignition is on.

As an example, the following figures show scenarios given by partial ordered
runs of the above model.

We provide a valid formalization of requirement 1 and outline its verification:
After firing of the transition with firing condition |x − y| ≥ 4L, transition 9

must not fire but transition 10. It fires alternately to transition 11 until either
transition 1 or transition 3 fires.

When the calculation of the fuel gauge starts, the place between transition
12 and the transition with the firing condition |x − y| ≥ 4L is initially marked.
This marking is a precondition for firing transition 9 (calculation of the MW new
values every two seconds). Analogously, a precondition for firing transition 10 is
that the place between the transition with the firing condition |x− y| ≥ 4L and
transition 12 is marked. As always exactly one of both places contains one token
(this property can be formally proved by so called place invariants), it follows:
if transition 9 can fire, then transition 10 is not enabled and otherwise. So after
firing the transition with the firing condition |x−y| ≥ 4L, only transition 10 and
11 can alternately fire until transition 12 which is synchronized by transition 1
and 3, fires.
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6.4 Model of Error Treatment for One Sensor

A sensor can be in one of three different states: sensor ok, sensor broken or
sensor shorted. For the sensor value (called ADC-value) the parameters Su (lower
threshold), So (upper threshold), Au (initial stop of the fuel gauge) and Ao (back
stop of the fuel gauge) are defined. If the ADC-value is beyond the thresholds, a
sensor error has to be recognized (sensor broken if the ADC-value is too large,
sensor shorted if the ADC-value is too small). If the ADC-value is between lower
threshold and initial stop resp. back stop and upper threshold, the stop values
are taken into account for the calculation of the fuel gauge level.

The model should fulfill the following requirements:

1. Error treatment for sensors only occurs while the ignition is on.
2. When the ignition is turned on, initially no sensor error is assumed.
3. If the ADC-value is too large (> So) for 20 seconds, a break should be

recognized.
4. If the ADC-value is too small (< Su) for 20 seconds, a short circuit should

be recognized.
5. If the ADC-value is again within the thresholds for 4 seconds, from error

state should be changed to normal sensor state.
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The signal-net model consists of four parts: in the left part, the possible physical
states (sensor ok, sensor broken, sensor shorted) and the possible changes of
states of the sensor are modelled. Only if the sensor is ok, the actual sensor
value x (given by transition 1) is used as ADC-value. Otherwise if sensor broken
is given, a maximal value max > So is used and in case of sensor shorted a
minimal value 0 < Su. In the right lower part the ignition is modelled. The
middle and right part show the algorithm for the error treatment of the sensor.
In the middle part the treatment of the ADC-value is done which either can be
normal (place ADC-value: ok), to small (place ADC-value: too small), or to large
(place ADC-value: too large) depending on the measured sensor value in the place
sensor value. For this purpose the transitions are labelled by the corresponding
firing conditions. In the right part, depending on the classification of the ADC-
value, the internal detection of a sensor error and the kind of the sensor error
is described. This detection only occurs if ignition is on (place ignition on). As
an example the following figures show scenarios given by partial ordered runs of
the above model.

Finally, requirement 3 is formalized and verified:
If for at least 20 seconds the places sensor broken and ignition on are simul-

taneously marked, the place break will be marked after these 20 seconds.
Obviously requirement 1 has to be integrated as a basic condition for an

error treatment of a sensor. The following considerations are necessary for the
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verification of requirement 3: in both, the middle and the right part of the model
always exactly one place is marked with one token (so the corresponding sets
of places are place invariants). Furthermore, in both parts of the model always
exactly one transition is enabled what implies that there is no conflict between
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these transitions. To mark the place sensor broken either transition 13 or 14 has
to fire. In particular, the place sensor value is then marked with the value max.
As the place sensor broken stays marked for 20 seconds (as postulated in the
requirement), during this period of time no transition in the left part fires. So for
at least 20 seconds, the place sensor value is marked by the value max. Because
of our previous considerations, exactly one transition of the middle part of the
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model with the firing condition x > So can fire. This transition fires because
of the progress assumption as it is in no conflict with any other transition of
the other parts of the model (there are no flow arcs between the different parts
of the model). Afterwards the place ADC-value too large is marked and the
token stays there for at least 20 seconds (as for this period of time there is no
transition enabled which could change this marking). Now the place break of
the right part of the model is marked and so either no transition of this part is
enabled or exactly one of transition 6 or 7 is enabled (depending on the former
ADC-value). Because of the progress assumption, one of these transitions fires
after 20 seconds and marks the place break.

6.5 Generation of Test Cases

We illustrate, exemplarily for the model of error treatment of a sensor, the
generation of test cases resp. test vectors:

The values of the input components of a test vector are supplied by the grey
resp. light grey colored transitions and correspond to the marking of certain
places: these places represent sensor data resp. interfaces to components which
deliver sensor data or control parameters. In this model (sensor ok, ignition on,
max) is an input vector. The first component represents the state of the sensor
delivered by transitions 10 to 15, the second component the state of the ignition
(delivered by transitions 16 and 17) and the third component the sensor value
(delivered by transition 1). The value of the output components corresponds to
the marking of the grey colored places. Suitable values for the test vectors resp.
sequences of test vectors can be determined by the model based range of values. If
necessary, additional information has to be requested if the range of values does
not matter for the algorithm (e.g. the maximal fill level that can be displayed
by a sensor; it is determined by the dimension of the tank and the scale of the
sensor and is important for plausibility test but not for other algorithms). It is
not surprising that for the determination of local test vectors from a model there
cannot be extracted more than it was explicitly put in. The advantages of model
based determination of test vectors rest in more global aspects. The consideration
of dependency resp. independency of input and output values that can be won by
analyzing the model reduces the number of necessary combinations of test values
extensively. For example, it can be derived by the model that ignition on and a
incorrect sensor value are necessary to detect a sensor error. Therefore not all
input combinations of (sensor ok, sensor broken, sensor shorted) and (ignition
on, ignition off ) have to be tested as for ignition off the first parameter plays
no role.

This approach is based on the assumption that the actual realized control
algorithm has the same dependencies as the modelled algorithm. Both should
be equivalent concerning the specification, but this equivalence can be only sup-
ported by tests. So, in the best case, the model based generation of test vectors
can give hints for relevant test data. But it cannot be excluded that such er-
rors in the control, which could be detected by other test data, remain hidden.
Such test data can only be delivered by further information about the realized
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algorithm, which cannot be derived from the specification or the model which is
only based on the specification.

7 Experiences and Conclusions

After a general discussion of model validation, we have presented an approach for
the systematic construction of formal models of embedded systems. In particu-
lar, we considered controlled automation systems that consist of an uncontrolled
plant and a control software. The main purpose of the model is to specify the
behavior of the controlled system, which implies requirements for the controller
software. The approach considers the generation of initial system models (the
plant) and of formal specifications of the requirements for the controlled system,
which are implemented in the model step by step. The approach is based on
the assumption that the user knows the desired runs of the system but tends
to make errors when formalizing specifications for these runs. Thus, the core
of the approach is a simulation based technique to generate runs from specifi-
cations and to visualize these runs for inspection by the user. We have argued
that causal concurrent runs have important advantages in relation to sequential
runs because they better capture relevant aspects of the behavior, allow a more
efficient representation of behavior and allow for more efficient analysis methods
with respect to system requirements.

We further presented our extension of signal nets as the modelling language
to be used and discussed as an industrial case study the fuel gauge control of a
car. We illustrated the extended signal net models and some of the causal runs
and gave an idea of how to verify given requirements.

The main lesson we have learnt from this case study is the following. The
assumption that users start with a vague description of the plant and several
requirements and look for the controlling algorithm is only partly justified in this
application area. Instead, very precise knowledge about the plant is available.
This information has to be transformed in our modelling language which some-
times causes problems and needs feedback, because of hidden assumptions. The
semi-formal requirement specification hardly includes an enumeration of safety
and liveness properties the controlled system has to satisfy. These requirements
are implicitly given and often go without saying (for example, the tank should
not become empty without prior warning of the driver). Instead, the modelling
work was based on desired scenarios of the style “what happens if...”. In our
terminology, a set of runs in a semi-formal style was provided, formalized in our
approach, and validated by the experts. These runs have interfaces to the model
of the plant. Each model of the control algorithm that supports these runs will
also support additional, different runs and shows that situations can arise for
which no scenarios were provided. Our simulation approach identifies these situ-
ations and offers runs to the user that are possible due to the respective model,
this way enforcing the users to complete the necessary requirements. Thereafter,
the formalized requirements are validated.

To draw a conclusion, the feedback from the users, engineers from Audi cor-
poration, indicates that they considered our approach very useful. We were able
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to solve most of the problems posed by the users and, perhaps more impor-
tantly, we proved that the documents provided by Audi corporation contained
much more ambiguities and errors than expected by the users.

The concepts presented in this paper are partly implemented in the VIPtool
[9] that was developed by our group, see http://www.informatik.ku-eichstaett.de/
projekte/vip. Main features of the tool are a graphical net editor, a simulation
engine that generates causal runs, a visualization module that presents runs in
a nice and readable way and moreover depicts the relation between process net
elements and system net elements.
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Abstract. The aim of this paper is a tutorial introduction to graph
grammars and graph transformations on one hand and to Petri net
transformations on the other hand. In addition to an introduction to
both areas the paper shows how they have influenced each other. The
concurrency concepts and semantics of graph transformations have been
generalized from those of Petri net using the fact that the token game of
Petri nets can be considered as a graph transformation step on discrete
graphs. On the other hand each Petri net can be considered as a graph,
such that graph transformations can be used to change the net structure
of Petri nets. This leads to a rule based approach for the development of
Petri nets, where the nets in different development stages are related by
Petri net transformations.

1 Introduction

The main idea of graph grammars is the rule-based modification of graphs where
each application of a graph rule leads to a graph transformation step. Graph
grammars can be used on one hand to generate graph languages in analogy to
the idea to generate string languages by Chomsky grammars in formal language
theory. On the other hand graphs can be used to model the states of all kinds
of systems which allows to use graph transformations to model state changes of
these systems. This allows to apply graph grammars and graph transformation
systems to a wide range of fields in computer science and other areas of science
and engineering. A detailed presentation of different graph grammar approaches
and application areas of graph transformations is given in the 3 volumes of the
Handbook of Graph Grammars and Computing by Graph Transformation [32,
10, 15].

The intention of the first part of this paper is to give a tutorial introduction
to the basic concepts and results of one specific graph transformation approach,
called double-pushout approach, which is based on pushout constructions in the
category of graphs and graph morphisms. Although this approach is based on a
categorical concept, we do not require that the reader is familiar with category
theory: In fact, we introduce the concept of a pushout in the category of graphs
from an intuitive point of view, where a pushout of graphs corresponds to the
gluing of two graphs via a shared subgraph.

In Section 2 of this paper we give a general overview of graph grammars and
graph transformations including the main approaches considered in literature.

J. Desel, W. Reisig, and G. Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 496–536, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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The basic concepts of the double-pushout approach are introduced in Section
3 using as example the Pacman game considered as a graph grammar. Concepts
and results concerning parallel and sequential independence as well as parallelism
of graph transformations are introduced in Section 4. The main results are the
local Church-Rosser Theorem and the Parallelism Theorem. The relationship
between graph grammars and Petri nets is discussed in Section 5 of this paper.
First we show how the basic concepts of both areas correspond to each other.
Then we give an overview of the concurrent semantics of graph transformations,
which has been developed in analogy to the corresponding theory of Petri nets.

In the second part of this paper we give an introduction to concepts and
results of Petri net transformations. This area of Petri nets has been introduced
about 10 years ago in order to allow in addition to the token game of Petri
nets, where the net structure of fix, also the change of the nets structure [31, 28]
This allows the stepwise development of Petri nets using a rule-based approach
in the sense of graph transformations, where the net structure of a Petri net is
considered as a graph. An intuitive introduction to Petri net transformations is
given in Section 6 using the stepwise development of Petri nets for a baggage
handling system as an example.

In Section 7 we show how the basic concepts of graph transformation - in-
troduced in Section 3 for the double-pushout approach - can be extended to
Petri net transformations in the case of place/transition nets. In addition we
discuss a general result concerning the compatibility of horizontal structuring
and transformation of Petri nets, which has been used in the example of Section
6. Moreover we give an overview of results as well for other Petri net classes,
which kind of Petri net transformations are preserving interesting properties like
safety and liveness.

The conclusion in Section 8 summarizes the main ideas of this paper and
further aspects concerning graph grammars and Petri net transformations.

2 General Overview of Graph Grammars
and Graph Transformation

The research area of graph grammars or graph transformations is a discipline of
computer science which dates back to the early seventies. Methods, techniques,
and results from the area of graph transformations have already been studied
and applied in many fields of computer science such as formal language theory,
pattern recognition and generation, compiler construction, software engineering,
concurrent and distributed systems modeling, database design and theory, logical
and functional programming, AI, visual modeling, etc.

The wide applicability is due to the fact that graphs are a very natural way
of explaining complex situations on an intuitive level. Hence, they are used in
computer science almost everywhere, e.g. as data and control flow diagrams,
entity relationship and UML diagrams, Petri nets, visualization of software and
hardware architectures, evolution diagrams of nondeterministic processes, SADT
diagrams, and many more. Like the token game for Petri nets, a graph transfor-
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mation brings dynamic to all these descriptions, since it can describe the evolu-
tion of graphical structures. Therefore, graph transformations become attractive
as a modeling and programming paradigm for complex-structured software and
graphical interfaces. In particular, graph rewriting is promising as a comprehen-
sive framework in which the transformation of all these very different structures
can be modeled and studied in a uniform way.

Before we go into more detail let us discuss the basic question

2.1 What Is Graph Transformation?

In fact, graph transformation has at least three different roots

– from Chomsky grammars on strings to graph grammars
– from term rewriting to graph rewriting
– from textual description to visual modeling.

Altogether we use the notion graph transformation to comprise the concepts
of graph grammars and graph rewriting. In any case, the main idea of graph
transformation is the rule-based modification of graphs as shown in Figure 1.

L R

p = (L,R)

Fig. 1. Rule-based Modification of Graphs

The core of a rule or production p = (L,R) is a pair of graphs (L,R), called
left hand side L and right hand side R. Applying the rule p = (L,R) means
to find a match of L in the source graph and to replace L by R leading to the
target graph of the graph transformation. The main technical problem is how
to connect R with the context in the target graph. In fact, there are different
solutions how to handle this problem leading to different graph transformation
approaches, which are summarized below.

2.2 Overview of Different Approaches

The main graph grammar and graph transformation approaches developed in lit-
erature so far are presented in the Handbook of Graph Grammars and Computing
by Graph Transformation vol 1: Foundations [32].

1. The node label replacement approach, mainly developed by Rozenberg, En-
gelfriet and Janssens, allows replacing a single node as left hand side L by
an arbitrary graph R. The connection of R with the context is determined
by embedding rules depending on node labels.
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2. The hyperedge replacement approach, mainly developed by Habel, Kreowski
and Drewes, has as left hand side L a labeled hyperedge, which is replaced by
an arbitrary hypergraph R with designated attachment nodes correspond-
ing to the nodes of L. The gluing of R with the context at corresponding
attachment nodes leads to the target graph.

3. The algebraic approaches are based on pushout and pullback constructions
in the category of graphs, where pushouts are used to model the gluing of
graphs. The double pushout approach, mainly developed by Ehrig, Schneider
and the Berlin- and Pisa-groups, is introduced in Sections 3-5 in more detail.

4. The logical approach, mainly developed by Courcelle and Bouderon, allows
expressing graph transformation and graph properties in modanic second
order logic.

5. The theory of 2-structures was initiated by Rozenberg and Ehrenfeucht as a
framework for decomposition and transformation of graphs.

6. The programmed graph replacement approach by Schuerr used programs in
order to control the nondeterministic choice of rule applications.

2.3 Aims and Paradigms for Graph Transformation

Computing was originally done on the level of the von Neumann Machine which
is based on machine instructions and registers This kind of low level computing
was considerably improved by assembler and high level imperative languages.
From the conceptual - but not yet from the efficiency point of view - these lan-
guages were further improved by functional and logical programming languages.
This newer kind of computing is mainly based on term rewriting, which - in
the terminology of graphs and graph transformations - can be considered as a
concept of tree transformations. Trees, however, do not allow sharing of common
substructures, which is one of the main reasons for efficiency problems concern-
ing functional and logical programs. This leads to consider graphs rather than
trees as the fundamental structure of computing.

The main idea is to advocate graph transformations for the whole range of
computing. Our concept of Computing by Graph Transformations is not limited
to programming but includes also specification and implementation by graph
transformations as well as graph algorithms and computational models and com-
puter architectures for graph transformations.

This concept of Computing by Graph Transformations has been developed
as basic paradigm in the ESPRIT Basic Research Actions COMPUGRAPH and
APPLIGRAPH as well as in the TMR Network GETGRATS in the years 1990-
2002. It can be summarized in the following way:

Computing by graph transformation is a fundamental concept for

– programming
– specification
– concurrency
– distribution
– visual modeling.
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The aspect to support visual modeling by graph transformation is one of
the main intentions of the ESPRIT TMR Network SEGRAVIS (2002-2006). In
fact, there is a wide range of applications to support visual modeling techniques,
especially in the context of UML, by graph transformation techniques. A state
of the art report for applications, languages and tools for graph transformation
on one hand and for concurrency, parallelism and distribution on the other hand
is given in volumes 2 and 3 of the Handbook of Graph Grammars and Computing
by Graph Transformation [10] and [15]

3 Introduction to the DPO-Approach

As mentioned already in the general overview there are several algebraic graph
transformation approaches based on pushout and pullback constructions in the
category of graphs. The most prominent one is the double-pushout approach,
short DPO-approach, initiated by Ehrig, Pfender and Schneider in [17]. The main
idea is to model graph transformation by two gluing constructions for graphs and
each gluing construction by a pushout. Roughly spoken, a production is given by
p = (L,K,R), where L and R are the left and right hand side graphs and K is a
common interface of L and R. Given a production p = (L,K,R) and a context
graph D, which includes also the interface K, the source graph G of a graph
transformation G ⇒ H via p is given by the gluing of L and D via K, written
G = L+K D, and the target graph H by the gluing of R and D via K, written
H = R+K D. More precisely we will use graph morphisms K → L,K → R and
K → D to express how K is included in L,R, and D respectively. This allows
to define the gluing constructions G = L +K D and H = R +K D as pushout
constructions (1) and (2) leading to a double pushout in Figure 2.

L

��
(1)

K�� ��

��
(2)

R

��
G D�� �� H

Fig. 2. DPO-Graph Transformation

Before we present more technical details of the DPO-approach, let us point
out that it is based on graphs and total graph morphisms. In fact there is a
slightly more general approach using graphs and partial graph morphism, where
a graph transformation can be expressed by a single pushout. This approach
has been initiated by Raoult and fully worked out by Lwe leading to the single
pushout approach, short SPO-approach. A detailed presentation and comparison
of both approaches is given in volume 1 of the handbook [32]. The DPO-approach
has been generalized from graphs to any other kind of high-level structures. This
leads to the theory of high-level replacement systems initiated in [12], which can
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be applied to Petri nets leading to net transformation systems considered in
Section 6 and Section 7 of this paper.

3.1 Graphs and Graph Morphisms

A directed, labeled graph G, short graph, over fixed sets of colors ΩE and ΩV for
edges and vertices is given by

G = ΩE E
le��

s ��
t

�� V
lv �� ΩV

Fig. 3. Directed Labeled Graph G

where E and V are the sets of edges and vertices of G, s and t are the source
and target functions, and le and lv are the edge and vertex label functions
respectively.

An example for such a graph G is the Pacman graph PG in Figure 4, where
the color * for the edges is omitted in PG.

• ΩV = { }
• ΩE = {∗}
• Identities of nodes and edges are

not shown explicitly

Fig. 4. Pacman Graph PG and Color Sets

A graph morphism f : G → G′ consists of a pair of functions f = (fE : E →
E′, fV : V → V ′), which is compatible with source, target, and label functions
of G and G′, i.e. fV · s = s′ · fE , fV · t = t′ · fE , l′e · fE = le and l′v · fv = lv.

The diagram schema for graph morphisms and an example for a graph mor-
phism is given in Figure 5.

The category Graph has graphs as objects and graph morphisms as mor-
phisms.

Let us point out that there are also several other notions of graphs and graph
morphisms which are suitable for the DPO-approach of graph transformation;
especially typed graphs and attributed graphs, where the color sets are replaced
by a type graph and a type algebra respectively.

3.2 Graph Productions and Graph Grammars

A graph production p = L
l← K

r→ R consists of graphs L,K and R and
(injective) graph morphisms l : K → L and r : K → R mapping the interface
graph K to the left hand side L and the right hand side R respectively.
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G

f

��

E

fE

��

le

���������
s ��
t

�� V

fV

��

lv

���������

ΩE ΩV

G′ E′le′

��������� s′ ��
t′

�� V ′ lv′

���������

Fig. 5. Graph Morphism f : G → G′

A graph grammar GG = {S, P,Ω} consists of a start graph, a set P of graph
productions as defined above, and a pair of color sets Ω = (ΩE , ΩV ), where
S and the graphs in P are labeled over Ω. An example is the Pacman graph
grammar
PGG = {PG, {moveP,moveG, kill, eat}},
where the start graph PG is given in Figure 4 and the graph productions moveP,
moveG, kill, eat in Figure 6. The production moveG is similar to moveP, where
pacman is replaced by the ghost. These productions allow pacman resp. the ghost
to move along an arc of the grid of the pacman graph PG. The productions eat
resp. kill allow pacman to eat an apple resp. the ghost to kill pacman, provided
that pacman and the apple resp. ghost are on the same node of the grid.

moveP =

eat =

kill =

Fig. 6. Graph Productions of the Pacman Graph Grammar

Similar to Chomsky grammars it is also possible to distinguish between ter-
minal and nonterminal color sets. In our case we have only terminal color sets.
A graph grammar without distinguished start graph is also called graph trans-
formation system.
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3.3 Graph Transformation, Derivation and Graph Language

Given a graph production p = L l← K
r→ R, a graph G and a graph morphism

m : L → G, called match of L in G, then there is a graph transformation, also
called direct derivation, if a double-pushout diagram as shown in Figure 7 can
be constructed, where (1) and (2) are pushouts in the category Graph.

D

K

m (2)(1)

rl

HG

RL

Fig. 7. Graph Transformation with Pushouts (1) and (2)

A graph transformation as given in Figure 7 is denoted by G
p,m
=⇒ H, or

G =⇒ H via (p,m), where G is the source graph and H the target graph.
In the next section we will show that pushouts can be interpreted as gluing
constructions. Given a production and a match m : L → G means that we
require to be able to construct a context graph D such that G is the gluing of
L and D along K in pushout (1) and H is the gluing of R and D along K in
pushout (2) of Figure 7, written
G = L+K D and H = R+K D.

The morphism R → H in Figure 7 is called comatch of the graph transfor-
mation. A graph transformation sequence, also called derivation, is given by a
finite sequence of graph transformations

G0
p1,m1=⇒ , G1

p2,m2=⇒ .....
pn,mn=⇒ Gn.

The graph language generated by a graph grammar GG = {S, P,Ω} is the
set of all graphs derivable from the start graph S with productions in P .

An example of a graph transformation using the production moveP is given
in Figure 8, where pacman is moving from node 1 in graph G to node 2 in graph
H = G1. Moreover, Figure 8 shows a graph transformation sequence, where after
this first step the productions moveP again, and also eat and kill are applied.

In Figure 8 it is intuitively clear that G is the gluing of L and D along K
and H the gluing of R and D along K. Vice versa, given the production moveP
and the match m : L → G the context graph D can be constructed by removing
from G all items of L, which are not in the interface K. In our case it is only the
arc from pacman to node 1, which has to be removed. This is the first step in
the explicit construction of a graph transformation. It leads to a pushout (1) in
Figure 7 if a suitable gluing condition is satisfied which will be explained below.
The second step is the gluing of R and D along K leading to pushout (2) in
Figure7.
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1

121

2

1

22

2

11

2

L RK

G HD

moveP =

G = G0
moveP
=⇒ G1

moveP
=⇒ G2

eat
=⇒ G3

kill
=⇒

Fig. 8. A Sample Graph Transformation and Derivation

In general the construction of a graph transformation G
p,m
=⇒ H from a pro-

duction p = L l← K
r→ R and a match m : L → G is given in two steps, where

the first step requires that the gluing condition (see 3.5 below) is satisfied:

STEP 1 (DELETE): Delete m(L− l(K)) from G leading to a context graph
D (if the gluing condition is satisfied), s.t. G is the gluing of L and D along
K, i.e. G = L+K D in (1) of Figure 7.

STEP 2 (ADD): Add R−r(K) to D leading to a graphH , s.t. H is the gluing
of R and D along K, i.e. H = R+K D in (2) of Figure 7.

3.4 Gluing Construction and Pushout

The idea of the gluing construction of graphs makes sense also for other kinds of
structures, where the idea is to construct the union of structures along a common
substructure. For structures given by geometrical figures this kind of union or
gluing is shown in Figure 9.

In the framework of category theory the idea of the gluing construction can
be formalized by the notion of a pushout: Given objects (e.g. sets, graphs or
structures) A,B, and C and morphisms (e.g. functors, graph or structure mor-
phisms) f : A → B and g : A → C an object D together with morphisms
h : B → D and k : C → D is called pushout of f and g if we have h ◦ f = k ◦ g
(i.e. diagram (1) in Figure 10 commutes) and the following universal property is
satisfied:

For all objectsD′ and morphisms h′ : B → D′, k′ : C → D′ with h′◦f = k′◦g
(i.e. the outer diagram in Figure 10 commutes) we have a unique morphism
d : D → D′ s.t. d ◦ h = h′ and d ◦ k = k′ (i.e. diagrams (2) and (3) commute).
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Fig. 9. Gluing Construction for Geometrical Figures

(3)
d(2)

k’

h’

k

h

g

f

(1) D’D

C

A

B

Fig. 10. Universal Pushout Property

In the category Sets of sets and functions the pushout object D is given by
the quotient set
D = B + C/ ≡, short D = B +A C,

where B + C is the disjoint union of B and C and ≡ the equivalence relation
generated by f(a) ≡ g(a) for all a ∈ A. In fact D can be interpreted as the gluing
of B and C along A: Starting with the disjoint union B + C we glue together
the elements f(a) ∈ B and g(a) ∈ C for each a ∈ A.

In the category Graph the pushout graph D can be constructed component-
wise for the set of edges and the set of vertices using the pushout construction
in Sets discussed above. This shows that also the pushouts in Graph can be
interpreted as a gluing construction (see Figure 8). In general, the pushout graph
D = (DE , DU , sD, tD, leD, lvD) is given as follows:

– DE = BE +AE CE

– DV = BV +AV CV

– sD(e) =

{
[sB(e′)] ; if e = hE(e′)
[sC(e′′)] ; if e = kE(e′′)

– tD(e) =

{
[tB(e′)] ; if e = hE(e′)
[tC(e′′)] ; if e = kE(e′′)
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– leD(e) =

{
[leB(e′)] ; if e = hE(e′)
[leC(e′′)] ; if e = kE(e′′)

– lvD(v) =

{
[lvB(v′)] ; if v = hV (v′)
[lvC(v′′)] ; if v = kV (v′′)

In fact the pushout construction is well-defined and unique up to isomor-
phism. This means that the graph D can also be replaced by any other graph D,
which is isomorphic to D, i.e. there is a bijective graph morphism f : D → D.

Uniqueness of pushouts up to isomorphism is a general property of pushouts
in arbitrary categories. Moreover, it is a general property that pushouts can be
composed horizontally and vertically leading again to pushouts.

3.5 Gluing Condition and Pushout Complement

In order to construct a graph transformation from a given graph production
p = (L l← K

r−→ R) and a match m : L → G as shown in Figure 7 we have to
construct first a graphD and graph morphismsK → D and D → G s.t. diagram
(1) in Figure 7 becomes a pushout in the category Graph. In this caseD is called
pushout complement of l : K → L and m : L → G. See also the left diagram
in Figure 11. In general, however, the pushout complement may not exist, or
may not be unique up to isomorphism. In Figure 11 we show two examples in
the category Sets, where in the middle there is no pushout complement D for
given functions l : K → L and m : L → G. On the right hand side we have two
different non-isomorphic pushout complements D and D′.

a b b2

GD

K L1

d

l

m

K L

D G

m

l

d

k

K L

G

D’

D

a a b

c

c
c

1 2

1 2

k’
k

d

d’

l

m

d

(1)

Fig. 11. Construction, Non-Existence and Non-Uniqueness

In the category Sets and Graphs we have uniqueness of the pushout comple-
ment up to isomorphism l : K → L is injective. For the existence of the pushout
complement we need a Gluing Condition. Given an injective graph morphism
l : K → L and a match m : L → G we can construct a pushout complement
D leading to the pushout (1) in Figure 11 if and only if the following Gluing
condition is satisfied that requires that the boundary of the match m : L → G
is included in the gluing part l(K) of L. More formally, we have:

Gluing Condition:
BOUNDARY ⊆ GLUING
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where BOUNDARY and GLUING are subgraphs of L defined by

– GLUING = l(K)
– DANGLING = {x ∈ LV | ∃e ∈ GE −mE(LE) :

(mV (x) = sG(e) or mV (x) = tG(e))}
– IDENTIFICATION = {x ∈ K | ∃y ∈ K : (x �= y and m(x) = m(y))},

where x ∈ K means x ∈ KV with m = mV or x ∈ KE with m = mE , and
– BOUNDARY = DANGLING ∪ IDENTIFICATION

This means that the boundary of the match m given by the graph
BOUNDARY consists of a dangling and an identification part. In the iden-
tification part we have all those nodes and edges which are identified by the
match m. The dangling part consists of those nodes x ∈ L so that mV (x) is
adjacent to an edge e ∈ GE , which is not part of the match m(L). These edges
are called dangling edges because they lack either the source or the target node
in the set theoretical complement G−m(L) = (GE −mE(LE), GV −mV (LV ).
For brevity we call the nodes in DANGLING dangling nodes.

Now we can construct the pushout complement graph D in Figure 11 in the
diagram to the left by D = (DE , DV , sD, tD, leD, lvD) with

– DE = (GE \mE(LE)) ∪mE(lE(KE))
– DV = (GV \mV (LV )) ∪mV (lV (KV ))
– TC = (TN \mT (TL)) ∪mT (lT (TK))
– sD, tD, leD,and lvD are defined by the restriction of sG, tG, leG,and lvG re-

spectively.

Finally the graph morphisms in the diagram to the left in Figure 11 d : D → G
and h : K → D are given by the inclusion D ⊆ G and by k(x) = m ◦ l(x) for
nodes and edges x ∈ K.

In our pacman graph grammar PGG considered above we can have only injec-
tive matches m : L → G, because the pacman graph PG in Figure 4 and Figure
8 has no loops. This implies that the identification part of the gluing condition
is always satisfied. But also the dangling part is satisfied for all productions and
all matches, because all nodes of the left-hand side L of each production are
gluing nodes. Hence especially all dangling nodes of L are gluing nodes. In the
graph transformation shown in Figure 8 both nodes 1 and 2 are dangling and
also gluing nodes.

4 Concepts of Parallelism

In this section we present main concepts and results for parallelism of graph
transformations. We start with the concepts of parallel and sequential inde-
pendence leading to a local Church-Rosser Theorem which corresponds to the
concept of concurrency by interleaving. However, using the concept of paral-
lel productions and derivations, the DPO-approach also allows to model true
concurrency. The Parallelism Theorem shows equivalence of true concurrency
and interleaving in our framework. Finally the Parallelism Theorem allows to
formulate shift equivalence leading to canonical parallel derivations.
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4.1 Parallel and Sequential Independence

Two graph transformations G ⇒ H1 via (p1,m1), G ⇒ H2 via (p2,m2) are
called parallel independent if the matches m1 : L1 → G and m2 : L2 → G only
overlap in gluing items which are preserved by both graph transformations, i.e.

m1(L1) ∩ m2(L2) ⊆ m1(l1)K1)) ∩ m2(l2)K2))

for pi = (Li
li← Ki

ri−→ Ri) and i = 1, 2.
In Figure 12 we show two productions p1 = move P and p2 = move G with

matches m1 : L1 → PG and m2 : L2 → PG which satisfy the conditions for
parallel independence. In fact, the matches overlap exactly in node 1 which is
gluing node for both productions and hence preserved by the corresponding
derivations. The first derivation PG⇒ H1 via (move P, m1) is explicitly shown
in fig 8 with PG = G and H1 = H . Moreover, the match m2 : L2 → PG can be
extended to a match m2 : L2 → H1 leading to a derivation H1 ⇒ X via (move
G, m′

2). In fact, the two derivations PG ⇒ H1 via (move P, m1) and H1 ⇒ X
via (moveG,m′

2) are sequential independent in the sense defined below.

Fig. 12. Parallel Independence

Two graph transformations G ⇒ H1 via (p1,m1) (with comatch m′
1 : R1 →

H1) and H1 ⇒ X via (p2,m2) are called sequential independent if the comatch
m′

1 : R1 → H1) and the match m′
2 : L2 → H2) only overlap in gluing items, i.e.

m′
1(R1) ∩ m2(L2) ⊆ m′

1(r1(K1)) ∩ m2(l2(K2))

Parallel and sequential independence of graph transformations are suitable con-
ditions to allow interleaving of graph transformations as shown in the following
theorem:



Graph Grammars and Petri Net Transformations 509

4.2 Local Church-Rosser Theorem

The following conditions for graph transformations are equivalent and each of
them is leading to the diamond of parallel and sequential graph transformations
in Figure 13, called local Church-Rosser property.

1. G ⇒ H1 via (p1,m1) and G ⇒ H2 via (p2,m2) are parallel independent
2. G ⇒ H1 via (p1,m1) and H1 ⇒ X via (p2,m′

2) are sequential independent
3. G ⇒ H2 via (p2,m′′

2) and H2 ⇒ X via (p1,m′
1) are sequential independent.

G

p1
		�����

�����

p2 


��

��
�

��
��

�

H1
p2




��

��
�

��
��

�

H2

p1

		�����
�����

X

Fig. 13. Local Church-Rosser Property

An explicit proof of the local Church-Rosser Theorem is given in [14]. It is
based on suitable composition and decomposition properties of pushouts.

In the following we will see that parallel independence of graph transfor-
mations also allows to construct a parallel derivation G ⇒ X via a parallel
production p1 + p2.

4.3 Parallel Productions and Parallel Derivations

Given productions pi = (Li
li← Ki

ri→ Ri) for i = 1, 2 the parallel production
p1 + p2 is given by

p1 + p2 = (L1 + L2
l1+l2← K1 +K2

r1+r2→ R1 +R2)

where L1 + L2, l1 + l2 etc. is the disjoint union of graphs and graph morphisms
respectively. This corresponds to the coproduct of objects and morphisms in the
category Graphs.

An example for the parallel production move P + move G is shown in Fig-
ure 14.

Parallel independence of move P and move G in Figure 12 implies according
to the following Parallelism Theorem a parallel derivation G ⇒ X via (p1 +
p2,m), where the match m : L1 + L2 → G is a non-injective graph morphism
induced by m1 : L1 → G and m2 : L2 → G. The nodes 4 and 1 in Figure 14 are
identified with node 1 in Figure 12. In the derived graph X pacman is on node
2 and the ghost on node 1.

In general, a derivation with a parallel production is called parallel derivation.
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Fig. 14. Parallel Production move P + move G

4.4 Parallelism Theorem

The following conditions for graph transformations are equivalent;

1. G ⇒ H1 via (p1,m1) and G ⇒ H2 via (p2,m2) are parallel independent
2. G ⇒ X via (p1+p2,m) is a parallel derivation, where (p1+p2) is the parallel

production of p1 and p2 and m1 : L1 + L2 → G is the match induced by
m : L1 → G and m2 : L2 → G.

Together with the Local Church-Rosser Theorem we obtain the parallelism
diamond shown in Figure 15.
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Fig. 15. Parallelism Diamond

If p1 and p2 are sequentially independent in a derivation sequence G1
p1=⇒

G2
p2+p3=⇒ G3 then this sequence is shift equivalent to a derivation sequence

G1
p1+p2=⇒ G′

2
p3=⇒ G3 and we obtain the shift relation shown in Figure 16.

G1
p1=⇒ G2

p2+p3=⇒ G3 �shift G1
p1+p2=⇒ G′

2
p3=⇒ G3

Fig. 16. Shift Relation

Shift equivalence on parallel derivations is the closure of the shift relation un-
der parallel and sequential composition. The shift relation is well-founded. The
minimal derivations with respect to shift relation are called canonical deriva-
tions. Canonical derivations are unique representations of shift equivalent par-
allel derivation classes (see [3] for more details).
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5 Graph Grammars, Petri Nets
and Concurrent Semantics

In this section we discuss the relationship between graph grammars and Petri
nets. Both of them are well-known as specification formalisms for concurrent and
distributed systems. First we show how the token game of place-transition nets
can be modeled by double pushouts of discrete labeled graphs. This allows to
relate basic notions of place-transition nets like marking, enabling, firing, steps
and step sequences, to corresponding notions of graph grammars and to transfer
semantical concepts from Petri nets to graph grammars. Since a marking of a net
on one hand and a graph of a graph grammar on the other hand correspond to
the state of a system to be modeled, graph grammars can be seen to generalize
place-transition nets by allowing more structured states. In the second part
of this section we give a short overview of the concurrent semantics of graph
transformations presented in [3] of the Handbook of Graph grammars volume 3,
which is strongly influenced by corresponding semantical constructions for Petri
nets in [36]. Finally let us point out that we discuss the modification of the net
structure of Petri nets using graph transformations in the next chapter.

5.1 Correspondence of Notions
between Petri Nets and Graph Grammars

The firing of a transition in a place-transition net can be modeled by a dou-
ble pushout in the category of discrete graphs labeled over the places of the
transitions. Let us consider the transition firing as token game in Figure 17.

[    >t

A B

C

1 2
1

t

A B

C

1 2
1

t

2 2

Fig. 17. Transition Firing as Token Game

The transition t in Figure 17 requires in the pre-domain one token on place
A and two tokens on place B and produces in the post-domain one token on B
and two tokens on place C. This corresponds to the production in the upper row
of Figure 18, where the left hand side consists of three nodes labeled A,B and B
and the right hand sie of three nodes labeled B,C and C. The empty interface
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of the production means that no node is preserved by the production, which
corresponds to the token game in place-transition nets. In fact, the transition t in
Figure 17 consumes two tokens and produces one token on place B. Preservation
of tokens in the framework of Petri nets can be modeled by contextual nets, and
transition with context places can be modeled by productions with nonempty
interface.

A

A A A
A A

A A

B B

B B

B

B

C
C

C C

C C C

Fig. 18. Transition Firing as Double Pushout

The marking of the left-hand side net in Figure 17 corresponds to the discrete
graph to the left in the lower row of Figure 18, while the marking after firing of
the transition in Figure 17 corresponds to the discrete graph to the right.

The discrete graph in the middle of Figure 18 is the result of the deleting
step of the double pushout and that on the right in the lower row is the result
of the adding step. This shows that the firing step in Figure 17 corresponds
exactly to a direct derivation in the double-pushout approach. This correspon-
dence of notions between place/transition nets and graph grammars is shown
in Table 1 in more detail. In fact, enabling of a transition at a marking corre-
sponds to applicability of a production to a graph, concurrency of transitions
corresponds to parallel independent productions applied with non-overlapping
matches, conflicts correspond to parallel dependent direct derivations with over-
lapping matches, a parallel transition step of concurrent transitions corresponds
to a parallel direct derivation, and finally a step sequence to a parallel derivation.

5.2 Concurrent Semantics of Graph Transformation

For sequential systems it is often sufficient to consider an input/output semantics
and thus the appropriate semantic domain is usually a suitable class of functions
from the input to the output domains. When concurrent or distributed features
are involved, instead, typically more information about the actual computation
of the system has to be recorded in the semantic domain. For instance, one may
want to know which steps of computation are independent (concurrent), which
are causally related and which are the (non-deterministic) choice points. This
information is necessary, for example, if one wants to have a compositional se-
mantics, allowing to reduce the complexity of the analysis of concurrent systems
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Table 1. Correspondence of Notions

Petri Nets Graph Grammars

tokens nodes

places node labels

marking discrete, labeled graph

transition enabled at a marking production applicable to a graph

firing direct derivation

firing sequence derivation
concurrent transitions parallel independent productions

conflict parallel dependence

step parallel direct derivation

step sequence parallel derivation

built form smaller parts, or if one wants to allocate a computation on a dis-
tributed architecture. Roughly speaking, non-determinism can be represented
either by collecting all the possible different computations in a set, or by merg-
ing the different computations in a unique branching structure where the choice
points are explicitly represented. On the other hand, concurrent aspects can be
represented by using a truly concurrent approach, where the casual dependencies
among events are described directly in the semantics using a partially ordered
structure. Alternatively, an interleaving approach can be adopted, where concur-
rency is reduced to non-determinism, in the sense that the concurrent execution
of events is represented as the non-deterministic choice among the possible in-
terleavings of such events.

Let us first have a look to the area of Petri nets, where a well-established
theory has been developed already.

Petri nets have been equipped with rich, formal computation-based seman-
tics, including both interleaving and truly concurrent models. In many cases such
semantics have been defined by using well-established categorical techniques, of-
ten involving adjunctions between suitable categories of nets and corresponding
categories of models. Let us point out especially the semantics of safe place-
transition nets presented as a chain of adjunctions by Winskel [36].

To propose graph transformation systems as a suitable formalism for the
specification of concurrent/distributed systems that generalizes Petri nets, we
are naturally led to the attempt of equipping them with a satisfactory semantic
framework, where the truly concurrent behavior of grammars can be suitably de-
scribed and analyzed. The basic result for interleaving and concurrent semantics
of graph transformation are the local Church-Rosser Theorem and the Paral-
lelism Theorem presented in the previous section. In the following we present
the main ideas of trace, process and event structure semantics for graph trans-
formations. For a more detailed overview we refer to the handbook article [3].

The trace semantics for graph transformations is based on parallel deriva-
tion sequences introduced in the previous section. Derivation traces are defined
as equivalence classes of parallel derivations with respect to the shift equiva-
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lence, which is the closure of the shift relation (see Figure 16) under parallel
and sequential composition. Abstraction equivalence is a suitable refinement of
the isomorphism relation on parallel derivations, which allows to obtain a well-
defined concatenation of derivation traces. This leads to a category Tr(G) of
derivation traces of a graph grammar G, which can be considered as the trace
semantics of G.

The process semantics for graph transformations is based on the notion of a
graph process, which is a suitable generalization of a Petri net process. In fact,
the idea of occurrence nets and concatenable net processes has been generalized
to occurrence graph grammars and concatenable graph processes. The mapping
of an occurrence graph grammar O to the original graph grammar G determines
for each derivation of O a corresponding derivation ofG, such that all derivations
of O correspond to the full class of shift-equivalent derivations. This means that
the graph process, defined by the occurrence graph grammar O together with
the mapping from O to G, can be considered as an abstract representation of
the shift-equivalence class. Hence the graph process plays a role similar to the
canonical derivation introduced in the previous section. The process semantics
for graph transformations is defined by the category CP(G) of abstract graphs
as objects and concatenable processes of G as morphisms.

The event structure semantics for graph transformations allows to construct
an event structure for a graph grammarG which - in contrast to trace and process
semantics - allows to reflect the intrinsic non-determinism of a grammar. Event
structures and domains are well-known semantical models not only for Petri nets,
but also for other specification techniques for concurrent and distributed systems.
The domain Dom(G) of a graph grammar is a partially ordered set, where the
elements of Dom(G) are derivation traces starting at the start graph GS of G,
and we have d1 ≤ d2 for derivation traces d1 : GS ⇒ G1 and d2 : GS ⇒ G2, if
there is a derivation trace d : G1 ⇒ G2 with d ◦ d1 = d2. Roughly spoken an
event e in the event structure ES(G) of the graph grammar G corresponds to
the application of a basic production p(e) in a derivation trace d(e) : GS ⇒ G.
Moreover, we have a partial order ≤ and a conflict relation " in ES(G), where
roughly spoken e1 ≤ e2 means d(e1) ≤ d(e2), and e1"e2 means that there is no
derivation trace d : GS ⇒ G including both p(e1) and p(e2). In the first case e1
and e2 are casually related and in the second case they are in conflict.

In the handbook article [3], where all these semantics are presented in detail,
it is also shown how these different graph transformation semantics are related
with each other (see 1.-3. below).

1. The trace semantics Tr(G) and the process semantics CP(G) are equivalent
in the sense that both categories are isomorphic.

2. For consuming graph grammars G the event structure semantics ES(G) and
the domain semantics Dom(G) are conceptually equivalent in the sense that
one can be recovered from the other. A grammar G is called consuming if
each production of the grammar deletes at least one node or edge. This cor-
respondence is a consequence of a well-known general result concerning the
equivalence of prime event structures and domains, where the configurations
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of a prime event structure are the elements of the domain. A configuration of
a prime event structure is a subset of events, which is left-closed and conflict
free. In our case the configurations of ES(G) correspond to the derivation
traces in Dom(G).

3. As a consequence of results 1 and 2 above we obtain the following intuitive
characterization of events and configurations from ES(G) in terms of pro-
cesses: Configurations correspond to processes, which have as source graph
the start graph of the grammar. Events are one-to-one with a subclass of
such processes having a production which is the maximum w.r.t. the casual
ordering.

4. In the case of Petri nets Winskel has shown in [36] that the category of safe
place-transition nets is related by a chain of adjoint functors to the cate-
gories of domains and prime event structures. Motivated by this chain of
adjunctions Baldan has shown in his dissertation [2] that there is a chain
of functors between the category of graph grammars and prime event struc-
tures, which is based on the trace and event structure semantics Tr(G) and
ES(G) discussed above. In fact, all but one steps in this chain of functors
have been shown already to be adjunctions as in the case of Petri nets.

6 Introduction to Petri Net Transformations

In the second part of this contribution we investigate Petri net transformations.
Note that there is a shift of paradigm. In graph transformation systems graph

productions are used to model the behavior. Obviously, this is not required
for Petri nets as the token game already models the behavior. In the area of
Petri nets the transformations are used to describe changes of the Petri net
structure. So, we can describe the stepwise development of nets, and have a
formal foundation for the evolution of Petri nets. The main advantages of Petri
net transformations are:

– the rule-based approach
– compatibility with structuring and marking graph semantics
– extension to refinement

There already have been a few approaches to describe transformations of
Petri nets formally (e.g. in [5, 6, 33, 7, 35]). The intention has been mainly on
reduction of nets to support verification, and not on the development process
itself.

First we discuss briefly the formal foundation of Petri net transformations as
an instantiation of so called high-level replacement systems. This is a general-
ization of the DPO-approach from graphs to arbitrary specification techniques,
that can be instantiated especially to graphs and different classes of Petri nets
(see Figure 19). Subsequently we give an extensive example, stepwise developing
the baggage handling system of an airport. Finally we discuss the relevance of
net transformations as means for the rule-based modification and refinement of
nets.
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Concrete
representation

...
Net
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Applications

Transformation System Transformation System

High-Level 
Replacement Systems

Fig. 19. Generalization and Instantiation

6.1 Formal Foundation Based on High-Level Replacement Systems

In this section we sketch the abstract frame work, that comprises the transforma-
tions of graphs in the previous and of Petri nets in the next sections. High-level
replacement systems can be considered as a general description of replacement
systems, where a left-hand side of the rule is replaced by a right-hand side in
the presence of an interface. Historically, rules and transformations of Petri nets
have been introduced as an instantiation of high-level replacement systems [12,
13, 28].

These kinds of replacement systems have been introduced in [13] as a cate-
gorical generalization of graph transformations in the DPO-approach. High-level
replacement systems are formulated for an arbitrary category Cat with a distin-
guished class M of morphisms, called M-morphisms. Figure 20 illustrates the
main idea for some arbitrary specification or structure. The rule given in the up-
per line describes that a black triangle is replaced by a long dotted rectangular,
if there is a light grey square below the triangle. The transformation is given by
the bottom line, where the replacement specified by the rule is carried out.

Fig. 20. Abstract Example
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High-level replacement systems are a categorical generalization of the alge-
braic approach to graph transformation systems with double pushouts. They
allow formulating the same notions as for graph transformation systems, but
not only for graphs but for objects of arbitrary categories. That means, instead
of replacing one graph by another one, now one object is replaced by another
one. Due to the categorical formulation of high-level replacement systems the
focus is not on the structure of the objects but on the properties of the category.

To achieve the results known in graph transformation systems, the instan-
tiated category of a high-level replacement system has to satisfy certain HLR-
conditions. In [24] an elegant reformulation of some HLR-conditions [26] is given
in terms of adhesive categories.

In [27] we have extended the theory of high-level replacement systems where
rules and transformations are required to preserve some desired properties of the
specification. To do so, rules and transformations are equipped with an additional
morphism that has to preserve or reflect specific properties. At this abstract
level we merely can assume suitable classes of morphisms and then guarantee
that these morphisms lead to property preserving rules and transformations. In
Section 7.6 (and much more detailed in [29]) we give a glance how this approach
works for Petri nets.

6.2 Example: Baggage Handling System
In this example we illustrate the rule-based modification of place/transition nets.
Rules describe the replacement of a left-hand side net by a right-hand side net.
The application of the rule yields a transformation where in the source net the
subnet corresponding to the left-hand side is replaced by the subnet correspond-
ing to the right-hand side. At this level as well as in this example there are
no statements about the properties of the modified nets. Nevertheless based on
the transformation we illustrate here, we already have developed a theory, called
rule-based refinement, where the transformations are extended to introduce, pre-
serve, or reflect net specific properties. In [29] a comprehensive survey can be
found, in Section 7.6 we discuss this theory briefly.

This example concerns the sorting, screening and moving of baggage at an
airport. The physical basis of the baggage handling system consists of check-in
counter, conveyor belts, sorter, screening devices, a baggage claim carousel, stor-
ages, and loading stations. The conveyor belts are transportation belts, that are
starting and ending at some fixed point (as check-in, sorter, loading station, bag-
gage claim carousel, etc). The baggage handling system comprises three check-in
counters, the primary sorter, the early baggage, the lost baggage as well as the
unclaimed baggage storage, the secondary sorter, two loading stations, the bag-
gage claim sorter with two baggage claim carousels and all the conveyor belts in
between. Mainly, there are the following cases to handle:

1. Check-in: The baggage has to be moved from the check-in counter to the
right loading station of a departing carrier. It has to pass a security check
(screening the baggage). At the check-in the baggage items are placed man-
ually into the transport system.
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2. Baggage Claim: At the loading station a carrier is unloaded and the baggage
items are placed manually into the transport system. The baggage has to be
moved from the loading station to the right baggage claim carousel.

3. Transfer: The baggage has to be moved from the loading station of the
arriving carrier to the loading station of the connecting flight carrier. The
baggage is moved to the secondary sorter and subsequently either to the right
loading station for the connecting flight or to the early baggage storage.

4. Storing Baggage: For baggage checked in early and for long waits between
connecting flights there must be a storage, called early baggage storage.
Moreover, misled or lost baggage has to be identified and is then handled
manually. Baggage that is not claimed at the baggage claim carousel has to
be stored as well.

To model the above given baggage handling system we can use low-level or
high-level Petri nets. High-level net allow modeling the data explicitly, but for
the purpose of this paper it is sufficient to use low-level nets. In fact, the basic
principles for net transformations are the same for low-level and high-level nets.
Subsequently we model the baggage handling system with place/transition nets,
which requires some abstraction of the data – for example the baggage tags or
the flight numbers are not modeled. Especially, we have modeled baggage as
tokens, hence it cannot be distinguished. The choice what happens to baggage is
accordingly no longer depended from the data, i.e. the baggage tag, but is done
at random.

The place/transition net in Figure 21 is an abstraction of the above speci-
fied baggage handling system. The baggage handling system is an open system;
baggage enters and leaves the system. We have modeled this using transitions
without pre-domain for entering baggage and using transitions without post-
domain for leaving baggage. Therefore we have the empty initial marking.

In the net in Figure 21 neither the conveyor belts nor the screening nor
the lost or unclaimed baggage storage are modeled explicitly. Subsequently we
present a step-by-step development of our first abstraction in Figure 21 that
adds the lacking features. We want to add the representation of the conveyor
belts by places, as well as the explicit modeling of the screening. Extending the
net in this way yields a larger net. So we decompose the net into subnets in order
to continue using the smaller subnets. Subsequently we introduce the subnets
for the lost baggage storage and for the unclaimed baggage storage.

Introducing Conveyor Belts and Screening: The conveyor belt is not yet explic-
itly modeled. The transitions t4 to t14 represent conveyor belts. There are three
different possibilities: A simple conveyor belt connecting two devices of the bag-
gage handling system (e.g. between the sorters and the early baggage storage or
the loading station) a conveyor belt connecting several devices (between check-
in and the primary sorter), and a complex conveyor belt including a screening
device with an optional manual check of unsafe baggage (between primary and
secondary sorter). The baggage is considered by the screening device either as
safe or as unsafe. If it is safe, then it is left on the conveyor belt. If it is considered



Graph Grammars and Petri Net Transformations 519

Primary
Sorter

Early
Baggage

CheckIN

CheckIN

Secondary
Sorter

BCCBCC BCC BCC BCCBCC

Loading
Station

Loading
Station

t1

t2

CheckIN

t3

t4

t5

t6 t8

t9

t17 t18
t19

t20
t21 t22

t24 t25 t26 t27 t28

Baggage 
Claim

Baggage 
Claim

t23

t15 t16

t11

t12

t29

t30

t13

t14

t31

t32

t10t7

Fig. 21. Baggage Handling System: Net B0

to be unsafe, it is taken off the conveyor belt, is checked manually, and either it
is taken out of the baggage handling system or it is put back into the subsequent
device (sorter, storing, or loading).

For these three cases there are three rules available for the replacement of the
corresponding transitions by subnets containing an explicit place ConveyorBelt.
In the first case it is modeled by the rule r1 = (L1 ← K1 → R1) in Figure 22.
This rule states that a transition X is deleted (including the adjacent arcs) and
is replaced by transitions T1 and T2 and the place ConveyorBelt.

P2P1 P1 P2 ConveyorBelt P2

R1

P1

L1 K1X T1 T2

Fig. 22. Introducing Conveyor Belts (Rule r1)
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In the second case we recursively replace transitions X by the already existing
ConveyorBelt in Figure 23.

ConveyorBelt P3
T2R2

P1

P2

T1

T3

ConveyorBelt P3
T2K2

P1

P2

T1
ConveyorBelt P3

T2L2

P1

P2

T1

X

Fig. 23. Recursive Introduction of Conveyor Belts (Rule r2)

Introducing the screening is modeled in Figure 24 adding the new places
ConveyorBelt and ManualCheck for the handling of unsafe baggage. The orig-
inal transition X is deleted, the two new places and the transitions in between
are added. The transition T5 denotes the removal of the unsafe baggage.

P1 P2 P2P1 P1

Manual
Check

P2

L3 X K3 T2
ConveyorBelt

R3 T1

T3
T4

T5

Fig. 24. Introducing Screening Devices (Rule r3)

These rules can be applied several times with different matches. First we
investigate the application of rule r3 with match m in Figure 25 with m(X ) =
t7 . Applying rule r3 with match m we have again the two steps as for the
application of a graph production (see 3.3):

STEP 1 (DELETE): Delete m(L3− l(K3)) from B0 leading to a context net
D (if the gluing condition is satisfied), s.t. B is the gluing of L3 and D along
K3, i.e. B0 = L3 +K3 D in (1) of Figure 25.

STEP 2 (ADD): Add R3 − r(K3) to D leading to the net B1, s.t. B1 is the
gluing of R3 and D along K3, i.e. B1 = R3 +K3 D in (2) of Figure 25.

Then we obtain the transformation in Figure 25 consisting of two pushouts,
where the context net D is the net B0 without the transition t7 and the re-
sulting net B1 has additional places ConveyorBelt and ManualCheck with the
corresponding transitions and arcs. In Figure 25 we have indicated the changes
by a light grey ellipse.

Next we apply rule r1 using the matches m1i : L1 → B1 mapping the
transition X to one of those transitions in B1 that represent a conveyor belt
and mapping the places P1 and P2 the adjacent places. So, we havem1i(X ) = ti
for i ∈ {8, ..., 14} leading to the nets B2, ..., B8 that are not given explicitly. At
last we replace the transitions t4 , t5 , and t6 by conveyor belts. We use match

m14 : L1 → B8 with m14(T ) = t4 and transform B8
(r1,m14)=⇒ B9. Subsequently

we can apply rule r2 using the matches m25(T ) = t5 and m26(T ) = t6 .
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Fig. 25. Transformation B0
(r1,m)
=⇒ B1
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This results in the following transformation sequence:

B0
(r3,m)
=⇒ B1

(r1,m18)=⇒ B2
(r1,m19)=⇒ B3

(r1,m110)=⇒ B4
(r1,m111)=⇒ B5

(r1,m112)
=⇒ B6

(r1,m113)=⇒ B7
(r1,m114)=⇒ B8

(r1,m14)=⇒ B9
(r2,m25)=⇒ B10

(r2,m26)=⇒ B11

Note that the nets typed bold face are illustrated in some Figure, e.g. the net
B11 is depicted in Figure 26.
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Fig. 26. Net B11: After Introducing all Conveyor Belts

Decomposition of the Net: During stepwise development a net usually reaches
at some point a size, where it becomes to large and has to be decomposed.

We assume the net B11 has become too large, so that some structuring
is required. In Figure 27 the place/transition net B11 is decomposed into two
subnets S1 and S2 and one interface net I, consisting of place SecondarySorter.
The subnets can be glued together using the union construction (see 7.4) and
then yield the original net B11: We have the embedding of I into S1 and S2.
The union describes the gluing of the subnets along the interface, hence we have
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Fig. 27. Decomposition Using Union

the the union S1 +I S2 = B11 1. Now we can modify the subnets independently
of each other provided that specific independence conditions are satisfied.
1 In this case the interface net consists of one place only, so that the union corresponds

to the usual place fusion of nets. But the general union construction allows having
arbitrary subnets as interfaces.
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Introducing Lost Baggage Storage: If the baggage is misled or the connecting or
the departing carrier are missed, then the baggage is stored in the lost baggage
storage. There it is handled manually, that is it is re-tagged and put back into
the primary sorter. This is expressed at an abstract level in rule r4 in Figure 28.

P1 P2

K4

P1 P2

L4

P2

R4

P1 LostBaggage

Fig. 28. Introducing Lost Baggage Storage (Rule r4)

The application of rule r4 to subnet S1 using the match m4 : L4 → S1
with m4(P1) = SecondarySorter and m4(P2) = PrimarySorter yields the net
S3. Applying rule r1 twice, subsequently adds the corresponding conveyor belts

and we have the transformation sequence S1
(r4,m4)
=⇒ S3 r1=⇒ S4 r1=⇒ S5. S5 is

depicted in Figure 29.
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Fig. 29. The Resulting Subnet S5

Introducing Unclaimed Baggage Storage. If the baggage is not claimed at the
baggage claim it is collected and stored in the unclaimed baggage storage. We
use two rules In Figure 30 to introduce the place UnclaimedBaggage and the
adjacent transitions recursively.

Applying first rule r5 and then five times rule r6 we obtain the following

transformation sequence S2 r5=⇒ S6
5�(r6)
=⇒ S7, where the resulting subnet S7 is

given in Figure 31.
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Fig. 30. Introducing Unclaimed Baggage Storage (Rules r5 and r6)
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Fig. 31. The Resulting Subnet S7

The Union Theorem and the Parallelism Theorem together now guarantee
that the resulting net B14 in Figure 32 of the union S5 +I S7 = B14 is the
same as the result of the following transformation sequence B11 r4=⇒ B12 r5=⇒
B13

5�(r6)
=⇒ B14 according to the case without the decomposition. This is quite

obvious if the interface net consists of one place only. In case of more complex
interface nets this result can be only achieved if some independence conditions
are satisfied. This condition states in principle that nothing from the interface
net may be deleted.
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6.3 Relevance of Petri Net Transformations

The above example illustrates only some of the possibilities and advantages of
net transformations. The usual argument in favor of formal techniques, to have
precise notions and valid results clearly holds for this approach as well.
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Fig. 32. The Resulting Net B14

Moreover, we have already investigated net transformations in high-level
Petri net classes (see Section 7.6) that are even more suitable for system mod-
eling than the place/transition nets in our example. The impact for system
development is founded in what results from net transformations:

– Stepwise Development of Models
The model of a complex software system may reach a size that is difficult to
handle and may compromise the advantages of the (formal) model severely.
The one main counter measure is breaking down the model into sub-models,
the other is to develop the model top-down. In top-down development the
first model is a very abstract view of the system and step by step more
modeling details and functionality are added. In general however, this results
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in a chain of models, that are strongly related by their intuitive meaning,
but not on a formal basis.
Petri net transformations fill this gap by supporting the step-by-step devel-
opment of a model formally. Rules describe the required changes of a model
and their application yields the transformations of the model. Especially the
repeated use of a rule ensures a uniform change of a subnet that appears
as multiple copies in the model (e.g. replacing one transition by the explicit
place ConveyorBelt and its adjacent transitions).
Moreover, the representation of change in a visual way using rules and trans-
formations is very intuitive and does not require a deeper knowledge of the
theory.

– Distributed Development of Models
Decomposing a model, that is too large, is an important technique for the
development of complex models. To combine the advantages of a horizontal
structuring with the advantages of step-by-step development techniques for
ensuring the consistency of the composed model are required. Then a dis-
tributed step-by-step development is available, that allows the independent
development of sub-models.
The theory of net transformations comprises horizontal structuring tech-
niques and ensures compatibility between these and the transformations. In
our example we have employed the union construction for the decomposi-
tion, and have subsequently developed the subnets independently of each
other. The theory allows much more complex decompositions, where the in-
dependence of the sub-models is not as obvious as in the given example. So,
the formal foundation for the distributed development of complex models is
given.

– Incremental Verification
Pure modification of Petri nets is often not sufficient, since the net has
some desired properties that have to be ensured during further development.
Verification of each intermediate model requires a lot of effort and hence is
cost intensive. But refinement can be considered as the modification of nets
preserving desired properties. Hence the verification of properties is only
required for the net, where they can be first expressed. In this way properties
are introduced into the development process and are preserved from then on.
Rule-based refinement modifies Petri nets using rules and transformations
so that specific system properties are preserved. For a brief discussion see
Section 7.6.

– Foundation for Tool Support
A further advantage is the formal foundation of rule-based refinement and/or
rule-based modification for the implementation of tool support. Due to the
theory of Petri net transformations we have a precise description, how rules
and transformation work on Petri nets. Tool support is for the practical use
the main precondition. The user should get tool support for defining and
applying rules. The tool should assist the choice as well as the execution of
rules and transformations.
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– Variations of the Development Process
Another area, where transformations are very useful, concerns variations in
the development process. Often a development is not entirely unique, but
variations of the same development process lead to variations in the desired
models and resulting systems. These variations can be expressed by different
rules yielding different transformations, that are used during the step-by-
step development. In our example we can obtain various different baggage
handling systems, depending on the rules we use. We can have a system
where each conveyor belt is equipped with screening device, if we always use
rule r3 instead of rule r1.

7 Concepts of Petri Net Transformations

In this section we give the precise definitions of the notions that we have already
used in our example. For notions and results beyond that we give a brief survey
in Section 7.6 and refer to literature.

7.1 Place/Transition Nets and Net Morphisms

Let us first present a notation of place/transition net that is suitable for trans-
formations is the algebraic approach.

These nets are given in the algebraic style as introduced in [25]. A place/
transition net N = (P, T, pre, post) is given by the set of places P , the set of
transitions T , and two mappings pre, post : T → P⊕, the pre-domain and the
post-domain.

T
pre ��
post

�� P⊕ .

P⊕ is the free commutative monoid over P that can also be considered as the
set of finite multisets over P . The pre- (and post-) domain function maps each
transition into the free commutative monoid over the set of places, representing
the places and the arc weight of the arcs in the pre-domain (respectively in
the post-domain). An element w ∈ P⊕ can be presented as a linear sum w =∑

p∈P λp · p or as a function w : P → N. We can extend the usual operations
and relations as ⊕, (, ≤, and so on.

Based on the algebraic notion of Petri nets [25] we use simple homomorphisms
that are generated over the set of places. These morphisms map places to places
and transitions to transitions. The pre-domain of a transition has to be preserved,
that is even if places may be identified the number of tokens that are taken,
remains the same. This is expressed by the condition pre2 ◦ fT = f⊕P ◦ pre1.

A morphism f : N1 → N2 between two place/transition nets N1 = (P1, T2,
pre1, post1) and N2 = (P2, T2, pre2, post2) is given by f = (fP , fT ) with fP :
P1 → P2 and fT : T1 → T2 so that pre2 ◦ fT = f⊕P ◦ pre1 and post2 ◦ fT =
f⊕P ◦ post1. The diagram schema for net morphisms is given in Figure 33.

Several examples of net morphisms can be found in Figure 25 where the
dashed arrows denote injective net morphisms.
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T1

pre1 ��
post1

��

fT
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P⊕
1

f⊕
P
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T2

pre2 ��
post2

�� P⊕
2

Fig. 33. Net Morphism

7.2 Rules and Transformations

The category PT consists of place/transition nets as objects and place/transition
net morphisms as morphisms. In order formalize rules and transformations for
nets in the DPO-approach we first state the construction of pushouts in the
category PT of place/transition nets. For any span of two morphisms N1 ←
N0 → N2 the pushout can be constructed. The construction is based on the
pushouts for the sets of transitions and sets of places in the category Set of sets
and is similar to the pushout construction for graphs (see 3.4).

Given the morphisms f : N0 → N1 and g : N0 → N2 then the pushout
N3 with the morphisms f ′ : N2 → N3 and g′ : N1 → N3 is constructed (see
Figure 34) as follows:

– T3 = T1 +T0 T2 with f ′T and g′T as pushout of fT and gT in Set.
– P3 = P1 +P0 P2 with f ′P and g′P as pushout of fP and gP in Set as well.

– pre3(t) =

{
[pre1(t1)] ; if g′T (t1) = t
[pre2(t2)] ; if f ′T (t2) = t

– post3(t) =

{
[post1(t1)] ; if g′T (t1) = t
[post2(t2)] ; if f ′T (t2) = t

N0

g

��

f �� N1

g′

��
N2

f ′
�� N3

Fig. 34. Pushout of Nets

We introduce rules, that correspond to graph productions in the DPO-ap-
proach. Rules describe the replacement of the left-hand side net by the right-hand
side net in the presence of an interface net.

– A rule r = (L k1←− K k2−→ R) consists of place/transition nets L, K and R,
called left-hand side, interface and right-hand side net respectively, and two
injective net morphisms K k1−→ L and K k2−→ R.
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– Given a rule r = (L k1←− K k2−→ R) a direct transformation N1
r=⇒ N2, from

N1 to N2 is given by two pushout diagrams (1) and (2) in Figure 35.
The morphisms m : L→ N1 and n : R→ N2 are called match and comatch,
respectively. The net C is called pushout complement or the context net.

L

m

��
(1)

K
k1�� k2 ��

c

��
(2)

R

n

��
N1 C�� �� N2

Fig. 35. Net Transformation

The illustration of a transformation can be found for our example in Figure
25, where the rule r1 is applied to the net B0 with match m. The first pushout
denotes the gluing of the nets L3 and D along the net K3 resulting in net B0.
The second pushout denotes the gluing of net R3 and net D along K3 resulting
in net B1.

7.3 Gluing Condition and the Construction of the Context Net

Given a rule r and a match m as depicted in Figure 35, then we construct in
a first step the pushout complement provided the gluing condition holds. This
leads to the pushout (1) in Figure 35. In a second step we construct the pushout
of c and k2 leading to N2 and the pushout (2) in Figure 35.

The gluing condition correspond exactly to the gluing condition in the graph
case (see 3.5). Using the same interpretation as in the graph case, but the nota-
tion from Figure 35 we have the following:

Gluing Condition for Nets:

BOUNDARY ⊆ GLUING

where BOUNDARY and GLUING are subnets of L defined by

– GLUING = k1(K)

– DANGLING = {p ∈ PL | ∃t ∈ T1 −mT (TL) :
(mP (p) ∈ pre1(t) or mP (p) ∈ post1(t))}

where the notation p ∈ pre1(t) means pre1(t) =
∑

p∈P1
λp · p with λp > 0,

similar for post1,

– IDENTIFICATION = {x ∈ K | ∃y ∈ K : (x �= y and m(x) = m(y))},
where x ∈ K means x ∈ PK with m = mP or x ∈ TK with m = mT , and

– BOUNDARY = DANGLING ∪ IDENTIFICATION

Now the context net C is the pushout complement C in Figure 35 that is
constructed by:
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– PC = (P1 \mP (PL)) ∪mP (k1P (PK))
– TC = (T1 \mT (TL)) ∪mT (k1T (TK))
– preC = pre1|TC

and postC = post1|TC

Note that the pushout complement C leads to the pushout (1) in Figure 35
and that it is unique up to isomorphism.

In our example of the development of the baggage handling system the gluing
condition is satisfied in all cases, since the matches are all injective and places
are not deleted by our rules.

7.4 Union Construction
The union of two Petri nets sharing a common subnet, that may be empty, is
defined by the pushout construction for nets.

The union of place/transition nets N1, N2 sharing an interface net I with the
net morphisms f : I → N1 and g : I → N2 is given by the pushout (1) in Figure

36. Subsequently we use the short notation N = N1 +I N2 or N1, N2
�� I �� N .

I

g

��

f ��

(1)

N1

g′

��
N2

f ′
�� N

Fig. 36. Union of Nets

In our example we use the union construction to describe the decomposition
in Figure 27. The interface net I is mapped by morphisms to the subnets S1
and S2.

7.5 Union Theorem
The Union Theorem states the compatibility of union and net transformations:
Given a unionN1+IN2 = N and net transformationsN1

r1=⇒M1 andN2
r2=⇒M2

then we have a parallel rule r1 + r2 (analogously to a parallel production, see
4.3) and a parallel net transformation N r1+r2=⇒ M . M = M1 +I M2 is then the
union of M1 and M2 with the shared interface I, provided that the given net
transformations preserve the interface I.

The Union Theorem is illustrated in Figure 37:

N1, N2

r1,r2

��

�� I ��

(=)

N

r1+r2

��
M1,M2

�� I �� M

Fig. 37. Diagram for the Union Theorem
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Note that the compatibility requires an independence condition stating that
nothing from the interface net I may be deleted by one of the transformations
of the subnets. This is obviously the case in our example, since the interface
consists of one place only and the rules do not delete any places.

7.6 Further Results

We briefly introduce the main net classes we have studied up to now, and sub-
sequently we present some main results.

– Place/transition nets in the algebraic style have already been introduced in
the previous Section.

– Coloured Petri nets [20–22] are widely known and very popular. Their prac-
tical relevance is very high, due to the very successful tool Design/CPN [19].

– Algebraic high-level nets are available in quite a few different notions e.g.
[34, 30, 28]. We use a notion that reflects the paradigm of abstract data types
into signature and algebra. An algebraic high-level net (as in [28]) is given
by N = (SPEC,P, T, pre, post, cond,A), where SPEC = (S,OP,E) is an
algebraic specification in the sense of [16], P is the set of places, T is the set
of transitions, pre, post : T → (TOP (X) ×P )⊕ are the pre- and post-domain
mappings, cond : T → Pfin(EQNS(SIG)) are the transition guards, and A
is a SPEC algebra.

Horizontal Structuring. Union and fusion are two categorical structuring con-
structions for place/transition nets, that merge two subnets or two different nets
into one.

The Union is introduced in the previous section. Now let us consider fusion:
Given a net F that occurs in two copies in the net N1, represented by two

morphisms F
f ��

f ′
�� N1 the fusion construction leads to a net N2, where both

occurrences of F in N1 are merged. If F consists of places p1, .., pn then each of
the places occurs twice in netN1, namely as f(p1), ..., f(pn) and f ′(p1), ..., f ′(pn).
N2 is obtained from net N1 fusing both occurrences f(pi) and f ′(pi) of each place
pi for 1 ≤ i ≤ n.

The Union Theorem is presented in the previous section. The Fusion Theo-
rem [27] is expressed similarly: Given a rule r and a fusion F ��

�� N1 then
we obtain the same result whether we derive first N1

r=⇒ N ′
1 and then con-

struct the fusion F ��
�� N ′

1 resulting in N ′
2 or whether we construct the fu-

sion F ��
�� N1 first, resulting in N2 and then perform the transformation step

N2
r=⇒ N ′

2. Similar to the Union Theorem a certain independence condition is
required. Both theorems state that Petri nets transformations are compatible
with the corresponding structuring technique under suitable independence con-
ditions. Roughly spoken these conditions guarantee that the interface net I and
respectively the fusion net F are preserved by all net transformations.

Parallelism. In Section 4 the concepts of parallelism have been discussed for
graphs. The main theorems hold for Petri net transformations as well.
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The Church-Rosser Theorem states a local confluence in the sense of for-
mal languages. The required condition of parallel independence means that the
matches of both rules overlap only in parts that are not deleted. Sequential inde-
pendence means that those parts created by the first transformation step are not
deleted in the second. The Parallelism Theorem states that sequential or paral-
lel independent transformations can be carried out either in arbitrary sequential
order or in parallel. In the context of step-by-step development these theorems
are important as they provide conditions for the independent development of
different parts or views of the system. More details for horizontal structuring or
parallelism are given in see [28] or [27].

Refinement. The extension of High-level replacement systems to rules and trans-
formations preserving properties has the following impact on Petri nets: Rule-
based refinement comprises the transformation of Petri nets using rules while
preserving certain net properties. For Petri nets the desired properties of the
net model can be expressed, e.g in terms of Petri nets (as liveness, bounded-
ness etc.), in terms of logic (e.g. temporal logic, logic of actions etc.) in terms
of relation to other models (e.g. bisimulation, correctness etc.) and so on. We
have investigated the possibilities to preserve liveness of Petri nets and safety
properties in the sense of temporal logic.

Summarizing, we have for place/transition nets, algebraic-high level nets and
Coloured Petri nets the following results for rule-based refinement presented in
table 2. For more details see [29].

8 Conclusion

In the first part of this paper (Sections 2 - 5) we have given a tutorial introduction
to the basic notions of graph grammars and graph transformations including the
relationship to corresponding notions of Petri nets. In the second part (Section
6 and Section 7) we have shown how to use Petri nets transformations for the
stepwise development of systems and have included a detailed example of a
baggage handling system. The main idea of Petri transformations is to extend
the classical theory of Petri nets by a rule-based technique that allows studying
the changes of the Petri net structure.

In our general overview of graph grammars and transformations in Section 2
we have already pointed out that there is a large variety of different approaches
and application areas. The practical use of graph transformations is supported
by several tools. The algebraic approach to graph transformations (presented
in Sections 3 - 5) is especially supported by the graph transformation envi-
ronment AGG (see the homepage of [1]). AGG includes an editor for graphs
and graph grammars, a graph transformation engine, and a tool for the analy-
sis of graph transformations. the AGG system as well as some other tools are
available on a CD which is part of volume 2 of the Handbook of Graph Gram-
mars and Computing by Graph Transformation [10]. This volume provides also
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Table 2. Achieved results

Notion/Results PT-nets AHL-nets CPNs

Rules, Transformations
√ √ √

Safety property preserving transformations with
transition-gluing morphisms

√ √ √
place-preserving morphisms

√ √ √

Safety property introducing transformations
√ √ √

Liveness preserving transformations
√

? ?

Liveness introducing transformations
√

? ?

Church Rosser I + II Theorem
√ √ √

Parallelism Theorem
√ √ √

Union
√ √ √

Fusion
√ √ √

Union Theorems I+II
√ √ √

Fusion Theorem
√ √ √

an excellent introduction to several application areas for graph transformations.
Concurrency aspects of graph grammars, which are briefly discussed in Section 5,
are presented in much more detail in volume 3 of the handbook [3]. This volume
includes also an introduction to high-level replacement systems with application
to algebraic specification and Petri nets including the theoretical foundations of
Petri net transformations [11].

On top the graph transformation system AGG there is the GenGED en-
vironment (see the homepage of [18]) that supports the generic description of
visual modeling languages for the generation of graphical editors and the sim-
ulation of the behavior of visual models. Especially, Petri net transformations
can be expressed using GenGED, e.g. for the animation of Petri nets [9, 4]. In
this framework, the animation view of a system modeled as a Petri net consists
of a domain-specific layout and an animation according to the firing behavior of
the Petri net. This animation view can be coupled to other Petri net tools [8]
using the Petri Net Kernel [23] a tool infrastructure for editing, simulating and
analyzing Petri nets of different net classes and for integration of other Petri net
tools.
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Abstract. Message sequence charts (MSC) are a graphical notation
standardized by the ITU and used for the description of communication
scenarios between asynchronous processes. This survey compares MSCs
and communicating finite-state automata, presenting two fundamental
validation problems on MSCs, model-checking and implementability.

1 Introduction

Modeling and validation, whether formal or ad-hoc, are important steps in sys-
tem design. Over the last couple of decades, various methods and tools were
developed for decreasing the amount of design and development errors. A com-
mon component of such methods and tools is the use of formalisms for specifying
the behavior and requirements of the system. Experience has shown that some
formalisms, such as finite-state machines, are particularly appealing, due to their
convenient mathematical properties. In particular, the expressive power of finite-
state machines is identical to regular languages, an important and well-studied
class of languages. Although their expressiveness is restricted, finite-state ma-
chines are used for the increasingly successful automatic verification of software
and hardware, also called model-checking [8, 10]. One of the biggest challenges in
developing new validation technology based on finite-state machines is to make
this model popular among system engineers.

The Message Sequence Charts (MSC) model has become popular in soft-
ware development throughout its visual representation, depicting the involved
processes as vertical lines, and each message as an arrow between the source
and the target processes, according to their occurrence order. An international
standard [1], and its inclusion in the UML standard, has increased the popular-
ity. The standard has also extended the notation to Message Sequence Graphs
(MSGs), which consist of finite transition systems, where each state embeds a
single MSC. Encouraged by the success of the formalism among software devel-
opers, techniques and tools for analyzing MSCs and MSGs have been developed.

In this survey we describe the formal analysis of MSCs and MSGs. The
class of systems that can be described using this formalism does not directly
correspond to a well-studied class such as regular languages. It turns out that
MSGs are incomparable with the class of finite-state communication protocols.
One thus needs to separately study the expressiveness of MSG languages, and
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adapt the validation algorithms. Several new algorithms are suggested in order
to check MSG properties, mostly related to an automatic translation from MSG
specification into skeletons of concurrent programs. Our survey concentrates on
the following subjects:

Expressiveness: Comparing the expressive power of MSGs to the expressive
power of other formalisms, in particular communicating finite-state ma-
chines.

Verification: The ability to apply automatic verification algorithms on MSGs,
and the various formalisms used to define properties of MSGs.

Implementability: The ability to obtain an automatic translation from MSG
specification into skeletons of code.

Generalizations and Restrictions: Various extensions and restrictions of the
standard notation are suggested in order to capture further systems, and on
the other hand, to obtain decidability of important decision procedures.

Very recently, several MSC-based specification formalisms have been pro-
posed, such as Live Sequence Charts [17], Triggered MSCs [30], Netcharts [25]
and Template MSCs [12]. The motivation behind these models is to increase the
expressiveness of the notation, and to make their usage by designers even more
convenient.

2 Message Sequence Graphs
and Communicating Finite-State Machines

We present in this section two specification formalisms for communication pro-
tocols, Message Sequence Charts and Communicating Finite-State Machines.

Message Sequence Charts (MSC for short) is a scenario language standard-
ized by the ITU [1]. They are simple diagrams depicting the activity and commu-
nications in a distributed system. The entities participating in the interactions
are called instances (or processes). They are represented by vertical lines, on
which the behavior of each single process is described by a sequence of events.
Message exchanges are depicted by arrows from the sender to the receiver. In
addition to messages, atomic events, timers, local/global conditions can also be
represented.

Definition 1 A Message Sequence Chart (MSC for short) is a tuple M =
〈P , E, C, 
,m,<〉 where:

– P is a finite set of processes,
– E is a finite set of events,
– C is a finite set of names for messages and local actions,
– 
 : E → T = {p!q(a), p?q(a), p(a) | p �= q ∈ P , a ∈ C} labels an event with its

type: in process p, either a send p!q(a)of message a to process q, or a receive
p?q(a) of message a from process q, or a local event p(a). The labeling 

partitions the set of events by type (send, receive, or local), E = S ·⋃R ·⋃L,
and by process, E = ·⋃p∈P Ep.
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– m : S → R is a bijection matching each send to the corresponding receive. If
m(s) = r, then 
(s) = p!q(a) and 
(r) = p?q(a) for some processes p, q ∈ P
and some message name a ∈ C.

– <⊆ E × E is an acyclic relation between events consisting of:
1. a total order on Ep, for every process p ∈ P, and
2. s < r, whenever m(s) = r.

The event labeling 
 implicitly defines the process pr(e) for each event e
as pr(e) = p if e ∈ Ep (equivalently, 
(e) ∈ {p!q(a), p?q(a), p(a)} for some q ∈
P , a ∈ C). Since point-to-point communication is usually FIFO (first-in-first-out)
we make in the following the same assumption for MSCs. That is, we assume that
whenever m(s1) = r1, m(s2) = r2 holds with pr(s1) = pr(s2), pr(r1) = pr(r2)
and s1 < s2, then we also have r1 < r2.

The example in figure 1 is an MSC M with messages sent between two
processes p1, p2. It corresponds to a scenario of the alternating bit protocol, in
which the sender p1 is forced to resend the message to the receiver p2, since p2’s
acknowledgments arrive too late.

p

message

process

1 p2

Fig. 1. MSC execution of the alternating bit protocol.

The relation < is called the visual order on the MSC, since it corresponds
to its graphical representation. It is comprised of the process ordering and
the message ordering, pairwise between send and matching receive. Since <
is required to be acyclic, its reflexive-transitive closure <∗ is a partial order
on the set E of events, which we will denote for simplicity also by ≤. Any
extension of ≤ to a total order on E is called a linearization of M . We de-
note by Lin(M) the set of all labeled linearizations of an MSC M , Lin(M) =
{
(e1) · · · 
(en) | e1 · · · en is a linearization of M}.

Since the specification of a communication protocol consists of many sce-
narios, either in positive or in negative form, a high-level description is needed
for combining them together and defining infinite sets of (finite or infinite) sce-
narios. The Z.120 standard description introduces high-level MSCs using non-
deterministic branching, concatenation and iteration of finite MSCs. The se-
mantics is provisional, that is, the high-level MSC usually describes possible
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behaviors of the system. Formally, a Message Sequence Graph (MSG for short)
G = 〈V,R, v0, Vf , λ〉 consists of a finite transition system (V,R, v0, Vf ) with set
of nodes V and set of transitions R ⊆ V × V , initial node v0 ∈ V and terminal
nodes Vf ⊆ V . In pictures, the initial node is marked by an incoming arrow,
and final nodes by outgoing arrows. Each node v is labeled by the finite MSC
λ(v). For instance, the MSG in figure 2 describes the possible runs of a protocol
for connecting a user U with a server S through a firewall F . After a connec-
tion request (initial node A) either the server accepts the user and the firewall
grants the access (final node B), or else the server’s accept arrives too late (after
the firewall denied the access, node C). This negative behavior can repeat (loop
between A and C) and leads eventually to an error (final node D).

switch
 off

Aconnect

test

info

Cfail

ack

B

grant

ack

D

U F S U F S

Fig. 2. Communication protocol represented by an MSG.

An execution of an MSG G is the labeling λ(v0)λ(v1) · · ·λ(vk) of some ac-
cepting path v0 = v0, v1, . . . , vk ∈ Vf of G, i.e., (vi, vi+1) ∈ R for every 0 ≤ i < k.
For example, ACAB in figure 2 is the execution of G in which the connection
fails once, but the second request succeeds. The set of executions of G is denoted
by L(G), the set of linearizations of executions of G is denoted by Lin(G). The
size of a MSG G (denoted |G|) is the sum of the sizes of its nodes.

Of course, the semantics of MSGs depends on the definition of the MSC prod-
uct. We consider the usual weak product of MSCs, that concatenates MSCs along
the process lines. Let M1 = 〈P , E1, C1, 
1 ,m1, <1〉 and M2 = 〈P , E2, C2, 
2,
m2, <2〉 be MSCs over the same set of processes P . The product M1M2 is the
MSC 〈P , E1 ·⋃E2, C1 ∪C2, 
1 ∪
2, m1 ∪m2, <〉 over the disjoint union of events,
with the visual order given by:

< = <1 ∪ <2 ∪ {(e, f) ∈ E1 × E2 | pr(e) = pr(f)} .

Note that there is no synchronization between different processes when moving
from one node to the next one (weak product). Hence, it is possible that one pro-
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cess is still involved in some actions of M1, while another process has advanced
to an event of M2.

A related standardized specification notation for telecommunication appli-
cations is SDL (Specification and Description Language, ITU Z.100). SDL is
dedicated to the design of real-time, distributed systems and involves complex
features as hierarchy, procedure calls and abstract data types. The basic theoreti-
cal model behind SDL are nested communicating finite-state machines. We recall
the definition of (flat) communicating finite-state machines (CFM for short).

A CFM A = (Ap)p∈P consists of finite-state machines Ap associated with
processes p ∈ P , which communicate over unbounded, error-free, FIFO channels.
The content of a channel is a word over a finite alphabet C. With each pair
(p, q) ∈ P2 of distinct processes we associate a channel Cp,q. Each finite-state
machine Ap is described by a tuple Ap = (Sp, Ap,→p, Fp) consisting of a set of
local states Sp, a set of actions Ap, a set of final states Fp and a transition relation
→p ⊆ Sp × Ap × Sp. The computation begins in an initial state s0 ∈

∏
p∈P Sp.

The actions of Ap are either local actions or sending/receiving a message. We
use the same notations as for MSCs. Sending message a ∈ C from process p to
process q is denoted by p!q(a) and it means that a is appended to the channel
Cp,q. Receiving message a by p from q is denoted by p?q(a) and it means that
a must be the first message in Cq,p, which will be then removed from Cq,p. A
local action a on process p is denoted by lp(a). We denote a run of the CFM
as successful, if each process p finishes the execution in some final state and all
channels are empty. The set of successful runs of A is denoted L(A). The size
of A is

∑
p |Ap| and is denoted |A|.

Note that each successful run of a CFM defines an MSC. Conversely, with
each MSC M = 〈P , E, C, 
,m,<〉 we can associate an equivalent CFM, by defin-
ing the behavior of process p as the (ordered) sequence of events Ep. However,
the two formalisms MSG and CFM are incomparable in general, as discussed in
the next section.

3 Comparing MSG and CFM

Comparing the expressivity of MSG and CFM is interesting for at least two
reasons. First, both formalisms are heavily used in protocol design, sometimes
for specifying different parts of a system at different stages of the design process.
Second, MSCs are usually intended as early requirements, for a rough description
of the desired/undesired behavior. Thus, the question whether the described
behavior can be turned into a protocol (implementability/realizability problem)
is an important validation step in the design process.

A qualitative comparison between MSG and CFM concerns two important
parameters, control and channels. Control in a CFM is inherently local, since
it corresponds to local transition functions. The control structure of an MSG is
global, since the branching from a node concerns all processes occurring in the
future execution. The global control mechanism of an MSG is actually imposed
by the visual character of the diagram graph, in which MSCs are composed
sequentially. One problem arising from the global control is that an MSG G
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might be non-implementable, i.e., no CFM A exists with L(A) = L(G). For a
simple example, consider the MSG G consisting of a single node v with a self-
loop, labeled by a message from p1 to p2 and another message from p3 to p4.
Since the MSCs in L(G) must contain equally many messages from p1 to p2 and
from p3 to p4, there can be no equivalent CFM.

We turn now to the second parameter, namely channels. Although none of the
models impose any (universal) bound on the channel capacity, validation tasks
such as model-checking tend to be “more” decidable for MSGs than for CFMs
that are Turing complete, see [9]. The reason is that MSGs have existentially-
bounded channels, i.e., for each MSG G there exists an integer b such that every
MSC in L(G) can be executed with channels of size at most b. Formally, a
set X of MSCs is called existentially-bounded if there exists some b such that
every MSC M ∈ X has some linearization w ∈ Lin(M) satisfying the following
property: for every pair of distinct processes p, q and every prefix v of w, it holds
that 0 ≤

∑
a∈C |v|p!q(a) −

∑
a∈C |v|q?p(a) ≤ b. For an MSG G the bound b is

linear in the maximal size of the MSCs labeling the nodes of G. For an example
of property that is undecidable for CFM (but not for MSG) one can consider the
question whether a CFM generates at least one MSC [9]. A less trivial example
is pattern-matching: given an MSC M and an MSG G, we ask whether there is
some execution N ∈ L(G) and a factorization N = N1MN2, where N1, N2 are
both MSCs. The pattern-matching algorithm described in [12, 13] uses heavily
the fact that MSGs are existentially-bounded (with an priori known bound).

More generally, some CFMs cannot be transformed into MSGs since MSGs
are finitely generated. That is, for any MSG G there exists a finite set X of finite
MSCs such that any execution M ∈ L(G) can be written as a (finite or infinite)
product M = M1M2 · · ·Mk of factors from X , Mi ∈ X for all i. A typical
example of CFM that is not finitely generated corresponds to the alternating
bit protocol. The executions of this protocol include the family of MSCs that
generalize the pattern of the MSC shown in figure 1 with n crossing messages for
every n. None of these MSCsM can be decomposed asM =M1M2 withM1,M2

non-empty MSCs, since including a send in M1 forces to add another send on
the other process (the one preceding the corresponding receive). More generally,
an MSC M is called atomic (or atom), if for any decomposition M = M1M2

where both M1,M2 are MSCs, at most one is non-empty. For another example
of atomic MSC, consider the MSC M3 in figure 4. The set of atoms generating
the MSC executions of an MSG G is denoted At(G). It is a finite set and it
represents a canonic set of generators of L(G). Moreover, it can computed by a
simple linear-time algorithm, see [19].

On the potentially infinite alphabet At of atomic MSCs, we can define an
independence (commutation) relation I ⊆ At × At by letting AI A′ iff pr(A) ∩
pr(A′) = ∅. Notice that AI A′ implies that A,A′ commute, AA′ = A′A, and that
the decomposition of any MSC into atoms is unique up to commuting adjacent
atoms A,A′ with AI A′.

Returning to the alternating bit example, it is easily seen that the set of
linearizations Lin(M) of the represented MSC M is regular. Note that in this
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particular example every linearization of M has channel bound at most 3. We
call a set X of MSCs universally-bounded if for every MSC M ∈ X , every
linearization w ∈ Lin(M), every prefix v of w and every pair of distinct processes
p, q we have 0 ≤

∑
a∈C |v|p!q(a) −

∑
a∈C |v|q?p(a) ≤ b. Notice also that such a

universal channel bound for an MSG G does not suffice for Lin(G) being a
regular set. Hence, even if the specification is given as finite-state automaton A,
we cannot automatically transform A into an equivalent MSG G. This led to an
extension of the MSG formalism, namely to Compositional Message Sequence
Graphs (CMSG, for short) [16]. A compositional MSC (CMSC, for short) is
defined as an MSC, except that the message function m is partially defined. A
send that does not belong to the domain of the message function m, or a receive
not belonging to the range of m, are called unmatched events. The product of
two CMSC M1M2 is defined as for MSC, but in addition the k-th unmatched
send of M1 is matched with the k-th unmatched receive of M2 (if they exist)
in such a way that the FIFO property is satisfied by matched events. Hence,
the product of CMSCs is only partially defined. Moreover, it is not associative,
hence we define a product M1M2 · · ·Mk as parenthesized from left to right.

It is not very difficult to see that any CFM can be transformed into an
equivalent CMSG of exponential size. The rough idea is that nodes correspond to
pairs (state,event), where state is a global state of the CFM and event is an event
enabled in state. There is a transition from (state1,event1) to (state2,event2)
if state2 is obtained from state1 by an event1-transition (that modifies state1
according to the local transition relation). It is easy to check that any CMSC
execution of the CFM with no unmatched receive is an execution of the CMSG,
and vice-versa. For instance, the CFM generating the alternating bit protocol
from example 1 can be transformed into the CMSG in figure 3. (For CMSCs we
draw unmatched events by the solid end of a half-dotted message arrow, that
suggests the type of the matching event.)

p1 p2 p1 p2 p1 p2

Fig. 3. CMSG depicting the alternating bit protocol.

Theorem 1. Any CFM can be transformed into an equivalent CMSG of expo-
nential size.

4 Validating MSC Specifications:
Model-Checking and Implementation

MSG specifications are used very early in the design process. Revealing design
errors before implementing is of primary importance. This has motivated the de-
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sign of algorithms that check specific properties of MSGs such as race conditions
[4, 28] and detecting non-local choice [7, 19, 18]. Model-checking MSG specifica-
tions has been considered w.r.t. properties expressed as MSG [27], automata [6]
and partial-order logics [29, 24]. Another test that may reveal the incomplete-
ness of an MSG specification is the one for implementability. Here, we want to
know whether the specification can be transformed into a state-based, distributed
model as CFM. As discussed in section 4.2, the definition of implementability is
not canonical, and the results strongly depend on the variant we consider.

4.1 Model-Checking

In the common model-checking approach (see for recent textbooks [8, 10]) we
usually describe bad execution sequences using the same formalism as for spec-
ifying the system (e.g., finite automata over infinite words). Then we need to
check the emptiness of the intersection between the bad sequences and the sys-
tem, and counter-examples can be obtained if the intersection is non-empty. In
the MSC setting we cannot use complementation as with finite automata. First,
the complement of an MSG is not finitely generated, thus it can never be repre-
sented by an MSG. Secondly, even if we take the complement w.r.t. the MSCs
generated by the same set of atoms, the complement cannot be represented by
an MSG in general. This is similar to the fact that the complement of a ratio-
nal trace language is not rational, in general [11]. Therefore, we consider two
variants of model-checking, positive and negative model-checking. In both cases
we specify the property P we want to check, as well as the system S itself, by
MSGs. For negative model-checking we view P as a set of bad MSC executions
and we ask whether L(P ) ∩ L(S) = ∅. For positive model-checking we view P as
a set of good MSC executions and we ask whether L(S) ⊆ L(P ).

In the general setting of MSG specifications, both model-checking variants
are undecidable [6, 27]. This holds even if the property P is given by a finite-state
automaton or an LTL formula [6]:

Theorem 1 Given a finite-state automaton P and an MSG graph G, it is un-
decidable whether L(P ) ∩ L(G) = ∅.

The proof for theorem 1 is a straightforward reduction from Post’s correspon-
dence problem (PCP). Recall that an instance of PCP consists of pairs of words
(xi, yi)1≤i≤k over the alphabet {0, 1}. Then we ask for a non-empty sequence of
indices i1, . . . , in such that xi1 · · ·xin = yi1 · · · yin .

The MSG G consists of (k + 2) nodes v0, v1, . . . , vk, vf . Node v0 (vf , resp.)
is initial (final, resp.), and labeled by the empty MSC. Node vi is labeled
by a sequence of messages from p1 to p2 labeled 0 or 1 such that the se-
quence of labels equals xi, and a message from p3 to p4 labeled by i. There
is a transition from v0 to each of vi, from each vi to vf , and one from vf

to v0. The automaton P accepts precisely the set (X1 + · · · + Xk)+, where
each Xi is a finite word defined as follows: Let yi = a1 · · · am, then Xi =
p1!p2(a1)p2?p1(a1) · · · p1!p2(am)p2?p1(am) p3!p4(i)p4?p3(i).
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Clearly, since there is no synchronization between the process pairs {p1, p2}
and {p3, p4}, both the MSG and the automaton describe MSCs with two parallel
threads, one over the PCP words (x for G, y for P ) and the other over the
corresponding indices. The non-empty intersection between G and P reveals
then a PCP solution.
Remark. Note that the undecidability proof above does not rely on the unbound-
edness of channels, since G is existentially-bounded. Actually the construction
can be slightly modified such that G becomes universally-bounded, by adding an
acknowledgment after each message. The true reason for undecidability is con-
currency, since G and P use different linearizations of the same partial orders of
MSC. �

Several decidable variants of model-checking have been considered in subse-
quent papers. Some of them are obtained by restricting the properties we want to
check, others are obtained by restricting the system specification. However, sev-
eral variants are based on a similar idea. Suppose for instance that the property
P is given by a linearization-closed finite-state automaton A. That is, for every
word w ∈ L(A), the automaton A also accepts every linearization v ∈ Lin(M)
of the MSC M defined by w. In this case it suffices to consider representative
linearizations of the system MSG G: We choose for every node v of G some
linearization of the MSC labeling v, say lv. Then we define a finite-state au-
tomaton A(G) from G by replacing the label of v by lv. Thus, states of A(G)
are labeled by words. It is easy to see now that L(G) ∩ L(A) �= ∅ if and only if
L(A(G)) ∩ L(A) �= ∅, and L(G) ⊆ L(A) if and only if L(A(G)) ⊆ L(A).

Among the model-checking variants that led to algorithmic solutions we refer
to the following ones:

– Model-checking with gaps [28]: The property P is given by an MSG, but its
semantics differs from the semantics of the system G. An execution M of P
is matched with gaps by an execution M ′ of G if there is an embedding φ
of the events of M in the set of events of M ′ such that the visual order is
preserved: whenever e < f in M , we have φ(e) <′ φ(f) in M ′. This problem
has been shown to be NP-complete (even if P is an acyclic MSG).
The main reason for decidability of model-checking with gaps is that gaps
lead to very restricted languages, for which we can compute a sort of lineari-
zation-closure.

– Using partial-order specifications [29, 24]: Here, the property P is given by a
partial-order logic, which makes it linearization-closed. In [29] a logic derived
from a fragment of TLC [5] is proposed for MSGs. Basically, this logic cor-
responds to CTL interpreted over partial-order graphs of MSCs, where the
edge relation is the immediate successor relation (on each process, resp. for
send/receive pairs). It is shown in [29] how to construct an exponential-
size automaton from the specification, hence model-checking is PSPACE
w.r.t. the specification (and only linear in the size of the system). In [24]
the specification formalism is MSO, interpreted over partial-order graphs of
MSCs. Here, the complexity is non-elementary, as it is already in the word
case.
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A further approach leading to a decidable model-checking problem is to syn-
tactically restrict the MSGs, see sections 5 and 6 for details.

4.2 Implementability

As previously mentioned, the MSG formalism is useful as a specification nota-
tion, but it does not provide directly a protocol model. Such a model is usually
state-based and distributed, whereas MSGs provide an implicit global control
over the behavior of the processes. This allows for specifications that are not im-
plementable because of global choices (see for instance figure 4 which is discussed
below). Being able to generate an implementation for an MSC specification also
allows to perform tests on the level of requirements, hence it is not longer re-
quired to generate code before testing.

The protocol model generally used is CFM over the same set of processes as
the MSG specification. But we still have some choice for the semantics of the
implementation. For instance, we could allow for an implementation with more
(or less) behavior than the MSG. The most natural notion is that the imple-
mentation is equivalent to the MSG: An MSG G is implementable, if some CFM
A exists such that L(A) = L(G). Furthermore, we allow the implementation to
contain additional data in messages. That is, the message contents of the CFM
come from a finite set C′ = C ×D, where C is the set of message contents of the
MSG and D is some finite set. Then, the equality L(A) = L(G) is required up
to the additional data D. A further, even more relaxed notion of implementabil-
ity, would also allow for additional messages. Notice that this would make every
MSG implementable, since the additional messages can be used for synchroniz-
ing all processes after each node. We do not allow additional messages, since in
many applications they are neither desired nor possible (e.g., applications where
acknowledgments cannot be provided).

The first notion of implementation, which we denote as standard implemen-
tation, has been proposed in [2, 3]. The standard implementation of the MSG
G = 〈V,R, v0, Vf , λ〉 over the process set P does not add any data and it is fully
determined by the MSG, being defined process by process: The automaton Ap

for process p generates the projection of L(G) on the events of process p.
We call an MSG standard-implementable if it is implementable w.r.t. the

standard version of implementability. Notice that this notion is actually too
weak, since it captures just a small subset of implementable specifications. The
simplest counter-example (see figure 4) is a set of two MSCs over the processes
p1, p2 where the first MSCM1 has a message from p1 to p2, followed by one from
p2 to p1. In the second MSC M2 we have first a message from p2 to p1, then one
from p1 to p2. These two MSCs are not standard-implementable since we can
combine the projection ofM1 on p1 with the projection ofM2 on p2 and we obtain
the MSCM3. This set is not implementable even with additional data. Changing
slightly this example we obtain one which is not standard-implementable, but
is implementable with additional data. For this, we just add at the beginning
of both M1, M2 a first unlabeled message from p1 to p2, see figure 5. Then
the non-implementability argument given previously still works. However, with
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M1
M2 M3

p1 p2 p1 p2 p1 p2

Fig. 4. The set {M1, M2} is not implementable (it does not contain the implied MSC
M3).

additional data we use the initial message for letting p1 decide on the outcome
M1 or M2, and inform p2.

Two striking weaknesses of the standard notion is that not even simple MSGs
are standard-implementable, as seen from the example above. Furthermore, for
the restricted class of regular MSGs defined in section 5, the question of standard-
implementability is undecidable. However, regular MSGs are implementable with
additional data, see section 5 for more details.

Nevertheless, the results of [2, 3] show that standard implementability be-
comes decidable at least for regular MSGs if one looks for deadlock-free imple-
mentations, only (called safe realizability in [2, 3]), albeit with high algorithmic
complexity. A CFM is called a deadlock-free implementation of an MSG G if
L(A) = L(G) and every configuration of A that has no successor, is such that
all processes have reached a final state and all channels are empty. Deadlock-
freeness is of course required in practice, since real-life protocols should not be
aborted in some unclean state. We will recall the various results on the imple-
mentability problem in sections 5 and 6.

5 Regular MSC Specifications

Regular MSGs have been proposed in the context of model-checking, as a sub-
class for which both variants of model-checking are decidable [6, 27]. It is a syn-
tactic restriction that ensures that the set of all linearizations, i.e., the set Lin(G),
is regular. Regular MSGs provided to be a theoretically robust class, in terms
of logical and automata-theoretic characterizations. In particular, regular MSGs
can be implemented with additional data by CFM with universally-bounded
channels. However,the CFM implementation is not deadlock-free, in general.

A set X of finite MSCs is called regular if Lin(X) is a regular string language
over the alphabet T of event types [20]. Moreover, there is a syntactic condition
ensuring that an MSG G generates a regular set L(G) of MSCs. This condition
roughly means that communication in a loop must be acknowledged to all active
processes. Formally, we need to define the communication graph of an MSC M :
it is a directed graph over the set of communicating processes in M with an
edge from process p to process q whenever M contains a message from p to q.
An MSG G is called a regular MSG (locally-synchronized in [27], bounded in
[6]) if any MSC labeling a loop of G has a strongly connected communication
graph. This condition is co-NP complete [27].
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Fig. 5. CFM implementing the set {M1, M2} with additional data.

For an example, consider the MSG in figure 2. It is a regular MSG, since
every loop involves only A,C, and the communication graph of AC is strongly
connected (the firewall is connected with both user and server by bidirectional
arcs).

Putting together the results from [6, 27, 20] we have the following relationship
between regular sets of MSCs and regular MSGs:

Theorem 2 1. For every regular MSG G the set L(G) of generated MSCs is
regular [6, 27].

2. For every regular and finitely generated set X of MSCs there exists a regular
MSG G with X = L(G) [20].

The main interest in regular MSGs was to obtain a subclass of MSC specifi-
cations with a decidable model-checking problem:



Message Sequence Charts 549

Theorem 3 [6, 27] The negative model-checking problem L(G) ∩ L(H) �= ∅
where G is a regular MSG, is PSPACE-complete. The positive model-checking
problem L(G) ⊆ L(H) where H is a regular MSG, is EXPSPACE-complete.

The theorem above shows that model-checking MSGs is rather expensive,
which is actually not very surprising when we deal with concurrent models. The
reason is MSGs are more compact than finite-state automata. The upper bounds
in the theorem above are based on the fact that if G is a regular MSG then we
can compute a finite automaton of exponential size generating Lin(G).

Regular MSC languages also have nice characterizations in the logical and
communicating automata framework. The logic used in [21, 24] is MSO with
atomic propositions 
(e) = t ∈ T , e ≤ f and e ∈ E that have the usual interpre-
tation, as type labeling, partial order of the MSC and membership in a second
order variable E.

Theorem 4 [21, 22] Let X be a universally-bounded set of MSCs. The following
assertions are equivalent:

1. X can be implemented by a (deterministic) CFM with additional data.
2. There exists an MSO formula φ such that X is the set of bounded MSCs

satisfying φ.

In the first part of the theorem above the implementation is not deadlock-
free, since the constructed CFM uses global final states for accepting X . On the
other hand, as we mentioned in section 5, the standard implementation is not
really helpful when applied to regular MSGs (the upper bound is due to [3], and
the lower bound to [23]):

Theorem 2. [3, 23] It is undecidable to know whether a regular MSG is stan-
dard-implementable. It is EXPSPACE-complete to know whether a regular MSG
is standard-implementable without deadlocks.

Remark. The undecidability result in theorem 2 heavily depends on the fact that
channels are FIFO. Without FIFO, standard implementability for regular MSGs
becomes decidable [26]. �

6 Globally-Cooperative MSGs

As seen in section 5, model-checking for regular MSGs is decidable and of
tractable complexity (PSPACE for the basic variant). However, the situation
is far from being ideal. Notice first that some trivial protocols cannot be repre-
sented by regular MSGs. For instance, the protocol where process p1 can send
any number of messages to process p2. The reason is that regular MSGs have
universally bounded channels, which restricts severely their expressive power.
Second, for real life communication protocols one can usually find a (sufficiently
large) bound b so that any run of the protocol can be executed with channels
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each bounded by b. Similarly to MSGs, we call such protocols existentially b-
bounded. Whereas an algorithm exists to check whether a CFM or a finite-state
machine is existentially b-bounded for a given b, its complexity depends severely
(exponentially) on b. Hence, in practice we cannot hope to be able to fix a suffi-
ciently large bound b that takes care of all executions. The last problem is that
we cannot obtain in general an automaton generating all linearizations of execu-
tions for models that are strictly more expressive than regular MSGs. Instead,
we can try to use representative linearizations rather than all linearizations, re-
quiring that the set of representative linearizations is b-bounded, with b as small
as possible.

Definition 1 An MSG G is called globally-cooperative (gc-MSG for short) if
every loop of G has a weakly connected communication graph.

Thus, an MSGG is a gc-MSG if any MSCM labeling a loop cannot be written
as M = M1||M2 with M1,M2 non-empty MSCs with no common process. It is
co-NP complete to know whether an MSG is a gc-MSG. For an example of a
gc-MSG, see figure 6, or suppose that we add a self-loop on node A in figure
2. The MSG thus obtained is not regular anymore, but it is a gc-MSG. Clearly,
every regular MSG is also a gc-MSG. Moreover, it can be noted that regular
MSGs correspond exactly to gc-MSGs with universally-bounded channels.

The representative linearizations that we use for model-checking are the lin-
earizations that execute atoms one by one. More precisely, for any M ∈ L(G)
we consider only linearizations in Lin(M) of the form w = w1 · · ·wn, where
M = A1 · · ·An is some decomposition of M into atoms Ai and wi ∈ Lin(Ai) for
all i. Let us denote by Lina(G) ⊆ Lin(G) the set of such linearizations of MSCs
of L(G). For an example, let G be the graph consisting of a single node with a
self-loop, labeled by a message from p1 to p2. Let s = p1!p2 and r = p2?p1, then
Lina(G) = (sr)∗. Of course, Lin(G) is not regular, it corresponds to the Dyck
language over one pair of brackets.

a

a

b

b
p1 p2 p3 p1 p2 p3

Fig. 6. Globally-cooperative MSG.

We can use representative linearizations for model-checking as follows. Let
G,H be two MSGs. Then it is easy to see that L(G) ∩ L(H) = ∅ if and only
if Lina(G) ∩ Lina(H) = ∅ (respectively, L(G) ⊆ L(H) if and only if Lina(G) ⊆
Lina(H). Recall that for any MSG G, atoms of L(G) are finite and finitely many.
Hence the set of representative linearizations Lina(G) is b-bounded, where b is
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such that G is existentially b-bounded. For getting a regular set of representative
linearizations Lina(G) we impose a theoretically well-known restriction, that of
loop-connectedness.

We can change slightly the graph of a gc-MSG G by replacing each node v
labeled by some non-empty MSC M by a path of new nodes v1, . . . , vk where
vi is labeled by Ai and M = A1 · · ·Ak is some decomposition of M into atoms
Ai. The new graph G′ can be seen as an automaton with states labeled over
the alphabet of atoms At(G). The property of G being a gc-MSG translates
to G′ being loop-connected, which is a well-known property from the theory
of Mazurkiewicz traces. It means that every loop of G′ is labeled by a sub-
alphabet of At = At(G) that is connected w.r.t. the symmetric dependence
D = (At × At) \ I, that is ADA′ if A and A′ share at least one process. With
this restriction it is well-known that the closure under commutation I of the
regular set generated by G′ is regular, and an automaton generating the closure
can be effectively computed [11, 27]. From this automaton we obtain Lina(G)
and an automaton generating it simply by replacing every atom A ∈ At(G) by
some linearization of A. Since the size of the automaton generating Lina(G) is
exponential in the size of G we obtain:

Theorem 5 [15] Given a gc-MSG G and an arbitrary MSG H, it is PSPACE-
complete to decide whether L(G) ∩ L(H) = ∅. The positive model-checking prob-
lem L(G) ⊆ L(H) where H is a gc-MSG, is EXPSPACE-complete.

Notice that the complexity of model-checking gc-MSGs is not higher than for
regular MSGs. Moreover, the situation for gc-MSGS is better, since we do not
have to compute all linearizations, but a smaller subset that has the additional
property of being b-bounded for a small b, yielding an algorithm that is faster in
practice than the one given for regular MSGs. A regular MSG G is universally
B-bounded with a B that can be exponential in the size of G.

We turn now to the implementation problem. The situation here enforces
the idea that that universal channel bounds are not needed. For the safe variant
of the standard implementability problem, i.e., where the implementation is not
allowed any additional data but must be deadlock free, the complexity is the
same for regular MSGs and for gc-MSGs:

Theorem 6 [3, 23] Given a gc-MSG G, it is EXPSPACE-complete to decide
whether there exists a deadlock-free CFM A with L(G) = L(A).

Again, this result is not really practical, given the high complexity. Moreover,
in practice it might be the case that the standard implementation does not work
for some gc-MSG G, but that G is still implementable with a little more data.
For an example see figure 8 in section 7.

In the case where one allows data to be added to messages but deadlocks
are not allowed, there are gc-MSGs that cannot be implemented. For instance,
consider the gc-MSG G in figure 6 with two nodes with self-loops, and two edges
between them. Both nodes are labeled by MSCs with two messages, one from p1
to p2 and one from p3 to p2. The first node has its messages carrying the data a,
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while the second node carries the data b. Both nodes are initial and final. In any
CFM implementation processes p1 and p3 should decide to send either both a
or both b, but this is impossible with no additional synchronization (messages).
Hence, this protocol cannot be implemented without deadlocks. It remains open
whether every gc-MSG can be implemented with additional data and allowing
deadlocks. The conjecture in [15] is that this is always possible.

7 Choice and Implementability

Deadlock-free implementability being a key feature required for communicating
protocols, tractable algorithms that help implementing an MSG with additional
data are needed. One reasonable way of doing this is first to exhibit a non-trivial
subclass of MSGs that is always implementable with additional data and no
deadlocks. Then we want to test whether an MSG can be represented inside our
subclass, preserving the MSC language.

As mentioned before, the reason for non-implementability of an MSG is the
global control, whereas the choice in a CFM must be done locally. The idea is
then to define MSGs that have only local choices, that is any node is controlled
by a single process [7, 19].

Definition 2 An MSG G = 〈V,R, v0, Vf , λ〉 is called local-choice (lc-MSG for
short) if each MSC labeling any node v of G is a triangle, that is it has a single
minimal event min(v) in the partial order ≤. Moreover, min(w) belongs to the
process set of node v, whenever (v, w) ∈ R.

Figure 7 shows an lc-MSG G. Note that G is equivalent to the MSG in
figure 2, which is not an lc-MSG. Checking that an MSG is local-choice can be
done in polynomial time.

It is not very hard to translate a lc-MSG into a deadlock-free CFM, using
linear additional data. The idea is to use a leader process and to let the current
leader choose the current node to be executed and the next leader. The node is
chosen among the nodes that follow the node being executed, and that begin
with a minimal event belonging to the leader. The next leader should be chosen
among the minimal processes of nodes that follow the chosen node.

In the procedure polling state below process p waits for a message informing
it about the next node to execute and the next leader:

void polling_state()
{ while (true) {

if p receives a message (a,v,q) then
{ current node=v; next leader=q; return;} } }

Initially, the current node is initialized by letting next leader = pr(min((v0)).
Before executing its event from current node, process p goes to a polling state,
unless it is the leader process. Here is the algorithm for process p:
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Fig. 7. Local-choice MSG.

initialization();
while (true)
{ if (p �= next leader) polling_state();
else {current node=guess(current node);

next leader=guessp(current node);}
execute_path(current node); }

The algorithm execute path(current node) above makes that process p exe-
cutes its events from current node, if any. In this case each message sent by p
contains the additional data (current node, next leader).

Theorem 7 [15] Every lc-MSG G is implementable by a deadlock-free CFM
with additional data which is of size linear in |G|.

Note that in a triangle (see definition 2), every process but the minimal
process begins by a receive. A process that is chosen to be the leader is always
informed, since it occurs in the node where it is chosen.

It is important to see that if additional data is forbidden, then there are
lc-MSG that are not implementable, even when allowing deadlocks. Consider
for example an lc-MSG with three nodes 1, 2, 3, see figure 8. The initial node
consists of a message from process p1 to p2. Then either node 2 is executed,
with process p1 sending to process p3, or node 3 is executed with process p2
sending to process p4. Since processes p1 and p2 do not know which one will
be next (no additional data, same past), both can begin, thus both nodes 2
and 3 can start. The execution must stop, and there is no distributed way to
know whether the protocol went fine or not. Hence without additional data this
protocol is not implementable at all. [19] proposes a sufficient condition for the
standard-implementability of lc-MSGs.
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Fig. 8. Lc-MSG not implementable without additional data.

While local-choice is defined syntactically, we show that it corresponds to a
semantic property. Moreover, one can test whether an MSG is transformable into
a lc-MSG. Triangles are of huge importance here. We first define a generic lc-
MSG Hn over triangles of size bounded by n. The MSG Hn has for each triangle
T of size at most n, one node vT labeled by T . There is an edge vT → vT ′ if
pr(min(T ′)) ∈ pr(T ′).

Proposition 1 [14] An MSG G is equivalent to some lc-MSG iff there exists
some n such that L(G) ⊆ L(Hn). If this is the case, then we can obtain a lc-MSG
equivalent to G, of size exponential in |G| and n.

If the test in proposition 1 on G answers yes, then an equivalent lc-MSG can
be constructed by synchronizing G and Hn.

While it is PSPACE to test whether L(G) ⊆ L(Hn) by theorem 9, the value
of n is not bounded so far. For testing, we need a bound. We use for this the
following three structural properties of lc-MSG G.

1. Every MSC M in L(G) is a triangle.
2. There is a bound b s.t. for every MSC in L(G) containing a factor (U ||V ) with
U, V MSCs (that is, U, V share no process), either |U | < b or |V | < b. This
implies that for an MSG to be equivalent to some lc-MSG, it is necessary to
be a gc-MSG.

3. There is a bound b s.t. for every MSC in L(G) of the form URV with R an
MSC of size at least b, there exists triangle T that is a suffix of RV , such
that min(T ) belongs to R.

Obviously, an MSG G that is equivalent to some lc-MSG satisfies these three
properties. The important point is that the converse holds, too. It allows us to
state:

Theorem 8 [14] Testing whether an MSG G is equivalent to some lc-MSG is
in PSPACE. Moreover, if the answer is positive, then an equivalent lc-MSG of
doubly exponential size can be constructed.
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Proof. We can check whether G is a gc-MSG in co-NP [15]. Checking the first
property above is in polynomial time. Checking the second property for gc-MSG
is in co-NP. If true, the test provides a bound b that is polynomial in |G|.

Checking the third property for gc-MSGs is in PSPACE. If true, the test
provides a bound b that is exponential in |G|.

We can then compute an equivalent lc-MSG building the product Hb ×
Lina(G). As b is exponential in |G| and H is exponential in b, the result is
at most doubly exponential in |G|. �

One important question is whether local-choice is expressive enough, else the
test to know whether an MSG is equivalent to some lc-MSG would almost cer-
tainly lead to a negative answer. Comparing lc-MSGs to regular MSGs, lc-MSGs
tend to be more useful in practice. In particular, the restriction of universally-
bounded channels of regular MSGs is not required for lc-MSGs. Moreover, lc-
MSGs can be implemented without deadlock, while this is not the case for regular
MSGs. A drawback of lc-MSGs is the fact that they exclude long parallel MSCs,
while this is possible with regular MSGs (albeit not in the same loop of the
graph). Actually, it would not be difficult to cut a protocol into parallel ones,
and implement each one using lc-MSGs.

Since lc-MSGs form a subclass of gc-MSGs, one can hope that they are
easier to model-check than gc-MSGs. In order to improve the model-checking
algorithm, triangles can be used as generators instead of atoms. For a given lc-
MSG each node v labeled by a triangle T can be sliced into two nodes labeled
by triangles R,S, as long as T = RS satisfies pr(min(w)) ∈ S for every v → w.
Notice that by the definition of a triangle, we have that pr(min(S)) ∈ R. Let
T1 · · ·Tn, T

′
1 · · ·T ′

n′ be sequences of triangles labeling two paths ρ, ρ′ in lc-MSGs
G,H sliced in this way. Then there exist k,X s.t. Ti = T ′

i for all i < k, and
T ′

k = XTk+1 · · ·Tn, Tk = XT ′
k+1 · · ·T ′

n′ . Hence, Tk+1 · · ·Tn is smaller than the
largest node of G. The same applies for T ′

k+1 · · ·T ′
n′ . This idea allows to do

model-checking very similarly to word automata.

Theorem 9 [15] Given two lc-MSGs G,H, the negative model-checking ques-
tion L(G) ∩ L(H) = ∅ can be answered in quadratic time. The positive model-
checking question L(G) ⊆ L(H) with H an lc-MSG and G an arbitrary MSG, is
PSPACE-complete.

8 Conclusions

The MSC/MSG standard is a popular notation for concurrent system specifi-
cation, in particular for communication protocols. Stemming from its successful
use by software engineers, new techniques and tools have been developed for
MSC/MSG analysis. The finite states model was designed by researchers. Al-
though this model has many mathematical properties, it is not always easy to
transfer its related technology to the software developers. The MSC notation, on
the other hand, has gained first popularity with the software developers. Conse-
quently, this notation does not fit directly the main classes of formal languages.
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This calls for studying the expressiveness of the notation and developing new
validation and implementation methods.

It is evident from the collection of results surveyed here that one of the main
challenges in studying MSCs/MSGs is how to achieve the appropriate expres-
siveness, while maintaining decidability with respect to automatic verification.
This calls for developing various extensions and restrictions on the allowed class
of MSCs/MSGs.

The MSC/MSG standard provides an alternative for the communicating au-
tomata model. In particular, the main compositional operator for the former
is sequential composition, while the main way to connect communicating au-
tomata is using parallel composition. Although sequential composition is often
considered simpler than the parallel one, it is evident that this is not the case
here. The reason is that the sequential composition is asynchronous, relating par-
tial orders. In particular, the parallel composition of two MSCs (i.e., that share
no process) is expressed when we compose them sequentially (as is the case in
classical Mazurkiewicz trace theory [11]). This is also manifested by the high
complexity results on MSG decision procedures. Note however that subclasses
as lc-MSGs have the same complexity as finite-state machines.

The theory of MSCs is related to models of true concurrency, including par-
tial orders and Mazurkiewicz traces. While these theories flourished in the recent
decades, their practical use was limited, due to the high complexity they gener-
ally possess, when compared to the finite-state machine model. The MSC model
provides an important use of these true concurrency models. The intuitive na-
ture of these models is manifested by the use of the MSC as a popular visual
notation for concurrency.
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Abstract. In order to implement business processes, the composition of
simpler services provided by different independent participants requires a
high degree of standardization and flexibility. For this purpose, platform-
independent XML-based languages like the Business Process Execution
Language for Web Services (BPEL4WS) are suitable. XML documents
are in fact human readable, but in general they are hard to produce and
to understand by business experts which are, however, most qualified
for defining business processes. We present a model-based development
method based on an intuitive and adequate modelling notation, an au-
tomatic transformation of process models to their XML-based encoding,
and techniques to analyze processes. In this context the Unified Model-
ing Language (UML) as standard notation for modelling software, graph
transformation as meta language for defining model transformations, and
a semantic interpretation of process models in terms of Communicating
Sequential Processes (CSP) are used.

1 Introduction

A Web service is a software component that can be dynamically discovered,
linked, and invoked by its clients via XML-based protocols. This software-ori-
ented definition of the term can be contrasted with a business-oriented view,
considering a Web service as a business process, implemented by the composition
(and coordination) of simpler services provided by other businesses.

The composition of services provided by different independent parties, at
both development time or runtime, requires a high degree of standardization and
flexibility. Therefore, rather than hard-coding business processes in platform-
specific programming languages which depend on certain compilers and run-
time environments, platform-independent XML-based languages like the Busi-
ness Process Execution Language for Web Services (BPEL4WS) [1] are advo-
cated. Such processes in XML representation can, at least in theory, be adapted
at runtime, exchanged between different services, and executed on different stan-
dardized interpreters.

However, even if XML documents are text files and therefore, in principle,
human readable, the XML representation of a processes is hard to produce and to
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understand even by an experienced programmer. It resembles, in a linear form,
the abstract syntax tree of a program without providing the usual front-end
notation. What is more, in their role as business processes, Web service processes
should be defined by business experts which are not typically programmers.

Therefore a model-based development method is required based on

1. an intuitive and adequate modelling notation, to allow precise specifications
of processes at the conceptual level

2. an automatic transformation of process models to their XML-based encod-
ing, to avoid the costly and error-prone task of deriving the implementation
manually

3. techniques to analyze processes at the model level for syntactic and semantic
properties, to avoid “debugging” the XML code

These problems and requirements are prototypical for a wide variety of lan-
guages and platforms, in the Web services domain and elsewhere. Therefore,
instead of defining and implementing languages, transformations, and analysis
tools for every single problem, reusable solutions are required.

In this paper, we will present an approach based on the combination of three
such solutions: the Unified Modeling Language (UML) [8] as standard notation
for modelling software, graph transformation [12] as meta language for defining
model transformations, and a semantic interpretation of process models in terms
of Communicating Sequential Processes (CSP) [6] which offers a language to
express semantic consistency properties and tool support for analysis.

In the following section we will discuss the complementary roles of these tech-
niques in general and outline their application to the model-based development
of Web service processes.

2 Defining a Model-Based Development Method

An outline of our approach can best be given in terms of the triangle in Fig. 1,
whose vertices are the languages by which processes may be represented, and
whose edges represent uni- or bi-directional transformations between these rep-
resentations.

UML profile for BPEL
(aktivity, component,
and class diagrams)

CSPBPEL4WS

Fig. 1. Outline of the approach: languages and transformations

The UML, as a general-purpose modelling language, provides a rich set of
concepts to model all kinds a software system. However, to address the more
specific aspects of a particular application domain or implementation platform,
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the language needs to be specialized and extended. For this purpose, the stan-
dard [8] foresees the extension mechanism of profiles, a compromise between
desirable flexibility of the language and necessary compatibility with existing
tools. We shall use a profile to tailor, in particular, UML activity diagrams to
the specification of BPEL4WS processes. In conjunction with these, class di-
agrams and component diagrams shall be used to describe, respectively, data
types and software architecture relevant to the process.

Besides the concrete visual representation of a UML model, an abstract repre-
sentation is required to capture its semantically relevant structure. This abstract
syntax of UML models is defined by means of a meta model, i.e., a class diagram
with well-formedness constraints expressed in the Object Constraint Language
(OCL) [7]. The meta model specifies the collection of all legal abstract syntax
graphs—its instances—each of which represents a legal model. This graph-based
internal representation of UML models, which is typical of visual languages in
general, shall be needed when defining the transformation of models.

These transformations do, in fact, represent the core features of a model-
based development approach. In our case, they occur in two places: the trans-
formation into BPEL4WS, the implementation language, and into CSP, the lan-
guage for behavioral analysis. In many situations, two-way transformations are
required, e.g., to support a round-trip engineering approach, where not only
models are transformed into implementations (forward engineering), but also
vice versa (reverse engineering), thus allowing incremental changes at both lev-
els.

Our tool for describing (potentially bi-directional) transformations between
models and other (typically textual) languages is the approach of pair gram-
mars [10], i.e., a coupling of context-free grammars which allows to generate
a sentence in the target language after parsing a given sentence in the source
language. Since at least one of the languages will be a graphical one, context-free
graph grammars [5] shall be employed which generalize context free grammars
on strings by describing languages whose sentences are graphs.

For a mapping specification to be manageable and reusable, a modular ap-
proach is important which is structured in terms of the fundamental concepts
of the domain. In this case, whenever a concept is added or modified, the cor-
responding transformation rules can be exchanged without affecting the rest of
the mapping specification. For the domain of executable business processes, or
workflow models, a corresponding concept analysis has produced an established
list of workflow patterns [16], a subset of which is supported by UML activity
diagrams. In fact, it turns out that these workflow patterns, interpreted over
either activity diagrams or BPEL4WS processes, provide us with the pairs of
context-free rules making up the pair grammar that specifies the translation.

The model-based analysis of processes represents the final ingredient of our
approach. Depending on the representation on which the analysis is performed,
we distinguish between syntactic and semantic analysis. The former is often re-
stricted to the evaluation of well-formedness constraints on (the abstract syntax
graph of) the model which reveal inconsistencies in structural dependencies and
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typing. However, syntactic analysis also includes the manual review of models
based on semi-formal error patterns, a method that is quite successful in re-
vealing behavioral problems and that may be the only method available in the
presence of semi-formal models.

Formal analysis of behavioral properties, however, can hardly be done at
the syntactic level, but requires a mapping of models into a semantic domain
providing (1) a representation of the behavior to be analyzed, (2) means to
express the desired properties, and (3) techniques and tools to check if these
properties hold [4]. We have chosen the semantic domain of CSP [6] for this
purpose, whose refinement relations are the basis for expressing properties over
processes while tool support is provided by the FDR2 model checker [11].

The paper is structured according to the triangle in Fig. 1. The following
section is devoted to the modelling of processes in the UML. Then, Sections 4
and 5 deal, respectively, with the mapping between UML and BPEL4WS, and
the analysis of processes, including the mapping to CSP. Section 6 concludes the
paper and summarizes the results.

3 Modelling BPEL4WS Processes in the UML

In this section, we describe how UML diagrams can be used to model Web
service processes. We put special emphasis on the behavioral aspect given by
BPEL4WS process interactions. As already discussed in [15], visual and more
high-level modelling languages like UML have important advantages in compar-
ison to low-level XML-based specification languages. Among others, they allow
a better abstraction from implementation details and are therefore better un-
derstandable.

In particular UML use case-, component-, class-, and activity diagrams are
suitable for modelling Web service processes in the context of business processes.
In the following, we will demonstrate this by a sample model of an online shop.

Use case diagrams describe the business segment of our example. As shown in
Fig. 2, the use case itself symbolizes the business process, in this case the service
provided by the shop. The participants in the use case represent the roles of
the partners that interact with the process. In the example, a buyer, a delivery
service, and an invoice service interact with the online shop service.

onlineShop

Electronic Shopping

invoiceService

deliveryService

buyer

Fig. 2. Use Case Diagram
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Component diagrams are used to refine the dependencies described in the use
case diagram. In doing so, the component symbol is used for depicting a Web
service. Both, the participants of the business process and the business process
itself are modelled as Web services (see Fig. 3). In order to establish possible
points of interactions, port types are added to the diagram as interfaces (the
circular symbols, PT is used as abbreviation for port type). If a Web service
provides a port type, the interface is connected to the component symbol by a
solid line. If a Web service requires a port type, this is modelled by a dashed
arrow (a UML dependency) to the corresponding interface.

Fig. 3. Component Diagram

For example in Fig. 3, the online shop service provides exactely one port
type OnlineShopPT and requires the port types DeliveryPT and InvoicePT for
processing the corresponding data.

Class diagrams are used to provide further details of the different port types
by defining their operations and involved parameters. In Fig. 4, the three port
types from the component diagram are refined. In this simplified example, each
port type provides only one operation which is mainly used to submit and receive
the processing data to and from the partners. Likewise, the necessary messages
and parameter types could be modelled by the class diagram.

Protocols and business processes for Web services are modelled with activity
diagrams. Besides control-flow elements (decision, fork, join, etc.), the activity
diagrams contain the necessary basic activities for interacting with the partner
services. The activities are stereotyped like receive, reply, or invoke depending on
their function as defined in the BPEL4WS specification [1]. A triplet consisting
of partner, port type and operation follows the stereotype. This triplet assigns
one of the available port type operations to each activity.

Fig. 5 shows the process of the online shop service. The first part is used to
accept an order provided by the buyer through OnlineShopPT. After the data
has been received, the online shop concurrently invokes an invoice and a deliv-
ery service with the required data. In order to simplify the example, we have
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Fig. 4. Class Diagram

<<receive>>
buyerLink

OnlineShopPT
receiveOrder(order)

<<reply>>
buyerLink

OnlineShopPT
receiveOrder(answer)

<<invoke>>
deliveryLink
DeliveryPT

date = calculateDeliveryDate(product)

<<invoke>>
invoiceLink
InvoicePT

bill = doInvoice(invoice)

Fig. 5. Activity Diagram: Online Shop

omitted the details of assigning variables to establish the connection between the
received order and further activities. In addition, the decision process for gener-
ating the answer for the buyer is hidden. The last activity in the row, which can
be identified by the stereotype receive in Fig. 5, sends the corresponding answer
to the buyer.

The protocols of the partners are modelled with activity diagrams, too. This
step is essential for further analysis, because inconsistent behavior between the
participants has to be discovered to ensure a correct execution of the interactions.
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Therefore, the following three activity diagrams in Fig. 6 represent the pro-
cesses on the Buyer, Invoice Service and Delivery Service part, respectively. In this
example, a quick comparison of their activities with the activities of the Online
Shop shows that the processes are behaviorally compatible.

Fig. 6. Activity Diagram: Buyer, Invoice Service and Delivery Service

For more complex interactions, the consistency of all involved partner pro-
cesses cannot be checked as easily as in this example. For this reason, Section 5
discusses more advanced methods to maintain certain consistency properties.
Before, however, the transformation of process models into BPEL4WS processes
by means of pair grammars is described.

4 Mappings between UML and BPEL4WS

A formal definition of the translation between UML models and an executable
process language is important, not only to automate the translation, but also to
define and ensure consistency at the model level (cf. Section 3).

Translations between string and graph representations of programs and data
may be formally defined by means of pair grammars [10]. A pair grammar con-
sists of two context-free grammars describing, respectively, the source and the
target language, together with a correspondence between their rules and non-
terminals. In this way, it defines a correspondence between source and target
sentences which represents a mapping between the two languages. By virtue
of their symmetric nature, pair grammars allow the definition of bi-directional
mappings between UML activity diagrams and BPEL4WS processes.

To support the translation of graphical languages, pair grammars are based
on context-free graph grammars, i.e., formal grammars similar to ordinary
context-free grammars, except that the language defined is a set of graphs rather
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than a set of strings. Context-free grammars, in fact, form a subclass of context-
free graph grammars. In this paper, an informal introduction to the most impor-
tant concepts of pair grammars is given. For an exhaustive and formal treatment
we refer to [10].

Our presentation is based on edge replacement graph grammars, one of the
simplest forms of context-free graph grammars which form, in their generalized
form of hyperedge replacement (HR) graph grammars [5], one of the two major
approaches in the literature. Here, context-freeness means that the left-hand side
of a rule is given by a single edge (or hyperedge, i.e., an edge attached to an ar-
bitrary number of vertices) representing a nonterminal which is replaced by the
graph that forms the right-hand side of the rule. The obvious alternative con-
sists in replacing a nonterminal node, leading to the family of node-replacement
approaches [2].

4.1 Pair Grammars

First, we introduce the basic notions of graphs and context-free graph gram-
mars. A graph consists of vertices and edges such that each edge has a source
and a target vertex in the graph, respectively. In accordance with [5], in our
graphs labelled edges carry the relevant information, while nodes just represent
the points where the edges are attached.

Definition 1 (edge-labelled graphs). Let C be a fixed set of edge labels.
A (directed edge-labelled) graph G = 〈GV , GE , src

G, tarG, lab〉 over C has a
set of vertices GV , a set of edges GE, two functions srcG : GE → GV and
tarG : GE → GV associating to each edge its source and target vertex, and a
labelling function lab : EV → C associating with every edge its label.

Definition 2 (edge replacement (ER) graph grammars). Let N ⊆ C be
a set of nonterminal labels. A production rule over N is a pair p = A

x,y−→ R
where A ∈ N and R is a graph over C with distinguished vertices x, y ∈ RV .

An edge replacement (ER) graph grammar G = 〈C,N, P, S〉 consists of the
sets of labels and nonterminals introduced above, a set P of productions over N ,
and a start symbol S ∈ N .

Edge replacement graph grammars subsume context free grammars by repre-
senting strings of terminal and nonterminal symbols as chains of correspondingly
labelled edges. Every application of a rule derived in this way from a context-
free grammar rule takes out one nonterminal edge and replace it with a path,
gluing the source vertex of the path to the (former) source vertex of the edge,
and analogously for the target.

In the general case of ER grammar rules, an edge in graph is replaced by a
graph with two attachment points x, y (that we think of as “source” and “target”
vertices) which are glued to the source and target vertex of the replaced edge,
respectively.

Full hyperedge replacement grammars generalize this by allowing an arbi-
trary number of attachment points for the graphs to be inserted and, conse-
quently, for the edge to be replaced. We have limited ourselves to ER graph
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grammars here for simplicity, and because they are sufficient to illustrate the
concept of grammar-based translation of graphical languages.

The definition of pair grammars, originally formulated for a simple kind of
node-replacement graph grammars, has been tailored to our purposes.

Definition 3 (pair grammar). A pair grammar is a quadruple Q = 〈C,N,
PP, S〉 where C and N are sets of labels and nonterminals as before, S ∈ N is
a start symbol, and PP is a finite set of triples (p1, h, p2), where

1. p1 = A1
x1,y1−→ R1 and p2 = A2

x2,y2−→ R2 are ER rules over C and N as above
such that A1 = A2,

2. h is a nonterminal edge pairing of R1 and R2, i.e., a bijection between their
nonterminally labelled edges such that e1he2 implies label(e1) = label(e2).

The language defined by a pair grammar Q consists of ordered pairs of graphs
from the left and right language, respectively, of Q. The pair grammar defines
how these graph pairs may be generated in parallel form the same start sym-
bol. At each intermediate stage in the generation we have a pair of graphs, each
containing some nonterminal nodes, and a correspondence between these non-
terminal nodes. At each rewriting, a corresponding pair of nonterminal nodes,
one in each graph, is rewritten according to a rule of the pair grammar, and a
new correspondence is set up between nonterminal nodes in the resulting graphs
using the nonterminal pairing of the grammar rule.

4.2 UML–BPEL4WS Mapping

Let us illustrate the notions introduced so far by means of a mapping between
UML activity diagrams and BPEL4WS processes, specified by the pair grammar
whose rules are shown in Fig. 7 through 10.

Left production rule of the pair grammar Right production rule of the pair grammar

Act ::=
<process>

A1:Act
</process>

Act ::=

Fig. 7. Pattern 0: Start and End

Production rules of this pair grammar combine ordinary context-free gram-
mar rules for BPEL4WS processes and truly graphical rules for (a subset of)
UML activity diagrams. In order to regard these diagrams as graphs that can
be generated by edge rewriting, activities shapes as well as fork / join bars are
interpreted as terminal edges. Nodes (presented as little circles) are introduced
whenever two activities are connected by a transition. As the only nonterminal
label, Act stands for an arbitrary diagram with one entry and one exit transition.
Thus our sets of labels are defined by C = {activity, bar, Act} and N = {Act},
such that Act is the only possible start symbol.
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Vertices have no labels, but we distinguish attachment points as filled circles
with name x or y. Nonterminal edges (i.e., with label Act) are denoted as boxes
connected to their source and pointing to their target vertex.

The bijection h between nonterminal edges of the right-hand sides of left
and right rules is given by identical names for corresponding edges. According
to Def. 3, corresponding edges as well as left hand sides must be of the same
label. For example, in the rule of Fig. 8, symbols A1 : Act through A1 : Act in
the upper BPEL4WS production correspond to the edges with the same name
in the lower UML production rule.

Left production rule of the pair grammar

Act ::=

<sequence>
A1:Act
…
An:Act

</sequence>
with n ∈ N.

Right production rule of the pair grammar

Act ::=

Fig. 8. Pattern 1: Sequence

It is interesting to note how the definition of the individual rules is inspired
by the workflow patterns [16]. For example, in the case of sequence or parallel
split and synchronization, the interpretation of each pattern in both BPWL4WS
and activity diagrams yields the right hand sides of the two corresponding rules.

The mapping specified by the pair grammar shall be applied to our online
shop example. Recall Fig. 5 specifying a business process of the shop. In order
to execute this process it shall be translated into the BPEL4WS. The opera-
tional idea is to start parsing the sentence of the source language (UML) and
to generate the sentence in the target language (BPEL4WS) along the resulting
derivation tree.

Parsing the source language. As result of parsing the activity diagram, its syn-
tactic structure is represented by the derivation tree in Fig. 11. In the first step
of the construction of this diagram, the basic activities (rectangles with rounded
corners) are replaced with nonterminal edges. It follows the detection of struc-
tured activities based on the patterns of sequence (the outermost box a6 : Act)
and parallelism (box a5 : Act).

Thus, the parsing yields a hierarchical decomposition of the diagram which
can be seen as a tree with the innermost boxes (terminal edges) as leafs and the
outermost box (the start symbol) as root. This structure resembles derivation
trees of ordinary context-free grammars. In particular, it abstracts from the
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ordering of independent derivation steps, i.e., boxes that are not nested in one
another, like a1, a2, a3, a4 in Figure 11, can be processed in any order or in
parallel.

When the graph representing the activity diagram is reduced to the start
symbol, the parsing process is finished successfully.

Generating the target language. The next step is to generate the correspond-
ing BPEL4WS sentence, invoking the rules of the right grammar following the
structure of the derivation tree. This second phase begins with the start symbol,
i.e., the tree is computed bottom up, but evaluated top down.

After the first step, one derives the box with the ¡process¿ tag (see the left
production rule in Figure 7). Since the correspondence between the rules of the
two languages is fixed by the pairing, there is no other option but to start with
this pattern, which represented the last step in the generation of the tree.

Next, the structure of the process is refined by introducing sequence and
flow instructions (compare Fig. 8 and 9). First, the sequence is inserted because
this is the next outermost structure. Subsequently, the parallel part is gener-
ated. Alternatively, one could have substituted the first activity in the flow of
the sequence, because this step is independent of the generation of the parallel
activities.

Left production rule of the pair grammar

Act ::=

<flow>
A1:Act
…
An:Act

</flow>
with n ∈ N.

Right production rule of the pair grammar

Act ::=

Fig. 9. Pattern 2: Parallel Split and Synchronization

We emphasize the role of the correspondence between the nonterminals on
the right sides. Symbols A1 : Act to An : Act are associated with the edges
A1 : Act to An : Act, so that the “content” of edge Ai can determine the
replacement of the corresponding nonterminal.
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At this stage, the considered BPEL-process looks like this:

<process>
<sequence>
A1:Act
<flow>

A2:Act
A3:Act

</flow>
A4:Act

</sequence>
</process>

In the last step, all nonterminals are substituted by terminals. As shown
in Figure 10, all variables of the right production rule must be replaced with
the corresponding terminals for partner, port type, and so on. After generating
all basic activities, the transformation is completed. The resulting BPEL4WS
process is listed below.

<process>
<sequence>
<receive name="receiveOrder"

partnerLink="ns:buyerLink"
portType="ns:onlineShopPT"
operation="ns:receiveOrder"
variable="order"
createInstance="yes"/>

<flow>
<invoke name="invokeBank"
partnerLink="ns:invoiceLink"
portType="ns:InvoicePT"
operation="ns:doInvoice"
inputVariable="invoice"
outputVariable="bill"/>

<invoke name="invokeDeliverer"
partnerLink="ns:deliveryLink"
portType="ns:DeliveryPT"
operation="ns:calculateDeliveryDate"
inputVariable="product"
outputVariable="date"/>

</flow>
<receive name="replyOrder"

partnerLink="ns:buyerLink"
portType="ns:onlineShopPT"
operation="ns:receiveOrder" variable="answer"/>

</sequence>
</process>
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Left production rule of the pair grammar

Act ::=

<invoke
partnerLink="PLname"
portType="PTname"
operation="OPname"
inputVariable="input"
outputVariable="output">

</invoke>

Right production rule of the pair grammar

::=

Fig. 10. Pattern: Invoke

Fig. 11. Decomposition of the activity diagram
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4.3 Properties of the Mapping

A basic requirement for an automated translation, even before semantic con-
siderations are made, is that there should be a unique sentence of the target
language generated for every given sentence of the source language. Uniqueness
may be relaxed by some notion of semantic equivalence, but in many cases such
notion is not readily available, or very hard to verify.

A purely syntactic criterion is the notion of (un)-ambiguity of the pair gram-
mar which is based on corresponding notions for the underlying grammars.
Definition 4 (ambiguity). An ER graph grammar G is ambiguous iff there
exists a graph G in the generated language which has two distinct derivation
trees.

That means, a grammar is unambiguous if every sentence can be parsed in
essentially one way, up to the ordering of independent steps which are abstracted
from in the parse tree.

It is difficult to prove unambiguity in general, but there exists a simpler
sufficient condition based on the idea of critical pairs in rewriting: Consider the
grammar as a reduction system, applying its rules from right to left in order
to reduce the given graph to the start symbol. Now, unambiguity is ensured if
there is never a true conflict between the application of two reduction rules. A
conflict is evident in an overlapping of the left-hand sides of two reduction rules
(i.e., the right-hand sides of two production rules) if (cf. [9])

– they intersect in anything else than attachment vertices, and
– both rules are applicable to reduce the graph formed by the overlapping

The second condition is violated if one of the reduction rules attempts to
delete a vertex that is connected to an edge originating from the other rule. In
this case, the resulting structure is no longer a graph since the edge misses its
source or target vertex. Hence, in a critical pair, an overlap in a non-attachment
node entails that all edges connected to this node in both rules are also in the
intersection. In turn, an overlap of an edge obviously entails an overlap of its
source and target node.

That means, the intersection includes all nodes and edges of both rules indi-
rectly reachable from a non-attachment node or edge in the intersection. Since
the right-hand sides of our rules are connected, this implies that the overlap is
complete whenever a non-attachment node or an edge is involved.

For a pair grammar we consider unambiguity for both directions of the trans-
lation. Generally, it requires that the source grammar is unambiguous, so the
parse tree is uniquely determined, and that for every source production there is
exactly one target production, so the tree uniquely induces a derivation in the
target. Depending on who is source and who is target, this results in the notions
of left and right unambiguity.
Definition 5 (unambiguity of pair grammars). A pair grammar Q is left
(right) unambiguous if the left (right) grammar of Q is unambiguous, and Q
contains no two distinct rules with identical left (right) rules.
Q is unambiguous if it is both left and right unambiguous.
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The pair grammar presented in Section 4.2 is unambiguous. However, there
exists another possibility for describing sequences in BPEL4WS, besides the one
shown in Fig. 8. The alternative shown in Fig. 12 uses the flow construct, spec-
ifying the desired temporal dependencies by means of links between activities.

Fig. 12. Pattern 1: Sequence (via BPEL4WS flow construct)

The resulting pair grammar is no longer right unambiguous because there are
two rule pairs sharing the same right rule. Indeed, since we have two choices to
implement a sequence, the result of the translation is no longer unique. Hence,
for right-to-left mappings, one of the two rules should be disregarded.

On the other hand, the alternative sequence rule is useful for the left-to-
right from BPEL4WS to UML because, when reverse engineering a process we
cannot assume a certain style of implementation, but have to handle the full
spectrum of language constructs. Fortunately, the extended pair grammar is
still left unambiguous.

This example shows that, while in potentially bi-directional, it could be nec-
essary to tailor the mapping description to one or the other direction in order
to achieve unambiguity.

5 Model-Based Analysis

Model-based development tends to create a variety of artifacts that describe the
system to be built from different viewpoints and at different levels of abstrac-
tion. This allows developers to concentrate on the concern of present interest,
reducing complexity by hiding other not so relevant concerns, but it also creates
consistency problems between the different descriptions.
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Besides this general, domain and language-independent cause for consistency
problems, there are more specific reasons resulting from the choice of a specific
development method, target language, or application domain. Typical for Web
services is, for example, the consistency between descriptions of required and
provided services, which need to be matched before services can be composed.
This includes, e.g., the compatibility of their signatures to ensure type safety,
and of their interaction protocols to avoid deadlocks.

Other consistency problems are inherited from the target language of devel-
opment, in our case BPEL4WS, which entails particular restrictions for processes
formulated in that language. Type checking rules for BPEL4WS require, for ex-
ample, that all operations used in activities of the process must be declared in the
appropriate port types. This induces a dependency between the class diagram
containing the interfaces from which the port types are derived and the activity
diagram where the process is modelled. Thus, the precise notion of consistency
that needs to be applied at the model level depends on both the restrictions
at the implementation level and the mapping of models to implementations as
described in Section 4.

In this section, we are dealing with model-based analysis of consistency prob-
lems. Both subject and result of the analysis are given at the model level because,
obviously, it would limit the applicability of a method if developers were forced
to work on different representations of processes, e.g., to eliminate a fault di-
rectly in an XML-based business process language, or to analyze a process in
a process algebra. This, again, emphasizes the need for automated mappings
between different representations.

For dealing with consistency in UML-based development processes, we apply
a general methodology for specifying and analyzing consistency [4]. In short, the
methodology consists of the following steps.

1. Consistency problems must be identified in a given UML-based development
process, documented and categorized into
– problems of syntactic (e.g., structural) nature that can be formulated

and solved at the level of models;
– problems of semantic (e.g., behavioral) nature that require a separate

semantic representation.
2. For each semantic consistency problem, a suitable semantic domain must be

chosen and a semantic mapping of models into this domain must be designed.
3. For both syntactic and semantic problems, consistency conditions must be

stated as constraints, either over the abstract syntax or the semantic repre-
sentation of models.

In the following two subsections we consider, in turn, the syntactic and the
semantic case.

5.1 Syntactic Analysis

In our sample process, for illustration we identify syntactic consistency problems
between component diagrams and class diagrams, as well as between activity
diagrams and class diagrams.
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For component and class diagrams a consistency problem occurs whenever
an interface is used in a component diagram that is not declared in the class dia-
gram. This consistency problem can be considered syntactic because a syntactic
condition can be formulated using OCL, requiring that each interface used is
declared in the class diagram.

With regard to activity diagrams and class diagrams, a similar kind of con-
sistency problem is illustrated in Fig. 13: An activity contains references to the
partner component, interface and operation which must be in a certain relation
(e.g., the interface declares the operation and is implemented or used by the com-
ponent playing the partner role). Considering the class diagram in Fig. 4, it is
obvious, that the OnlineShopPT does not support a receiveInstruction operation.

Fig. 13. Activity Diagram: Syntactic consistency problem

When modelling Web service processes, we also have to take into account
language-specific consistency properties, as for instance: In a BPEL4WS process
a process instance must not simultaneously enable two receive actions for the
same partner, port type, and operation. If two receive actions for the same
partner, port type, and operation are, in fact, simultaneously enabled, e.g., in
two concurrent threads of the process, then a standard fault must be thrown
by the process interpreter that complies with the BPEL4WS specification. In
such a case, the processing of the current scope is terminated. Possible results
are the invocation of compensation handlers (if defined) or the abortion of the
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entire process. In any case, the chance for a successful completion of the process
decreases.

In order to avoid such conflicts, we can provide sufficient static conditions at
the model level, e.g., by means of a semi-formal error pattern as illustrated in
Fig. 14. ActivityA and ActivityB are place holders for sub-processes of arbitrary
structure. Such a pattern, which must not occur in a process, can serve as a
guideline for the developer or as a documentation for a formal analysis of this
property, if available.

Fig. 14. Conflict potentials in parallel sections

Another example of an error pattern is shown in Fig. 15. It reflects, at the
level of models, the fact that BPEL4WS requires control flows that are based
on links to be acyclic.

Fig. 15. Cycles

5.2 Semantical Analysis

Next, we deal with consistency conditions that are formulated and analyzed in a
separate semantic domain. In our example, different interaction protocols of the
participants are combined and conclusions about their compatibility are given.
Thus, we focus on the behavioral aspect. In particular, if the business processes
have a complex control flow, the concrete or abstract syntax of models is not
suitable for such problems. Therefore we choose the process algebra CSP [6] as
semantic domain for analysis.

Since we cannot assume that developers are familiar with CSP, and in order
to avoid mistakes in the translation, an automated mapping of models into CSP
is required, as well as a mapping of analysis results back into UML models.
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Translation from UML to CSP. In principle, the translation from UML activity
diagrams into the semantic domain CSP is based on the same concepts as the
translation shown in Section 4. However, in this case a pair grammar is not fully
satisfactory, because one has to generate complex Pre and Post processes for
managing events accurately in CSP. These are interconnected by an Environ-
ment. In order to control these processes, the concept of a Global Scheduler is
adopted. Furthermore, the Control process guarantees the correct termination of
the whole system. Both basic and structured activities (i.e., nodes like split and
join that describe the control flow) are coded as separate CSP processes denoted
as Activity processes. Thus Activity processes emulate the proper control flow
as well as the sending and receiving of events. In order to execute the Activity
processes independently, they are combined by interleaving.

Processes may be composed by operators which require synchronization on
some events. Each component must be willing to participate in a given event
before the whole can make the transition. In this regard, suitable communica-
tion and synchronization alphabets consisting of events must be defined. The
composition of processes is itself a process, allowing a hierarchical description
of a system. The process structure can be represented as a tree. The root node
represents the process as a whole (cf. System−Control). According to the num-
ber of sub-components of the node branches are added. Fig. 16 visualizes the
process structure, whereby rectangles indicate the parallel composition symbol
including the alphabet in question and ovals display CSP processes. The several
atomic Pre, Post and Activity processes are hidden, because their occurrence
strongly depends on the underlying example.

In the following, we focus on the generation of the Activity processes. As
already mentioned, the concept of pair grammars is suitable for demonstrating
the basic idea. Now the grammar for UML activity diagrams is paired with the
one for CSP processes. This is shown in Fig. 17.

On each left-hand side of the considered rules the type of the expected non-
terminal is used. In this way, these nonterminals are paired. For the grammar for
UML activity diagrams we refer to Section 4, because it has already been dis-
cussed. The right-hand sides of the rules for the CSP grammar include terminals
like if and else, and nonterminals like ActivityA1, whereby Activity indicates
the type and A1 indicates the variable. We have chosen this alternative represen-
tation for a better readability of the CSP process. Below we explain the Activity
process in short without deepening the language CSP too much.
ActivityA1 is the name of the considered Activiy process. The first event in

the flow activates this process (compare act−ActivityA1). Afterwards t reads out
the channel transitionx, whereas the value 1 respectively 0 indicates a positive
respectively negative precondition. If t has in fact the value 1, then the corre-
sponding transition process is instructed to reset itself. After this the transition
for the following Activity process is set and ActivityA1 is disabled and ends with
a recursive invocation on itself, so it is available in the next step of the Global
Scheduler.
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Fig. 16. Combing processes in CSP

For UML activity diagrams and CSP, we do not require a bi-directional trans-
lation, because we do not assume that business processes are formulated as CSP
processes. For analyzing CSP processes we use the model checker FDR2 [11]. As
results of a check one obtains a trace, which the process is, or is not, willing to
execute. These traces can be transformed into a sequence diagram. Hence, a de-
veloper is able to work solely at the model level. Moreover, the complex structure
of the established CSP process is the reason for customizing the concept of pair
grammars in this regard. For completely describing this translation, we would
have to upgrade from pair grammars to so-called triple graph grammars [13].
Beside lifting the restriction to context-free grammars, triple graph grammars
allow to store auxiliary data, accumulated during the translation, inside a third
intermediate graph, which also keeps track of the relation between source and
target. This feature is important to determine the alphabet of a process by col-
lecting data on operations and partners occurring in the process. However, in
this paper we stick to the pair grammar representation which is still sufficient
to convey the basic ideas.

After defining a translation from UML activity diagrams into CSP, we can
finally turn to the actual semantical analysis. Basically, we distinguish between
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ActivityA1 = 
 act_ActivityA1 -> 
 transistion_x?t -> 
 if (t == 1) then 
  ini_Transition_x -> 
  post_Transition_ActivityA1_ActivityA2 -> 
  ackn_ActivityA1 -> ActivityA1
 else 
  ackn_ActivityA1 -> ActivityA1
…

ActivityAn = 
 act_ActivityAn -> 
 transistion_ActivityAn-1_ActivityAn?t -> 
 if (t == 1) then 
  ini_Transition_ActivityAn-1_ActivityAn -> 
  post_Transition_y -> 
  ackn_ActivityAn -> ActivityAn
 else 
  ackn_ActivityAn -> ActivityAn

Fig. 17. Pattern 1: Sequence

classical requirements for concurrent processes and requirements for business
processes.

Classical concurrency properties. At first we consider classical requirements like
deadlock or livelock. Concerning the property of deadlock freedom, we need to
provide a consistency concept for activity diagrams. At first we give a definition
for deadlock.

Definition 6 (deadlock). A set of processes is deadlocked if each process in
the set is waiting for an event that only another process in the set can cause.

As an example, consider the modified activity diagram of the Buyer shown
in Fig. 18 and the one of the Online Shop Service, illustrated in Fig. 5. Both
processes expect a signal from each other which gives rise to a deadlock. This
circumstance is independent of changes in their interfaces.

In general, whenever a deadlock occurs, processes can not be completed suc-
cessfully. Hence, we take into account suitable measures to avoid such conflicts.
The tool FDR2 supports the detection of deadlocks. However, due to the complex
structure of the CSP process implementing a business process, CSPs definition
of a deadlock, which requires that a process does not communicate at all, is not
applicable here. Instead, we have to check for a livelock in order to capture the
notion of a business process deadlock in CSP, see [17] for details.
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Fig. 18. A deadlock situation

Requirements for business processes. Now we turn to requirements which must
be formulated depending on the context of a business process. The verification
of so called security properties is based on the comparison of CSP processes to a
set of traces. This set defines sequences of events and by doing so secure states
are specified. In this sense, a CSP process is in fact secure if its provided traces
are in the set of traces of the security property. In addition we want to check,
if a concrete activity diagram covers several scenarios. These scenarios can be
formalized as UML diagrams. In this context UML behavior diagrams are of
special importance (compare UML sequence and statechart diagrams). In order
to compare all these different diagram types, a sufficient transformation into the
semantic domain CSP must be established. In [14], Stehr picks the translation
of sequence and statechart diagrams out as a central theme. In this survey we
have already demonstrated, how activity diagrams can be translated into CSP.

Such a scenario can be derived from different use cases.

– By modelling sequence diagrams one has the opportunity to define permit-
ted respectively prohibited examples. This means that a developer identifies
concrete scenarios, which are checked regarding a concrete business process.

– Concrete executions of existing business process instances can be monitored.
By doing so sequence diagrams can be formulated by assigning exchanged
messages to objects.

In both cases, one has to establish the relationship between the different mes-
sage and event names, respectively, used in the diagrams. In general, sequence
diagrams are much less formalized than activity diagrams. This task can only
be handled by the developer himself. Agreeing on the same name space is a
precondition for meaningful analysis.
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Fig. 19. Property formulated as a UML sequence diagram

Fig. 20. Assigning messages of the sequence diagram to the events of the CSP process

An example of such an assignment is shown in Fig. 20. We emphasize that
the events of the CSP process are not introduced in this context, because the
underlying example consists of over 1400 lines of code. For the complete example
we again refer to [17].

The result of a check shows whether the trace of the sequence diagram is in
the set of traces of the activity diagram. In this example, a required event does
not have any correspondence in the sequence diagram. And in fact, this event
must be executed in the underlying business process. Hence, the CSP processes
(and thus the business processes visualized as activity diagrams) do not conform
to the defined property.

Further on, complete subsystems can be compared to each other. In doing
so, we want to check, if a subsystem might be replaced by another. This anal-
ysis is only based on CSP processes, which are representations of UML activity
diagrams. For this purpose the FDR2 trace refinement checker is suitable.
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Matching of Localisation Pattern
for Consistency Problem

Translation of 
Activity Diagrams to CSP

Preparation
Of Input for Model Checker

Adding Consistency Conditions

Verification of Consistency Conditions and Interpretation of Results

Activity
Diagrams

CSP File

CSP Files

Fig. 21. A sample consistency check

Defining consistency checks. On the basis of a consistency concept, consistency
checks can be defined in order to validate that a model is consistent. A consis-
tency check must therefore validate the consistency conditions of a consistency
concept. Within our approach, such a check may involve the translation of a
model into a semantic domain, the verification of consistency conditions by a
model checker, and an interpretation of the results.

Informally, the specification of such a consistency check can be visualized by
an activity diagram extended by mechanisms for modelling object flow. In the
following, we will sketch the definition of a consistency check for the consistency
problem type of activity diagrams, ensuring their deadlock freedom.

In Fig. 21, the consistency check for activity diagrams is shown (with ob-
ject flow visualized by arrows). Within the first activity, a UML localization
pattern is used for locating and identifying, within a larger UML model, those
activity diagrams relevant for the consistency check. These are then given to the
translation activities. Within the translation activities, the translation to CSP
is performed. Resulting CSP files are then assembled to a single file which can
be handed over directly to the model checker.

This concept is implemented in the ConWork tool developed at the university
of Paderborn, which allows to define flexible consistency checks based on rule-
based translations of UML diagrams into CSP [3].
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6 Conclusions

With the wide integration of Web services into software development, modelling
of Web service processes is gaining increasing importance. In order to be bene-
ficial, a modelling approach should take into account the characteristics of Web
service processes. Currently, the Unified Modeling Language is the accepted in-
dustrial standard for modelling object-oriented systems. In this paper, we have
discussed how the UML can be applied for modelling Web service processes.
Furthermore we have introduced several UML models for suitable abstractions
of both structure and behavior of Web service processes. Then we have focused
on a bi-directional translation between UML activity diagrams and BPEL4WS.
Thus we provide a framework for forward and reverse engineering based on the
considered translation concept. As consistency is not established by the language
definition of UML, it must be ensured by the software engineer applying UML
for modelling Web service processes. In order to prove consistency conditions
in regard to the UML models, we categorized possible inconsistency types into
syntactical and semantical problems depending on the language that is suitable
for solving these. In this context the analysis of different interaction protocols
participating in a given business process is of particular interest. For this task we
chose CSP as semantic domain for further analysis. On this account we provide
a translation from UML into CSP and propose an approach, how results of the
model checker FDR2 can be visualized as UML models. The visual modelling
language UML facilitates an adequate abstraction of implementation details and
supports a better understanding of consistency analysis.

Future work includes the definition of a generic development process for Web
service processes and the elaboration of consistency management within this de-
velopment process. For that purpose, we must automate the translation between
UML activity diagrams and BPEL4WS as well as UML activity diagrams into
a semantic domain such as CSP. Currently, we are developing tool support for
this task based on the Consistency Workbench [3]. This tool allows the software
engineer to define translations of UML models into a semantic domain and define
consistency checks as workflows, like visualized in Fig. 21.
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Abstract. We present a modular formalism and methodology for modelling and
control of discrete event systems, such as flexible manufacturing systems. The
formalism is based on Petri net modules which communicate via signals. Two
kinds of signals are employed, namely active signals, which force occurrence of
(enabled) events (typically switches), and passive signals which enable/prohibit
occurring of events (typically sensors). Modelling with such modules appears to
be very natural from engineering perspective, enables hierarchical structuring,
and support locality principle.
Further, we discuss the role of both kinds of signals in control tasks and we focus
on the control aspects in general. We present a methodology for synthesis of
controlled behavior for systems modelled by modules of signal sets. Given an
uncontrolled system (a plant) modelled by a module of a signal net, and a control
specification given as a regular language representing the desired signal output
behavior of this system, we show how to synthesize the maximal permissive and
non-blocking behavior of the plant respecting the control specification. Finally,
we show how to synthesize the controller (as a module of a signal net) forcing
the plant to realize the controlled behavior.

1 Introduction

Petri Nets are already widely used for modelling and control of Discrete event sys-
tems [10, 22], because of their modelling power, graphical expression, strong theoretical
background, very developed analytical methods, tools, and many other features. How-
ever, there are still some features which are not directly supported by Petri Nets (at least
in their basic version), but are, on the other hand, quite natural for engineers working
with real applications. For example, to cover control tasks, Petri nets were extended by
adding external conditions, which are necessary for enabling occurrence of transitions
[10]. In the following paragraphs we are trying to identify some of features which are
important for applications and are not directly supported by Petri nets. Based on this
discussion we are presenting an extension of Petri nets, which can still benefit from
all strong advantages that Petri nets bring, but also enables to deal with the discussed
unsupported features in an effective way.

Petri nets are in principle distributed, however they do not support modularity. Mod-
ularity is quite natural and important in engineering. In complex application, models are
usually built in several steps and are described on several levels of abstraction. Almost
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each system is a part of a bigger system, such as a robot is a part of a manufacturing
cell, as well as almost each system itself is composed from subsystems. This fact gives
an importance to principle of compositionality. Thinking on one level of abstraction one
does not need to reason about all details of subsystems which were taken into consid-
eration in a sublevel. It is usually sufficient to consider just those parts of subsystems,
which are in contact with environment, i.e. “input/output” parts and to consider the “in-
side” of the subsystems being a “black box”. Such approach supports local changes in
the whole system, it enables a replacement of one module by another with the same
“input/output” functionality. A typical example of a modular approach in control ap-
plications are block diagrams. It would be very nice to have such a modular approach
based on Petri nets. There are already developed many compositional frameworks for
Petri nets, mostly based on gluing common places and/or transitions. However, because
the subject of engineering are mostly complex systems, it is desirable that the compo-
sition of modules preserve the structure of modules.

In classical control theory it is given a system which can interfere with environment
via inputs and outputs. The aim of its control is to ensure desired behaviour by giving
the system right inputs in order to get the right outputs. The central idea in control the-
ory is, that system and control build a so called closed loop (or feedback loop), which
means, roughly speaking, that the control gives inputs to the system based on the system
outputs which are observed by the control. In this paper, we are interested in control of
discrete event systems, where the dynamic behaviour of a system is described by oc-
currence of discrete events changing the states of the system. The crucial question to be
answered when choosing a formalism for modelling control systems is how to formalize
“giving inputs and observing outputs”. In order to answer the question, let us discuss
a very simple example. Consider a switch which can turn on a light. Turning on the
switch forces the bulb to light, however, only if the bulb is not damaged. And of course
the bulb can not start to light, if no switch is turned on. In other words, in the previous
situation the switch is the actuator of the bulb. In this example the switch plays the role
of the control, while the light (bulb with cables etc.) plays the role of the system to be
controlled. Thus, inputs to the system can be actuators representing conditional assym-
metric synchronization - events of the control are trying to force events in the system.
This is a typical situation in control of discrete event systems: a product line will not
start without pressing a control button, or a mobile phone will not call a number with-
out pressing appropriate buttons, but a printer is not printing without paper even if the
“print” button was pressed. The other typical interaction between control and discrete
event systems are sensors readings: An event in the system can occur only if a sensor
in the control is in a certain state and vice versa. Thus events can be enabled/prohibited
via states of sensors.

Thus, an event of a system can have two kinds of inputs: Actuators, which try to
force the event, or sensors, which can prohibit the event. Events associated to inputs are
called controllable. Of course there can be uncontrollable events in the system. Regard-
ing for example a printer, a “paper jam” event can occur without any influence from the
control. The following two kinds of outputs can be observed: Either the occurrence of
an event (via actuators) or the fact that a state is reached (via sensors). Event resp. states
associated to outputs are called observable. Of course there can be unobservable events
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resp. states. As mentioned, it would be natural to model control of a discrete events sys-
tems by influencing its behaviour by actuators and sensors in order to observe desired
outputs as decribed above.

However, the solution in the discrete event control community, which is now quite
accepted, is to use only the sensors. More exactly, in supervisory control [2, 16] the
events of the system to be controlled are divided as above into controllable and uncon-
trollable. But the controllable events can only be enabled/prohibited by a supervisor.
Thus, in supervisory control actuators can only be modelled indirectly using the “sen-
sor principle” by prohibiting all controllable events, except the event which is actuated
([1], pp. 185 - 202). For example, modelling a switch and a light, one needs to prohibit
all controllable events except the event “a bulb starting to light” to model the situation
when the switch turns on. In fact, in case of supervisory control, the control means to
restrict the behaviour of the system to fulfil the control specification. As mentioned in
[1], pp. 185 - 202, “sometimes it is desirable to have a controller which not only dis-
ables controllable events but also chooses one among the enabled ones. This event can
be interpreted as a command given to the plant.” The solution to such cases is given by a
construction of “an inplementation”, which is a special supervisor, enabling at most one
controllable event at a time. There arises the natural question, why not directly model
actuators?

We would like to have an extension of Petri nets, which support input/output struc-
turing using actuator and sensors, modularity and compositionality in an intuitive graph-
ical way.

So, as a modelling formalism, we use modules communicating by means of the
above described signals. This formalism is based on the work [18], where automata
were used to describe the internal behavior of a system, and the paper [19], where
Petri nets were used for this purpose. We call these models, i.e. Petri nets equipped
with two kinds of signals, signal nets. Nowadays, this concept is successfully used in
modelling and control of discrete event systems by a growing community. There are
several dialects of these nets and several different names, such as net condition/event
systems [8, 7, 9] or signal nets [20]. In this paper we are using the name signal nets. One
reason is that the name condition/event nets is used in the Petri net context for a well
known basic net class. A signal net is a Petri net enriched by event signals, which force
the occurrence of (enabled) events (typically switches), and condition signals which
enable/prohibit the occurring of events (typically sensors). Adding input and output
signals to a signal net, one gets a module of a signal net. Modules of signal nets can be
composed by connecting their respective input and output signals.

There are several related works employing modules of signal nets in control of
discrete event systems. In [8, 7, 9] effective solutions for particular classes of specifi-
cations, such as forbidden states, or simple desired and undesired sequences of events,
are described. Recently, an approach for control specifications given by cycles of ob-
servable events was presented in [15]. However, in [15] the actuators are used only to
observe events of the controlled system, but surprisingly, for control actions only con-
dition signals (for prohibiting events) are taken. In our paper, we adapt the framework
of supervisory control providing a methodology for control of discrete event systems
using both concepts, namely actuators and sensors. Such a methodology with the slo-
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gan “forcing and prohibiting instead of only prohibiting” would be more appropriate for
the class of discrete event systems, where actuators and commands are used in practice.
In addition, we consider a general class of control specification in form of a language
over steps of event outputs (steps of observable events). We consider steps (i.e. sets) of
outputs, rather then simple outputs, because some outputs can be simultaneously syn-
chronized by an event of the system. We allow also steps containing an input with some
outputs. Such a situation describes that an input signal is trying to synchronize a control-
lable event of the system, which is also observable. So the controller can immediately
(i.e. in the same step) observe whether the input signal has forced the event to occur or
not. However, since the control is assumed to send inputs based on observed outputs
(as stated in the beginning), we do not allow the symmetric situation: observable events
can not synchronize inputs in the same step.

As it was already mentioned, in case of supervisory control, the behavior of the DES
can not be forced by the supervisor: control means to restrict the behavior of the system
to fulfill the control specification. Formally (see e.g. [2]), there is given a regular prefix
closed language over the set of system events. This language represents the uncontrolled
behavior of the system. Control specification is given in form of a regular subset of this
language and is representing the desired behavior. Moreover, some states in an automa-
ton representing the uncontrolled behavior are marked. The sequences (words) of events
leading to these states describe completed tasks. Remember also, that the events of the
system are divided into controllable events, which can be enabled/prohibited by the
control, and uncontrollable events. The basic aim of supervisory control is to find a su-
pervisor, which will prohibit the controllable events in such a way, that the behavior of
the system is restricted to its maximal regular sublanguage, which still respects the con-
trol specification, and is moreover non-blocking (every sequence of this language can
be completed to a marked state, i.e. no dead- or livelocks occur in unmarked states).
Such a supervisor is called minimally restrictive nonblocking supervisor.

In our framework we identify which input signals have to be sent to the module of
the plant in order to observe only such sequences of (steps of) output signals, which
are prefixes of the control specification, and every sequence of (steps of) output signals
can be completed to a sequence of output signals belonging to the control specification.
The presented solution is maximal in the sense, that we match all sequences of (steps of)
outputs which can be achieved by sending appropriate inputs without being in danger
to observe a sequence of (steps of) outputs which is not a prefix of a sequence in the
control specification, or a sequence of (steps of) outputs which can not be completed
to a sequence in the control specification (i.e. which is blocking). The maximality is
achieved under the paradigm, that no output signal of the plant can synchronize an input
signal of the plant (as already stated above). In other words, we construct a language
over steps of input and output signals of the module of the plant, which represents
the maximally permissive nonblocking behavior and fulfills the control specification.
Finally, we show that for such a behavior there exists a control module (of a signal net),
which will in composition with the plant module realize this behavior. As the main
result we will construct such a control module.

The paper is organized as follows: In Section 2 we present modules of signal nets
with definition of step semantics, composition rules and input/output behavior. In Sec-



Modelling and Control with Modules of Signal Nets 589

tion 3 we outline our control framework implementing the “forcing and prohibiting”-
paradigm by means of modules of signal nets. It is compared in detail to classical su-
pervisory control. The Section splits into two parts. In Subsection 4.1 we synthesize the
maximally permissive nonblocking behavior of a module of a signal net (representing
the plant) respecting a given regular specification language. Finally, in Subsection 4.2
we present the construction of the controller as a module of a signal net.

2 Modules of Signal Nets

As mentioned in the introduction we present an extension of Petri nets which allows
to model actuators, sensors and modularity, and still has all the benefits that Petri nets
bring. We assume the underlying Petri nets to be elementary Petri nets (1-safe Petri nets)
equipped with the so called first consume, then produce semantics (since we want to al-
low loops, e.g. [13]). The first step in the extension is to add two kinds of signals, namely
active signals, which force the occurrence of (enabled) events (typically switches or ac-
tuators), and passive signals which enable/prohibit the occurrence of events (typically
sensors). These signals are expressed using two kind of arcs. A Petri net extended with
such signals is simply called a signal net.

Active signals are represented using arcs connecting transitions and can be inter-
preted in the following way: An active signal arc, also called event arc, leading from
a transition t1 to a transition t2 specifies that if transition t1 occurs and transition t2 is
enabled to occur then the occurrence of t2 is forced (synchronized) by the occurrence
of t1, i.e. transitions t1 and t2 occur in one (synchronized) step. If t2 is not enabled,
t1 occurs without t2, while an occurrence of t2 without t1 is not allowed. Taking an
example, an event turning on a switch would be modelled via the transition t1, while
the event lighting the bulb would be modelled via transition t2.

In general (synchronized) steps of transitions are build inductively in the above way.
Every step starts at a unique transition, which is not synchronized itself. Notice that this
implies that event arcs build no cycles. Consider a transition t which is synchronized
by several transitions t1, . . . , tn, n � 2. Then two situations can be distinguished. For
simplicity consider the case n = 2.

If the transitions t1 and t2 do not build a synchronized step themselves, either t1 or
t2 can synchronize transition t in the above sense, but never transitions t1 and t2 can
occur in one synchronized step. As an example you can think of several switches to turn
on a light on (see Figure 1, part (a)).

If the transitions t1 and t2 build a synchronized step themselves, then there are two
dialects in literature to interpret such a situation: In the first one ([8, 7, 9]) both tran-
sitions t1, t2 have to agree to synchronize t. Thus the only possible step of transitions
involving t has to include transitions t1 and t2, too. We call this dialectAND-semantics
(see Figure 1, part (b)).

In the second one ([4]) the occurrence of at least one of the transitions t1 and t2
synchronizes transition t, if t is enabled. It is also possible, that t1, t2 and t occur in one
synchronized step. We call this dialect OR-semantics (see Figure 1, part (c)).

In general the relation given by event arcs builds a forest of arbitrary depth. In
this paper we introduce the most general interpretation, where both semantics are pos-
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Fig. 1. In Figure (a) the enabled steps are {t1, t} and {t2, t}. Figure (b) shows a signal net in
AND-semantics: here the only enabled step is {t′, t1}, i.e. t is not synchronized. In Figure
(c) the same net is shown in OR-semantics: here we have the enabled step {t′, t1, t}, i.e. t is
synchronized.

t1t1 t
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t

Fig. 2. Figure (a) shows an enabled step {t1, t}. The left part of Figure (b) shows an enabled
transition t, which tests a place to be marked. The occurrence of t leads to the marking shown in
the right part of Figure (b). Figures (c) and (d) again present situations of an enabled step {t1, t}.

sible and are interpreted locally backward. That means we distinguish between OR-
and AND-synchronized transitions. An OR-synchronized transition demands to be
synchronized by at least one of its synchronizing transitions, whereas an AND-syn-
chronized transition demands to be synchronized by all of its synchronizing transitions.
Since we allow loops w.r.t. single transitions, we also allow loops w.r.t. steps of transi-
tions (see Figure 2, part (a)).

Passive signals are expressed by so called condition arcs (also called read arcs or
test arcs in the literature) connecting places and transitions. A condition arc leading
from a place to a transition models the situation that the transition can only occur if
the place is in a certain state but this state remains unchanged by the transition’s occur-
rence (read operation) (see Figure 2, part (b)). Of course several transitions belonging
to a synchronized step can test a place to be in a certain state via passive signals simul-
taneously, since the state of this place is not changed by their occurrence (see Figure 2,
part (c)).

We also allow that a transition belongs to a synchronized step of transitions testing
a place to be in a certain state via a passive signal, whereas the state of this place is
changed by the occurrence of another transition in this step. That means we use the so
called a priori semantics ([12]) for the occurrence of steps of transitions, where testing
of states precedes changing of states by occurrence of steps of transitions (see Figure 2,
part (d)).

Definition 1 (Signal nets). A signal net is a six-tuple N = (P, T, F, CN,EN,m0)
where
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P denotes the finite set of places,
T = TAND∪̇TOR the distinct union of the finite sets of AND-synchronized transitions
TAND and OR-synchronized transitions TOR (P ∩ T = ∅),
F ⊆ (P × T ) ∪ (T × P ) the flow relation,
CN ⊆ (P × T ) the set of condition arcs (CN ∩ (F ∪ F−1) = ∅),
EN ⊆ (T × T ) the acyclic set of event arcs (EN+ ∩ idT = ∅), and
m0 ⊆ P the initial marking.

Places, transitions and the flow relation are drawn as usual using circles, boxes
and arrows. To distinguish between AND- and OR-synchronized transitions, AND-
synchronized transitions are additionally labelled by the symbol “&”. Event arcs and
condition arcs are visualized using arcs of a special form given in Figure 1 and Figure 2.

For a place or a transition x we denote
•x = {y | (y, x) ∈ F} the preset of x,
x• = {y | (x, y) ∈ F} the postset of x.

For a transition t we denote
+t = {p | (p, t) ∈ CN} the positive context of t,
�t = {t′ | (t′, t) ∈ EN} the synchronization set of t,
t� = {t′ | (t, t′) ∈ EN} the synchronized set of t.

Given a set ξ ⊆ T of transitions, we extend the above notions to: •ξ =
⋃

t∈ ξ
•t

and ξ• =
⋃

t∈ ξ t
• , �ξ =

⋃
t∈ ξ

�t, ξ� =
⋃

t∈ ξ t
� .

Definition 2 (Enabling of transitions). A transition t ∈ T is enabled at a marking
m ⊆ P , if •t ∪ +t ⊆ m and (t• \ •t) ∩m = ∅.

The following definition introduces a notion of steps of transitions which is different
to the usual one used in Petri nets. A step denotes a set of transitions connected by event
arcs, which occur synchronously. A transition, which is not synchronized by another
transition, is a step. Such transitions are called spontanuous. In general, steps are sets
of transitions such that for every non-spontaneous OR-synchronized transition in this
step at least one of it’s synchronizing transitions belongs also to this step, and for every
AND-synchronized transition in this step all of it’s synchronizing transitions belong
also to this step.

Definition 3 (Steps). Given a signal net N , steps are sets of transitions ξ defined in-
ductively by

– If t ∈ T with �t = ∅ (t is spontaneous), then ξ = {t} is a step.
– If ξ is a step, and t ∈ T \ ξ is a transition, then ξ ∪ {t} is a step, if either t ∈ TOR

and �t ∩ ξ �= ∅, or t ∈ TAND and �t ⊆ ξ.

Now we introduce how a step is enabled to occur. A step ξ is said to be potentially
enabled at a marking m if every transition t ∈ ξ is enabled at m and no transitions
t1, t2 ∈ ξ are in conflict, except for possible loops p ∈ •ξ ∩ ξ• w.r.t. ξ, where p ∈ m is
required. From all steps potentially enabled at a marking only those are enabled which
are maximal with this property.

Definition 4 ((Potentially) enabling of steps). A step ξ is potentially enabled in a
markingm if
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– All t ∈ ξ are enabled: •t ∪ +t ⊆ m and (t• \ •ξ) ∩m = ∅ and
– No pair of transitions t, t′ ∈ ξ is in conflict: •t ∩ •t′ = t• ∩ (t′)• = ∅.

The step ξ is enabled, if ξ is potentially enabled, and there is not a potentially enabled
step η � ξ (ξ is maximal).

Definition 5 (Occurrence of steps and follower markings). The occurrence of an
enabled step ξ yields the follower markingm′ = (m \ •ξ) ∪ ξ• . In this case we write
m[ξ〉m′.

Definition 6 (Reachable markings, occurrence sequences). A marking m is called
reachable from the initial markingm0 if there is a sequence of markingsm1, . . . ,mk =
m and a sequence of steps ξ1, . . . , ξk, such that m0[ξ1〉m1, . . . ,mk−1[ξk〉mk. Such a
sequence of steps is called an occurrence sequence.

Adding some inputs and outputs to signal nets, i.e. adding condition and event arcs
coming from or going to an environment, we get modules of signal nets with input and
output structure.

Definition 7 (Modules of signal nets). A module of a signal net is a triple M =
(N,Ψ, c0), where N = (P, T, F, CN,EN,m0) is a signal net, and Ψ = (Ψsig , Ψarc)
is the input/output structure, where
Ψsig = Cin ∪Ein ∪Cout ∪ Eout is a finite set of input/output signals, and
Ψarc = CIarc ∪EIarc ∪COarc ∪EOarc is a finite set of arcs connecting input/output
signals with the elements of the netN . Namely,
Cin resp. Ein denotes the set of condition resp. event inputs,
Cout resp. Eout the set of condition resp event outputs,
CIarc ⊆ Cin × T resp. EIarc ⊆ Ein × T the set of condition resp event input arcs,
COarc ⊆ P ×Cout resp. EOarc ⊆ T ×Eout the set condition resp event output arcs,
c0 ⊆ Cin the initial state of the condition inputs.

We extend the notions of preset, postset, positive context, synchronization set and
synchronized set to the elements of Ψsig in the obvious way. An example of a module
of a signal net, with Cin = {ci}, Ein = {j, k}, Cout = {co} and Eout = {u, v} is
shown in the Figure 3.

Two modules can be composed by identifying some inputs of the one moduleM1

with appropriate outputs of the other module M2 and vice versa with a composition
mapping Ω. The connections of the nets to the involved identified inputs and outputs
are replaced by direct signal arcs respecting the identification (see Figure 7), such that

– the initial markings are compatible with the initial states of the condition inputs,
and

– no cycles of event arcs are generated.

The composition ofM1 andM2 w.r.t. Ω is denoted byM1 ∗Ω M2.

Definition 8 (Composition of modules of signal nets). Let M1 = (N1, Ψ1, c01),
M2 = (N2, Ψ2, c02) be modules of signal nets with input/output structures Ψi = (Ψsig

i ,
Ψarc

i ) and initial markingsm0i (i = 1, 2).
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Module A

co1

eo1

eo2

ci1

ei1

ei2

Fig. 3. A module of a signal net with condition inputs Cin = {ci}, event inputs Ein = {j, k},
condition outputs Cout = {co} and event outputs Eout = {u, v}.

Module A

coA1

eoA1

eoA2

ciA1

eiA1

eiA2

Module B

eoB1eiB1

coB1

Fig. 4. The composition of two modules.

Let Q ⊆ Ψsig
1 and Ω : Q → Ψsig

2 be an injective mapping, such that the initial
markings are compatible with the initial states of the condition inputs:
(p, co) ∈ COarc

1 ∧Ω(co) ∈ c02 ⇒ p ∈ m01 and
(p, co) ∈ COarc

2 ∧Ω−1(co) ∈ c01 ⇒ p ∈ m02.
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coA1

eoA1

eiA1

Module B * A

Fig. 5. The result of the composition of the modules from Figure 4.

Ω has to satisfy:
Ω(Ein

1 ∩Q) ⊆ Eout
2 , Ω(Eout

1 ∩Q) ⊆ Ein
2 , Ω(Cin

1 ∩Q) ⊆ Cout
2 , andΩ(Cout

1 ∩Q) ⊆
Cin

2 .
Finally, no cycles of event arcs should be generated.

Then the composition M = M1 ∗Ω M2 of M1 and M2 w.r.t. Ω is the module
M = (N,Ψ, c0) with N = (P1 ∪ P2, T1 ∪ T2, F1 ∪ F2, CN,EN,m01 ∪ m02) and
Ψ = (Ψsig , Ψarc), where involved inputs, outputs and corresponding signal arcs are
deleted, i.e.

Ψsig = (Ψsig
1 \Q) ∪ (Ψsig

2 \Ω(Q),
Ψarc = (Ψarc

1 \ (( •Q×Q) ∪ (Q×Q• ))) ∪
(Ψsig

2 \ (( •Ω(Q) ×Ω(Q)) ∪ (Ω(Q) ×Ω(Q)• ))),
c0 = (c01 \Q) ∪ (c02 \Ω(Q)),

and new signal arcs are added according to Ω in the following way:

CN = CN1 ∪ CN2 ∪
{(p, t) | ∃co ∈ Cout

1 : (p, co) ∈ COarc
1 ∧ (Ω(co), t) ∈ CIarc

2 } ∪
{(p, t) | ∃ci ∈ Cin

1 : (ci, t) ∈ CIarc
1 ∧ (p,Ω(ci)) ∈ COarc

2 },
EN = EN1 ∪ EN2 ∪

{(t, t′) | ∃eo ∈ Eout
1 : (t, eo) ∈ EOarc

1 ∧ (Ω(eo), t′) ∈ EIarc
2 } ∪

{(t, t′) | ∃ei ∈ Ein
1 : (ei, t′) ∈ EIarc

1 ∧ (t, Ω(ei)) ∈ COarc
2 }
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Remark 1. For each new arc (t, t′) in a composed module M1 ∗Ω M2 w.r.t. an event
output eo ∈ Eout

1 with (t, eo) ∈ EOarc
1 and (Ω(eo), t′) ∈ EIarc

2 we say that t′ replaces
eo and t replaces Ω(eo). A similar notion is used also for new arcs w.r.t. event inputs
and condition inputs and outputs.

In order to define the behavior of a module, observe: transitions connected by an
event input to the environment are not able to occur spontaneously, but need to be syn-
chronized by the event input in order to occur. Similar a transition connected by an con-
dition input to the environment is only able to occur, if the condition input is activated.
Therefore we are interested in the behavior of the module w.r.t. a given environment.
In the most general case this environment is assumed to be maximal permissive in the
sense, that there is no causal restriction in sending event inputs and activating condition
inputs. We will model such an environment also as a module E of a signal net and then
compose the environment module appropriately with the original moduleM . E realizes
a maximally permissive environment in the following sense:

– at any moment E can send event inputs toM : so each event signal ofM is modelled
in E by a corresponding always enabled transition;

– at any moment E can enable and disable condition inputs of M : so each condition
input of M is modelled in E by a corresponding place, which can be marked and
unmarked by associated transitions;

– E can observe outputs ofM : every output ofM is modelled in E by a corresponding
transition, which synchronized in the case of an event output, and enabled in the
case of an condition output;

– in E no synchronization between its transitions is allowed: in particular, inputs
should not be sent in steps from E to M , and outputs M should only be observed
by E and not synchronize inputs ofM via E .

Definition 9 (Maximally permissive environment). LetM = (N,Ψ, c0) be a module
with Ψ = (Ψsig , Ψarc). Define the maximally permissive environment module E =
(NE , ΨE , c0E), ΨE = (Ψsig

E , Ψarc
E ), w.r.t.M by ENE = CNE = ∅ and

PE = {pci.on | ci ∈ Cin},
TE = {tc | c ∈ Cout} ∪

{tci.on | ci ∈ Cin} ∪ {tci.off | ci ∈ Cin} ∪
{te | e ∈ Eout ∪ Ein},

FE = {(tci.on, pci.on) | ci ∈ Cin} ∪ {(pci.on, tci.off ) | ci ∈ Cin},
m0E = {pci.on | ci ∈ Cin ∩ c0},
Cin

E = {cic | c ∈ Cout},
Cout

E = {coc | c ∈ Cin},
Ein

E = {eie | e ∈ Eout},
Eout

E = {eoe | e ∈ Ein},
CIarc

E = {(cic, tc) | c ∈ Cout},
COarc

E = {(pc, coc) | c ∈ Cin},
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Module A
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Fig. 6. The composition of the module in Figure 3 with its maximally permissive environment
module.

EIarc
E = {(eie, te) | e ∈ Eout},

EOarc
E = {(te, eoe) | e ∈ Ein}.

The composition of M with its maximally permissive environment E is called the
standalone of M (observe that this composition has empty input/output structure) (as
an example see Figure 7).

Definition 10 (Standalones). Let M be a module of a signal net and E be the max-
imally permissive environment module of M . The standalone of M is the composi-
tion module MS = (NS , ΨS) = M ∗Ω E w.r.t. the following composition mapping
Ω : Ψsig → Ψsig

E :

Ω(e) = eie for e ∈ Eout,

Ω(e) = eoe for e ∈ Ein,

Ω(c) = cic for c ∈ Cout,

Ω(c) = coc for c ∈ Cin.

Definition 11 (Behavior of modules of signal nets). Let M be a module of a signal
net and let MS = (NS , ΨS) be the standalone of M . The set LM of all occurrence
sequences of NS is called the behavior of the moduleM .

LM represents the set of all possible sequences of steps of input signals, output
signals and inner transitions of M under the assumptions: Output signals of M can
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Standalone SA

Fig. 7. The standalone of the module of a signal net in Figure 3.

not synchronize input signals ofM via the maximally permissive environment module.
Several input signals of M can not be sent in steps from the maximally permissive
environment module.

Thus, modules of signal nets are a Petri net extension supporting input/output struc-
turing, modularity and compositionality in an intuitive graphical way. They are used in
many applications in the area of design, modelling and control of discrete event systems,
such as flexible manufacturing systems and control of traffic systems for more than ten
years, see e.g. [8, 7, 9, 19]. This fact gives a motivation for a more detailed theoretical
investigation of this extension of Petri nets. In this section we have provided a proper
formal foundation for this modelling framework, including definitions of input/output
structure and composition of modules. In [14], we have concentrated on a definition of
an equivalence w.r.t. input/output behaviour, which is preserved by the composition of
modules. It is a crucial concept for hierarchical modelling, which enables to replace a
module with a more abstract/concrete module with the same “input/output” functional-
ity.

In the following sections we discuss the role of both kinds of signals in control tasks
and we focus on the control aspects in general.

3 Controller Synthesis

As mentioned in the introduction, in classical control the aim is to influence the behavior
of a system by a control via sensors and actuators in order to get a specified desired
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behavior. In principle there are two possibilities to express a desired behavior (see [2]
for an actual survey, and [1, 21] for recent developments):

– the event based approach used in the seminal work of Ramadge and Wonham on
supervisory control of discrete event systems (DES) [16]. In this framework the
desired behavior is given in the form of legal sequences of events.

– the state based approach ([10]), where the desired behavior is derived from a set of
legal resp. forbidden states.

Considering discrete event systems (DES) in both approaches the main problem
is that the considered modelling formalisms (languages, automata, Petri nets) do not
provide a mechanism for asymmetric synchronization intended by actuators.

For example in classical supervisory control this problem is solved by modelling ac-
tuators via prohibiting all other possible events ([5]). As a consequence, the behavior of
the DES cannot be forced by the control, now called supervisor, but only be restricted.
Formally there is given a regular prefix closed language over a fixed set of events rep-
resenting the uncontrolled behavior of the DES and a regular subset of this language
representing the restricted desired behavior. In the most general case one distinguishes
between controllable events (which can be prohibited by the supervisor) and uncontrol-
lable events, and between observable events (which can be observed by the supervisor)
and unobservable events. The question is, which controllable events should be prohib-
ited by the supervisor after observing a certain sequence of observable events in order
to disable all undesired behavior in a minimal restrictive way.

We present an alternative to the existing approaches to control of DES with direct
modelling of actuators. Our formalism is suitable for both kind of specifying the desired
behavior. Because in literature the event based approach is more developed than the
state based approach in the sense that it allows more general specifications ([23]), we
concentrate in this paper on a event based specification of the desired behavior.

In particular, we specify the desired behavior by sequences of event output signals.
Therefore we consider modules, modelling the plant, without condition output signals
(which correspond to states). Notice that a condition output signal c in a behavior spec-
ification could be replaced by two event output signals c.on and c.off synchronized by
transitions marking and emptying the place in +c, respectively.

Our framework could be easily adapted to behavior specifications which include
input signals: In this case one could additionally consider specifications of the form
“After sending input i, we want to observe a sequence of outputsw” or “input i always
synchronizes output o”. The restriction to sequences of output signals is only for sake
of simplicity.

Throughout this section we consider a module P of a signal net as a model of an
uncontrolled plant and its maximally permissive environment E . As in the previous
section T denotes the set of transitions of P . We additionally fix the set I of transitions
of E corresponding to event input signals together with transitions switching condition
input signals on/off, and the set O of transitions of E corresponding to event output
signals:

I = {te | e ∈ Ein} ∪ {tci.on | ci ∈ Cin} ∪ {tci.off | ci ∈ Cin},
O = {te | e ∈ Eout}.
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We consider the inside of P as a black box: We only can send input signals to P and
meanwhile observe sequences of output signals. In particular, the behavior of the DES
(represented by P) is forced, not only restricted from outside. Of course this approach
leads to formal and technical differences to the classical supervisory control approach:

Mainly, all events of P are assumed to be uncontrollable and unobservable. Control-
lable are only the input signals, modelled by the set of transitions I of E , and observable
are, beside the input signals, exactly the output signals, modelled by the set of transi-
tions O of E .

Remember that we specify a desired behavior of P by a set of desired sequences
only of output signals (in difference to supervisory control, where the specification is
over all events, observable and unobservable, controllable and uncontrollable ones). Ob-
serve that, since the event arc relation produces a step semantics, we observe sequences
of steps of output signals.

The aim of control synthesis is to find a control module C which appropriately
composed (by a composition mappingΩ) with P fulfills: Each occurrence sequence of
the underlying signal net of C ∗Ω P respects the desired behavior in the sense that the
projection of this occurrence sequence onto the set of transitions of C which replaces
output signals of P (see remark 1) belongs to the desired behavior.

We synthesize such a control module C in two steps. First we define conditions of
controllability of a subbehavior of the behavior LP of the plant module P (analogously
to [16]) and show how to compute the maximal controllable subbehavior of LP re-
specting the desired behavior (if it exists), see subsection 4.1. Second we show that for
every controllable subbehavior of LP there is a control module C, which in composi-
tion with the plant module P realizes this controllable subbehavior. As the main result
of the second step we will construct such a control module by adding new net struc-
ture to the maximally permissive environment module E in E ∗Ω P (see Figure 7), see
subsection 4.2.

Since sets of occurrence sequences of signal nets are regular languages1 over an
alphabet of steps, we assume the desired behavior to be a regular language. In the fol-
lowing section we provide a short introduction to the theory of regular languages, which
will be used in the subsections 4.1 and 4.2.

4 Regular Languages

We need the following language theoretic notations ([11] and [2]). For a finite set A we
denote

– 2A = {B | B ⊆ A} the set of all subsets of A,
– ε the empty word,
– A∗ = {a1 . . . an | n ∈ N0, a1, . . . , an ∈ A} ∪ {ε} the set of all finite words over

the alphabet A.

In paragraph 3 we are solely concerned with regular languages L ⊆ A∗ with A = 2X

for finite sets X . In the following we will briefly introduce some representations of
regular languages and some operations on regular languages.

1 Observe that we use elementary nets, which have a finite reachability graph.



600 Gabriel Juhás, Robert Lorenz, and Christian Neumair

Finite Automata. A regular language L can be represented as the language L(G) of a
(deterministic) finite automatonG = (S,A, δ, F, s0), where

– S is the set of states.
– δ : S × A → S is the transition function: δ(s, a) = s′ means that the automaton

reaches state s′ when reading a in state s.
– s0 is the initial state.
– F ⊆ S is the set of accepting states.

The transition function is extended in the obvious way to δ : S×A∗ → S: δ(s, w) = s′

means that the automaton reaches state s′ when reading w in state s. A word w ∈
A∗ belongs to L(G) if and only if δ(s0, w) ∈ F . The states of G can be denoted as
equivalence classes overA∗:

[w]G = {v ∈ A∗ | δ(s0, v) = δ(s0, w)}.

A finite automaton can be viewed as a labelled transition system (S,Σ,A), where S is
the set of states, Σ = {s a→ s′ | δ(s, a) = s′} the set of transitions and A the set of
(event) labels.

Regular Expressions. A regular language L can be represented as the language L(α)
of a regular expression α over A. Regular expressions are build inductively from the
elementary regular expressions α = x with x ∈ A∪{ε, ∅}, where L(α) = L(x) = {x}
for x �= ∅ and L(∅) = ∅, by:

– union:
α, β regular expressions ⇒ α+β regular expression with L(α+β) = L(α)∪L(β).

– concatenation:
α, β regular expressions ⇒ αβ regular expression with L(αβ) = L(α)L(β) =
{uv | u ∈ L(α), v ∈ L(β)}.

– iteration:
α regular expressions ⇒ α∗ regular expression with L(α∗) = (L(α))∗ = {u1 . . .
un | ui ∈ L(α), n ∈ N}.

Operations on Regular Languages. There is the so called prefix relation �⊂ A∗×A∗:

u � v ⇔ ∃x ∈ A∗ : ux = v.

In this case u is called a prefix of v. For x �= ε we call u a proper prefix of v. Beside the
set operations ∩, ∪ and \ there are the following operations on languages:

– cocatenation L1L2 (already mentioned).
– iteration L∗ (already mentioned).
– prefix closure L = {v ∈ A∗ | v is prefix of a word in L}.
– postfix closure post(L) = {v ∈ A∗ | a word in L is prefix of v} = LA∗.
– minimal wordsmin(L) = {v ∈ L | no proper prefix of v is in L}.
– quotient L1/L2 = {v ∈ A∗ | ∃w ∈ L2 : vw ∈ L1}.
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– projection PB(L) = {PB(w) = PB(x1) . . . PB(xn) | w = x1 . . . xn ∈ L}, where
PB(ε) = ε and

PB(x) =
{
x for x ∈ B,
ε otherwise.

– pumping P−1
B (L) = {w ∈ (A ∪B)∗ | PB(w) ∈ L}.

The set of regular languages is closed under all these operations.

The Hiding Operator. For the alphabets of the formA = 2X as we consider, we need
a more sophisticated projection operator, called hiding operator, to hide characters from
subsets Y ⊆ X . We define the hiding operator λY w.r.t. Y by:

– For a character a ∈ A:
λY (a) = a \ Y if a \ Y �= ∅, and λY (a) = ε otherwise.

– For a word w ∈ A∗:
λY (w) = λY (a1) . . . λY (an) if w = a1 . . . an, and λY (w) = ε if w = ε.

– For a language L ⊆ A∗:
λY (L) = {λY (w) | w ∈ L}.

The hiding operator defines equivalence classes over A∗ in the following way: For a
w ∈ A∗ denote

[w]Y = {v ∈ A∗ | λY (w) = λY (v)}.

The set of regular languages is closed under the hiding and corresponding pumping op-
erations. This can be seen by constructing from a given regular expressionα two regular
expressions λY (α) and extY (α) such that L(λY (α)) = λY (L(α)) and L(extY (α)) =
λ−1

Y (L(α)):

Definition 12. Let X,Y be two finite sets and α be a regular expression over the al-
phabet A = 2X .

(a) We construct a regular expression λY (α) over the alphabet 2Y by replacing every
character a ∈ 2X in α by λY (a).

(b) We construct a regular expression extY (α) over the alphabet 2X∪Y by replacing
every character a ∈ 2X in α by

extY (a) =

( ∑
b∈2Y

b

)∗ (∑
b∈2Y

a ∪ b
)(∑

b∈2Y

b

)∗
,

and by replacing the character ε by

extY (ε) =

(∑
b∈2Y

b

)∗
.
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Observe that by construction

extY (α1 + α2) = extY (α1) + extY (α2),
λY (α1 + α2) = λY (α1) + λY (α2),
extY (α1α2) = extY (α1)extY (α2),
λY (α1α2) = λY (α1)λY (α2),
extY (α∗) = (extY (α))∗,
λY (α∗) = (λY (α))∗.

Lemma 1. Let X , Y be finite sets and α be a regular expression over the alphabet
A = 2X .

(a) Each w ∈
(
2Y

)∗
satisfies

w ∈ λY (L(α)) ⇔ w ∈ L(λY (α)).

(b) Each w ∈
(
2X∪Y

)∗
satisfies

λY (w) ∈ L(α) ⇔ w ∈ L(extY (α)).

Proof. We will only show ’(b):⇒’. The proofs of the other cases are similar argumenta-
tions using again structural induction over the construction rules of regular expressions:

Let α = x ∈ 2X ∪ {ε} (these are the constants of a regular expression over 2X ),
and let w ∈ (2X∪Y )∗ satisfying λY (w) = x. Then w is of the form w = x1 . . . xn

(xi ∈ 2X∪Y ), such that there exists an index k satisfying λY (xk) = x and λY (xi) = ε
for i �= k. It follows immediately from the construction above, that w ∈ L(extY (α)).
Let α1 and α2 be regular expressions over the alphabet 2X satisfying the induction hy-
pothesis, and let β1 = extY (α1) and β2 = extY (α2) be the corresponding extensions
according to the above construction. We get for w ∈ (2X∪Y )∗:

(i) Assume λY (w) ∈ L(α) for α = α1 + α2:
In this case λY (w) ∈ L(α1) or λY (w) ∈ L(α2). By induction hypothesis w ∈
L(β1) or w ∈ L(β2). This implies w ∈ L(β1 + β2) = L(extY (α)).

(ii) Assume λY (w) ∈ L(α) for α = α1α2:
There are w1, w2 ∈ (2X∪Y )∗ satisfying w = w1w2 and λY (wi) ∈ L(αi) (i =
1, 2). By induction hypothesis
w = w1w2 ∈ L(β1)L(β2) = L(β1β2) = L(extY (α)).

(iii) Assume λY (w) ∈ L(α) for α = (α1)∗:
There are w1 . . . wn ∈ (2X∪Y )∗ satisfying w = w1 . . . wn and λY (wi) ∈ L(α1)
(i = 1, . . . , n). By induction hypothesis w = w1 . . . wn ∈ (L(β1))∗ = L(β∗1) =
L(extY (α)).

��

4.1 The Behavior of the Controlled Plant

We will formulate our approach language theoretically similarly as it is done in classi-
cal supervisory control. We will see, that despite the mentioned differences, some algo-
rithms of classical supervisory control can at least be adapted to our framework. While
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omitting therefore most details of these algorithms, out paper remains selfcontained,
i.e. can be understood without previous knowledge of supervisory control.

We search for a sublanguageK (of occurrence sequences) of the language LP rep-
resenting the behavior of the controlled plant, which can be realized by a composition
of the plant module P and a control module C. This implies the following requirements
onK:

– If an occurrence sequence in K can be extended by a step of output transitions or
unobservable transitions to an occurrence sequence in LP , then also this extended
occurrence sequence should be in K . This follows the paradigm: “What cannot be
prevented, should be legal”.

– According to the unobservability of some events, some occurrence sequences in LP
cannot be distinguished by the control. As a consequence, following the paradigm
“what cannot be distinguished, cannot call for different control actions”, if an input
is sent to the plant after a sequencew of steps has occurred, then the same input has
to be send after occurrence of any other sequence, which is undistinguishable to w

Observe that the first condition correspond to the classical one in supervisory control.
The second one is due to our step semantics, where an input can synchronize differ-
ent unobservable and output transitions depending on the state of P , in combination
with the notion of observability in supervisory control. Such a sublanguageK is called
controllable w.r.t. LP , I and O (figure 8):

Definition 13 (Controllable Language). A prefix closed, regular sublanguage K of
LP is said to be controllable w.r.t. LP , I and O, if

∀w ∈ K, ∀o ∈ 2O∪T : wo ∈ LP ⇒ wo ∈ K, (1)

∀vj ∈ K, j ∩ I �= ∅,
∀j′, j ∩ I = j′ ∩ I,

∀v′ ∈ K, λT (v) = λT (v′) : v′j′ ∈ LP ⇒ v′j′ ∈ K. (2)

If the sets LP , I and O are clear, we simply callK controllable.

Observe that for each controllable sublanguage K of LP two undistinguishable
words in LP are either both in K , or both not in K . This property is also called nor-
mality in supervisory control. In case each controllable event is also observable (as in
our framework) every controllable sublanguage of LP can be proved to be normal.

Lemma 2. LetK ⊆ LP be controllable. Then for eachw ∈ LP either [w]T ∩LP ⊆ K
or [w]T ∩ LP ∩K = ∅.

Proof. We prove the lemma by contradiction: let v, w ∈ LP with λT (w) = λT (v) and

w ∈ K and v �∈ K.

First observe v �= ε, since ε ∈ K . Assume without loss of generality

v = v′x with v′ ∈ K.
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{i}

{o1} {o2}

{i}

{o1} {o2}

{o1,t1}

{i}

{o1,t2}

(a) Controllability (1) (b) Controllability (2)

{o1,t1} {o1,t2}

{i,o2} {i} {i,o2}

Fig. 8. A step (sequence) consisting of transitions from T (I resp. O) are denoted by (indexed)
t’s (i’s resp. o’s). Part (a) (controllability condition (1)): After sending the input i, the output o2

cannot be avoided. Part (b) (controllability condition (2)): The steps {o1, t1} and {o1, t2} cannot
be distinguished from the control, because only the output o1 is visible. Therefore sending the
input i should be allowed either in both cases or in none case. Hereby it does not play a role, what
effect has this input to the plant (i.e. whether it synchronizes another output or not).

By condition (1) x ∩ I �= ∅. From λT (w) = λT (v) we deduce

w = w′y with λT (w′) = λT (v′) ∧ x ∩ I = y ∩ I.

This contradicts condition (2). ��

Observe that the property of normality can also be written in the form

λ−1
T (λ(K)) ∩ LP = K.

In supervisory control there exists moreover the notion of observability of sublanguages
K ⊆ LP , which essentially states that if the supervisor cannot distinguish between
sequences of events (according to some unobservable events), these sequences need
the same control action. Observe, that this concept is directly integrated into the above
definitions.

As mentioned we are searching for a controllable K , which additionally respects
Lc and is maximal with this property:

Definition 14 (Maximally Permissive Controllable Language). Let Lc be a regular
language over the alphabet 2O and let K ⊆ LP be controllable w.r.t LP , I and O
satisfying

λT∪I(K) ⊆ Lc.

We say that K is maximally permissive controllable w.r.t. Lc, LP , I and O, if there
exists no language K ′ satisfying K � K ′ ⊆ L, which is controllable w.r.t. LP , I and
O and fulfills λT∪I(K ′) ⊆ Lc.

If the sets Lc, LP , I and O are clear, we simply call K maximally permissive con-
trollable.
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(b) Blocking 
sequence

{o1,t1}

{o2}

{o1,t2}

{i}

{o1}

{o2}

(a) Unsatisfiable      
specification

Lc

{o1}

{o2}
{o1}

Lc

(c) Blocked 
specification

{o1,t1}

{o2}

{o1,t2}{o1}

{o2}

Lc

Fig. 9. A step (sequence) consisting of transitions from T (I resp. O) are denoted by (indexed)
t’s (i’s resp. o’s). The desired behavior is represented by finite automata, where accepting states
are black. Part (a) (condition (3)): The occurrence sequence {o1}{o2} is not a prefix of a word
in Lc. So, Lc is unsatisfiable. Part (b) (condition (4)): The occurrence sequence {i}{o1, t2}
cannot be completed to a word respecting Lc. This blocking situation can only be avoided by not
sending the input i before. Part (c) (condition (5)): The occurrence sequence {o1, t2} cannot be
completed to a word respecting Lc and cannot be avoided, i.e. Lc is only blocking satisfiable.

It is possible to get the result K = {ε} as maximally permissive controllable lan-
guage, what means that the maximal behavior respecting the specification is empty, but
there happens nothing wrong without inputs from outside. If even without any input the
specification can be violated, we call Lc unsatisfiable (figure 9 (a)).

Definition 15. Lc is said to be unsatisfiable (w.r.t. LP , I and O), if

∃w ∈ (2O∪T )∗ : w ∈ LP ∧ λT (w) �∈ Lc. (3)

If this is not the case, we call Lc satisfiable (w.r.t. LP , I and O).

Consider a maximally permissive controllable languageK: By definition every oc-
currence sequence in K is a prefix of an occurrence sequence respecting Lc. But it
can happen there are such occurrence sequences that cannot be extended within K to
an occurrence sequence respecting Lc, i.e. the desired behavior is blocked. We require
additionallyK to be nonblocking (figure 9 (b)):

Definition 16 (Nonblocking Language). Let K ⊆ L be maximally permissive con-
trollable w.r.t Lc, LP , I and O and let M ⊆ K be controllable w.r.t. LP , I and O
satisfying

∀r ∈ M : ∃x ∈ (2O∪I∪T )∗ with rx ∈ M, λI∪T (rx) ∈ Lc. (4)

We say thatM is nonblocking controllable w.r.t. Lc, LP , I and O. If it is maximal with
this property, M is called maximally permissive nonblocking controllable language
w.r.t. Lc, LP , I and O.
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If the sets Lc, LP , I and O are clear, we simply call K maximally permissive non-
blocking controllable language.

In classical supervisory control some states in an automaton representing the be-
havior of the uncontrolled plant are marked. The sequences (words) of events leading
to these states describe completed tasks. Nonblocking control requires that every se-
quence of the language of the controlled plant can complete to a marked state (no dead-
or livelock occurs in unmarked states).

In comparison we define nonblocking w.r.t. the given (not prefix closed) specifica-
tionLc, thus specifying desired tasks also byLc and not by an extra given set of states in
a fixed automaton representing the uncontrolled behavior. As we will see later, one can
construct an automaton recognizing LP , where the set words respecting Lc correspond
to certain marked states.

Assume Lc is satisfiable and let K be the maximally permissive controllable. If
K �= {ε}, it is possible to getM = {ε} as maximally permissive nonblocking control-
lable language, but only if ε ∈ Lc. In this case the maximal nonblocking behavior is
empty, but without inputs from outside no blocking state can be reached. If even without
any input a blocking state can be reached, we call Lc blocked (figure 9 (c)).

Definition 17. LetM ⊆ LP be prefix closed. We refer to the the condition

∃w ∈ (2O∪T )∗ : w ∈ M ∧ (∀x ∈ (2O∪I∪T )∗ : wx ∈M ⇒ λT∪I(wx) �∈ Lc), (5)

as blocking condition w.r.t.M .

Remark 2. If the condition (5) is fulfilled w.r.t. a languageM , Lc is said to be blocked
w.r.t.M .

Lemma 3. If Lc is blocked w.r.t. LP , then there is no nonblocking controllable sublan-
guage of LP .

In the next two paragraphs we synthesize the maximally permissive nonblocking
controllable language M , if it exists. First we examine the case, when Lc is prefix
closed. In this case the maximally permissive controllable sublanguage of LP is al-
ready nonblocking. In particular safefy properties can be formalized via a prefix closed
specification Lc.

Safety Properties

Safety properties specify undesired behavior, that should not happen (for example for-
bidden states of the system). If some undesired behavior is realized by an occurrence
sequence, the whole possible future of this occurrence sequence is undesired, too. In
other words: If an occurrence sequence realizes no undesired behavior, all prefixes also
do so. That means, safety properties can be formalized by prefix closed specification
languages. On the other hand every prefix closed specification language can be regarded
as the formalization of safety properties.

The searched (control) language M as defined in the last paragraph is computed
in several steps. First we define the (potentially safe) language Lpsafe as the set of all
occurrence sequences of LP respecting Lc.



Modelling and Control with Modules of Signal Nets 607

{o3}

{i}

{o1,t1} {o1,t2}

{i,o2}

{o1}

{o2}

Lc

{o1,t1} {o1,t2}

Lpsafe Lsafe

Fig. 10. The languages are represented by finite automata, where accepting states are black (ob-
serve that all languages are prefix closed). Sending the input i after observing the output o1 can
cause the not avoidable output o3. This gives an occurrence sequence not respecting Lc. There-
fore allways after observing o1 the input i should not be sent.

Definition 18. We define

Lpsafe = {w ∈ LP | λI∪T (w) ∈ Lc} = λ−1
I∪T (Lc) ∩ LP ,

Lunsafe = {w ∈ LP | λI∪T (w) �∈ Lc} = LP \ Lpsafe.

Observe that
Lc unsatisfiable ⇔ ∃w ∈ Lunsafe ∩ (2O∪T )∗.

Lpsafe is only a first approximation to M , since it is in general not controllable. In
particular it may contain occurrence sequences which are not closed under extensions
by outputs (condition (1) in definition 13). Such occurrence sequences must be cut at
the last possible input (the last possibility of control), if there is one. Due to condition
(2) (of controllability) such an input must be avoided at all undistinguishable places.
The words ending with these inputs are collected in the language Ldanger. Deleting
the futures of occurence sequences in Ldanger from Lpsafe gives the language Lsafe,
which we will prove below to be the searched languageM (figure 10).

Definition 19. We define

Ldanger = {vj ∈ Lpsafe | j ∩ I �= ∅,
∃v′ : λT (v′) = λT (v),
∃j′ : j′ ∩ I = j ∩ I,
∃y ∈ (2T∪O)∗ : v′j′y ∈ Lunsafe)}.

Lsafe = Lpsafe \ post(Ldanger).



608 Gabriel Juhás, Robert Lorenz, and Christian Neumair

If Lc is satisfiable, every word from Lunsafe has a nonempty prefix in Ldanger. It
is obvious from the definitions of Lpsafe, Lunsafe, Ldanger and Lsafe that every set
[w]T ∩ LP is either subset of or disjoint to these languages (see also lemma 2).

The main result of this subsection is the following theorem:

Theorem 1. Lsafe is maximally permissive nonblocking controllable w.r.t. Lc, LP , I
and O, if Lc is satisfiable w.r.t. LP , I and O.

Before proving this theorem we give an algorithm to computeLsafe: It is essentially
shown, that Lsafe can be constructed by appropriate operations on regular languages.
We want to remark here that for computing the maximally permissive controllable lan-
guage also the more sophisticated framework presented in [2] could be adapted (since
our different notion of controllability is still compatible with the union operation ∪). In
[2] can also be found some hints to the complexity of the computation.

By definition Lpsafe and Lunsafe are regular (see section 4):

Lemma 4. Lpsafe and Lunsafe are regular.

Next we show thatLdanger is regular. We will giveLdanger as a simple formula over
the regular languages (2O∪T )∗ and Lunsafe. First observe that the regular language

Lreal
danger = (Lunsafe/(2O∪T )∗) ∩ LP ,

where the symbol “/” denotes the quotient operation on languages, is the set of those
words vj ∈ Ldanger, which themselves can be extended by an y ∈ (2O∪T )∗ to a word
in Lunsafe. The remaiming words in Ldanger are of the form v′j′ with λT (v′) = λT (v)
and j′ ∩ I = j ∩ I for a word vj ∈ Lreal

danger. We get these words by means of a special

defined hiding operator λ defined by

v ∈ (2O∪I∪T )∗, x ∈ 2O∪I∪T : λ(vx) = λT (v)λT∪O(x).

Obviously the operators λ and (λ)−1 preserve the regularity of languages, since this is
the case for the hiding operator λ as argued in lemma 1 (section 4). We get

Lemma 5. Ldanger and Lsafe are regular.

Proof. Ldanger is regular, since it can be constructed by regularity preserving opera-
tions in the following way:

Ldanger = (λ)−1(λ(Lreal
danger)) ∩ Lpsafe.

Then also Lsafe = Lpsafe \ post(Ldanger) is regular as a formula over regular lan-
guages. ��

The main theorem 1 now is shown in two steps by the following lemmata.

Lemma 6. Let Lc be satisfiable. Then Lsafe is controllable.

Proof. We show both conditions of controllability by contradiction:
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(i) Condition (1):
Assume there is an word w ∈ Lsafe and a step o ∈ 2O∪T satisfying wo ∈ LP ,
but wo �∈ Lsafe. There are two cases:

– wo ∈ Lpsafe:
Then wo ∈ post(Ldanger). This imlies obviously w ∈ post(Ldanger), what
contradicts w ∈ Lsafe.

– wo �∈ Lpsafe:
Then by definition wo ∈ Lunsafe. Since Lc is satisfiable w.r.t. LP , I and O,
wo has a prefix in Ldanger. This again contradicts w ∈ Lsafe.

(ii) Condition (2):
Assume there are words v′, vj ∈ Lsafe and a step j′ with j ∩ I = j′ ∩ I �= ∅ and
λT (v′) = λT (v) satisfying v′j′ ∈ LP , but v′j′ �∈ Lsafe. For such vj and v′j′ we
have according to the definition of Ldanger:

vj ∈ post(Ldanger) ⇔ v′j′ ∈ post(Ldanger).

From this it follows vj �∈ Lsafe analogously to the first case. A contradiction.
��

Lemma 7. Let Lc be satisfiable. There is no languageK ⊆ LP satisfying Lsafe � K ,
which is controllable and fulfills λI∪T (K) ⊆ Lc.

Proof. We choose a w ∈ K \ Lsafe and construct from w a word w′ ∈ K satisfying
λI∪T (w′) �∈ Lc. As w ∈ LP , there are two cases:

– w �∈ Lpsafe:
Then w ∈ Lunsafe and thus λI∪T (w) �∈ Lc.

– w ∈ Lpsafe:
Thenw ∈ post(Ldanger), i.e.w has a prefix vj ∈ Ldanger. That means, there is are
words v′ ∈ LP , y ∈ (2O∪T )∗ and a step j′ with j∩I = j′ ∩I and λT (v) = λT (v′)
such that v′j′y ∈ Lunsafe, i.e. λI∪T (v′j′y) �∈ Lc. Since K is controllable, v′j′

also belongs toK (condition (2)) and consequently v′j′y ∈ K (condition (1)).
��

It follows immedeately from the above proof, that Lsafe is the unique maximally
permissive language, analogously to related results in supervisory control.

Nonblocking Control

More general properties as for example the full execution of certain tasks cannot be
formalized by a regular language Lc which is prefix closed. Of course a maximally per-
missive controllable languageK w.r.t. a not prefix closed Lc should contain occurrence
sequences of the standalone of LP which represent prefixes of words in Lc, but only
such ones, which can be extended to a word in Lc withinK , i.e. which are nonblocking.

We now search for a sublanguage Lnbsafe of Lsafe, which is controllable and re-
spectingLc, nonblocking and maximal with these two properties according to definition
16. As mentioned, in our framework every controllable event is also observable. There-
fore, we are able to adapt a result in supervisory control ([2], subsection 3.7.5), which
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states (under the assumption that every controllable event is also observable): If there
is at least one controllable language respecting Lc which is nonblocking, then there is
a unique maximal one.

In order to computeLnbsafe, we collect all blocking occurrence sequences of Lsafe

in the set Lblocking (observe that every future of a blocking occurrence sequence is
blocking, too). We have to cut all occurrence sequences in this set at the last possi-
ble input, if there is one. Due to condition (2) (of controllability) such an input must
be avoided at all undistinguishable places. The prefixes ending with these inputs are
collected in the language Lbadchoice. Deleting the futures of occurrence sequences in
Lbadchoice possibly produces new blocking words. Therefore we have to iterate this
procedure. We define (figure 11)

Definition 20. LetM ⊆ Lsafe. Denote

Mblocking = {w ∈ M |� ∃x ∈ (2O∪I∪T )∗ : wx ∈M ∧ λI∪T (wx) ∈ Lc},
=M \ ((M ∩ λ−1

I∪T (Lc))/(2O∪I∪T )∗),

Mbadchoice = {vj ∈ M | j ∩ I �= ∅,
∃v′ : λT (v′) = λT (v),
∃j′ : j′ ∩ I = j ∩ I,
∃y ∈ (2T∪O)∗ : v′j′y ∈ min(Mblocking))}.

The languageMblocking is regular by definition, ifM is regular. In analogy to Ldanger,
thenMbadchoice is regular, too. Observe that

Lc blocked w.r.t.M ⇔ ∃w ∈ Mblocking ∩ (2O∪T )∗.

We are now prepared to state the algorithm to compute Lnbsafe:

Input: LanguageM0 = Lsafe, Integer k = 0.

Step 1:
ComputeMk

blocking .

Step 2:
IfMk

blocking ∩ (2O∪T )∗ �= ∅: return “Lnbsafe does not exist”.
IfMk

blocking = ∅: returnMk.

Step 3:
ComputeMk

badchoice.
Mk+1 =Mk \ post(Mk

badchoice).
Set k = k + 1.
Goto Step 1.

Starting withM0 = Lsafe the algorithm iteratively deletes blocking words by cut-
ting them at the last possible inputs (and by additionally cutting all undistinguishable
words). This is done until either no new blocking words are produced (in which case
Lnbsafe is found) or an Lc is blocked w.r.t. the actually computed language (in which
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Fig. 11. The black states in the automaton representing Lc are the accepting states. The white
states in the other automata (representing languages computed in the nonblocking algorithm) are
blocking w.r.t. the given Lc. In the grey states there is the last possibility not to send an input in
order to avoid the blocking situation. The input must be avoided at all undistinguishable states.
This can cause new blocking situations, which can be even not avoidable.

case no controllable nonblocking language exists). All computed languages Mk are
controllable and normal, but possibly not nonblocking. Observe that if Mk

blocking ∩
(2O∪T )∗ = ∅, then each word in Mk

blocking has a nonempty prefix in Mk
badchoice and

therefore does not belong toMk+1.
Before stating the main result, namely that this algorithm returns Lnbsafe if and

only if a maximally permissive nonblocking controllable sublanguage exists, we have
to verify, that the algorithm allways terminates. For completeness we will give a sketch
of the proof below. A detailed proof can be found for example in [3]: the algorithm pre-
sented there only slightly differs from ours. The following procedure is repeated: It first
iteratively deletes blocking words by cutting them at the last possible inputs, without ad-
ditionally cutting all undistinguishable words. This is also done until no new blocking
word is found. The resulting language is controllable and nonblocking, but not normal.
Then all cuts done so far are also realized for all undistinguishable words, which yields
a controllable and normal language, which is possibly not nonblocking. The whole pro-
cedure in repeated until the resulting language is nonblocking. Both algorithms have the
same output.

The main idea for showing the termination is to find a deterministic finite automa-
ton G = (S, (2I∪O∪T )∗, δ, F, s0) recognizing Lsafe, such that deleting words from
post(Mk

badchoice) (in the algorithm) corresponds to deleting edges in G. A nessecary
and sufficient condition for this is that the states of G distinguish words in Mk

badchoice

from words not inMk
badchoice, i.e. (see also Figure 13)

δ(s0, w) = δ(s0, v) ⇒ (w ∈ Mk
badchoice ⇔ v ∈ Mk

badchoice). (6)
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Fig. 12. In general two words v = {t2}{o2} �∈ Mk
blocking and w = {t1}{o1} ∈ Mk

blocking

can have the same follower state in an automaton A recognizing Lsafe. For the automaton G
implementing the nonblocking algorithm however we require that one can distinguish between
“blocking-states” and “not blocking-states”. Such states can be splitted appropriately by synchro-
nizing A with an automaton recognizing λ−1

T∪I(Lc).

wv w‘ v‘

x‘

Blocking state

Badchoice states

Fig. 13. In general two words v �∈ Mk
badchoice and w ∈ Mk

badchoice can have the same follower
state in an automaton A recognizing Lsafe. For the automaton G implementing the nonblock-
ing algorithm however we require that one can distinguish between “badchoice-states” and “not
badchoice-states”: If there is a w′ undistinguishable from w leading to a blocking state, there
must also be a word v′ undistinguishable from v leading to a blocking state. G is even choosen
such that v′ and w′ have the same follower state.

Taking v, w ∈ Lsafe with δ(s0, w) = δ(s0, v) and w ∈ Mk
badchoice, we know that

there is a w′ ∈ Mk
badchoice with λT (w) = λT (w′) and there is a x′ ∈ (2O∪T )∗ with

w′x′ ∈Mk
blocking . To prove (6) it suffices to find v′ ∈Mk

badchoice with λT (v) = λT (v′)
such that δ(s0, v′) = δ(s0, v) and v′x′ ∈ Mk

blocking (Figure 13). In other words, the
possible futures of words undistinguishable from v and the possible futures of words
undistinguishable from w should be the same.
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In general a finite automaton A recognizing Lsafe does not fulfill this property,
i.e. does not distinguish by its states words, for which the possible futures of their
undistinguishable words are not the same. Such states have to be split appropriately by
synchronizing A with another automaton B. B can be constructed from A in such a
way that a state [w]B of B is defined as the set of exactly those states of A which are
follower states of words undistinguishable from w:

s ∈ [w]B ⇒ ∃w′ ∈ Lsafe : λT (w) = λT (w′) ∧ s = [w′]A.

Formally B can be constructed from A in three steps. For this let (SA, ΣA, (2I∪O∪T ))
be the labelled transition system associated to A:

(1) Replace each edge s
x→ s′ ∈ ΣA by s

λT (x)→ s′ (this yields in particular s
ε→ s′

for x ⊆ T ). The result is a so called nondeterministic ε-automaton. By definition
of such automata ([11]) the possible follower states of a word z ∈ (2I∪O)∗ in this
automaton are exactly the follower states of words w ∈ Lsafe in A with λT (w) =
z.

(2) Compute the deterministic finite automaton simulating the nondeterministic ε-auto-
maton from (1) by the well-known subset construction ([11]): Then exactly the sets
of possible follower states of a word z ∈ (2I∪O)∗ in the above ε-automaton define
the states of this deterministic automaton.

(3) Pump the automaton from (2) by steps of unobservable transitions from 2T in the
following way: For all states s and all x ⊆ T (loop) transitions s

x→ s are added.

For all transition s
y→ s′ with y ⊆ I ∪ O and forall x ⊆ T transitions s

x∪y→ s′ are
added.

Finally we have to require the automatonA to distinguish words inMk
blocking from

words not inMk
blocking by its states (which is not the case in general, see Figure 12):

∀w, ∀v ∈ [w]A : w ∈Mk
blocking ⇔ v ∈Mk

blocking , (7)

This can be achieved by building A as the synchronized product of the minimal au-
tomata recognizing Lsafe and λ−1

I∪T (Lc). Then A fulfills

∀v ∈ [w]A : λI∪T (w) ∈ Lc ⇔ λI∪T (v) ∈ Lc. (8)

It can be seen as follows, that then property (7) is also satisfied: Take v ∈ [w]A, v �=
w. Assume w �∈ Mk

blocking . There is a x ∈ (2I∪O∪T )∗, such that wx ∈ Mk and
λI∪T (wx) ∈ Lc. Since vx ∈ [wx]A it follows from property (8), that λI∪T (vx) ∈ Lc,
i.e. v �∈Mk

blocking .

Let us state the main theorem of this subsection:

Theorem 2. There exists a maximally permissive nonblocking controllable sub-
language of Lsafe, if and only if the previous algorithm returns a language Lnbsafe. In
this case Lnbsafe is this searched sublanguage.

Proof. Let Lsafe = M0, . . . ,MN0 be the sequence of languages the algorithm has
computed until it has stopped.
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We first show the “only if”-part:
Assume the previous algorithm outputs “Lnbsafe does not exist”. We have to show, that
there is no maximally permissive nonblocking controllable sublanguage of Lsafe. We
will show this by contradiction: Assume there is a controllable languageM ⊆ Lsafe

withMblocking = ∅. Observe that

M ∩M0
blocking ⊆ Mblocking,

i.e. the assumption in particular implies

M ∩M0
blocking = ∅. (9)

By Step 1MN0 fulfills
∃v0 ∈MN0

blocking ∩ (2O∪T )∗.

From the controllability of M (condition (1)) we deduce v0 ∈ M . From (9) it follows
v0 �∈ M0

blocking . That means v0 can be extended by some word y �= ε (remark that
λT∪I(v0) �∈ Lc!) to a word v0y ∈ M0 with λI∪T (v0y) ∈ Lc. By the assumption one
of these extensions v0y0 must be inM :

v0y0 ∈ M and λI∪T (v0y0) ∈ Lc.

Since v0 ∈ MN0
blocking , we have moreover v0y0 �∈ MN0 . By construction (Step 2) there

must be an indexN1 < N0, such that

v0y0 ∈ post(MN1
badchoice).

Let v0xi ∈ MN1
badchoice for a prefix xi of y0 with i∩ I �= ∅. By definition ofMN1

badchoice

there is a v1 = v′0x
′i′y ∈MN1

blocking with

(a) λT (v′0x′) = λT (v0x),
(b) i′ ∩ I = i ∩ I , and
(c) y ∈ (2O∪T )∗.

Remember now that all prefixes of v0y0, in particular v0x and v0xi, belong toM . Since
M is assumed to be controllable, M contains all words in LP ∩ [v0x]T (lemma 2).
In particular v′0x

′ ∈ M (property (a)). From the condition (2) (of controllability) and
(b) we get further v′0x

′i′ ∈ M , and therefore v1 = v′0x
′i′y ∈ M (condition (1) (of

controllability) and (c)).
By repeating this construction we get an strictly decreasing sequence of natural

numbers N0 > N1 > . . . and associated words v0, v1, . . . ∈ M , such that vi ∈
MNi

blocking , i = 0, 1, . . .. Finally Nk = 0 for some k, which implies vk ∈ Mblocking ,
what contradicts our assumption.

Next we consider the “if”-part:
By constructionMN0 = Lnbsafe is controllable and nonblocking. It remains to show
that it is maximally permissive with these two properties. We show this statement by
contradiction. Assume another languageM to be controllable and nonblocking control-
lable satisfying Lnbsafe �M ⊆ Lsafe. In particular, by assumptionMblocking = ∅.



Modelling and Control with Modules of Signal Nets 615

There is a x ∈M \MN0 . AsMN0 andM are prefix closed we can assume (without
loss of generality) that x is of the form

x = wj ∈M, w ∈MN0 , j ∩ I �= ∅.

Since wj �∈ MN0 , for some step N1 < N0 it holds wj ∈ MN1
badchoice. By definition of

MN1
badchoice there is a v0 = w′j′y ∈MN1

blocking with

(a) λT (w′) = λT (w),
(b) j′ ∩ I = j ∩ I , and
(c) y ∈ (2O∪T )∗.

As above, since M is assumed to be controllable, we follow v0 ∈ M . By assumption,
as in the ’only if’-part, v0 �∈M0

blocking . Therefore v0 must have an extension withinM
to a word respecting Lc. Let v0y0 be this extension of v0. Proceed now as in the “only
if”-part. ��

4.2 Synthesis of Control Modules

In this subsection we show how to synthesize a control module C from a given behavior
Lcb ⊆ LP of P and to compose this module with P , such that the resulting composed
module has exactly this behavior up to transitions of C which are not in I∪O, whenever
possible. Of course, as a first necessary condition, we have to require Lcb to be a prefix
closed regular language, since the set of occurrence sequences of a module has this
property. Formally a control module C w.r.t. such a language Lcb is defined as follows:

Definition 21. Let C be a module of a signal net with the set of transitions TC and
denote U = TC \ (I ∪ O). Then C is the control module of P w.r.t. Lcb, if there is
a composition mapping Ω, such that the set of all occurrence sequences LCP of the
module C ∗Ω P satisfies λU (LCP) = Lcb.

We claim that for the existence of such a control module it is sufficient to requireLcb

to be controllable (see definition 13). This gives the main theorem of this subsection:

Theorem 3. If Lcb ⊆ LP is a regular, controllable, prefix closed language, then there
is a control module C of P w.r.t. Lcb.

In practice this statement can be applied to Lcb = Lsafe or Lcb = Lnbsafe. We prove
the theorem by constructing C. The main idea is to synthesize C by adding new net
structure to E (see Figure 7). In particular C is composed with P via the connections
(given by Ω) between P and E .

For the construction we use a deterministic finite automatonA = (S, 2I∪O, δ, F, s0)
recognizing λT (Lcb). We denote Σ = {s x→ s′ | δ(s, x) = s′} the set of edges of A
and l : Σ → 2I∪O, l(s x→ s′) = x, the labelling of Σ.

Remember that Lcb is prefix closed. Without loss of generality we assume that

(a) All states are accepting states: F = S. Just omit all edges leading to non-accepting
states.
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Fig. 14. Part (a): splitting states to avoid loops. Part (b): splitting states to distinguish words
according to their last character.

(b) There are no loops in A: s
x→ s �∈ Σ. If this is not the case for a state of A you

can think of splitting this state into two copies and thus transforming the loop into
a cycle of length 2 (see Figure 14, (a)).

(c) The states of A distinguish words according to their last character: s′ x→ s, s′′
y→

s ∈ Σ ⇒ x = y. As long as this is not the case for a state s of A, i.e. x �= y, you
can think of splitting s into two copies, one for words ending with x and one for
words ending with y (see Figure 14, (b)). Hence we get l(s′) = l(s x→ s′) = x for
s

x→ s′ ∈ Σ.

Formally (b), (c) can be achieved by synchronizingA with appropriate other finite au-
tomata.

We will construct a signal netN = (P,U ∪I∪O,F,EN,CN,m0), where P is the
set of places,U∪I∪O is the set of transitions,F is the flow arc relation,EN is the event
arc relation, CN is the context arc relation, and m0 is the initial marking. N together
with input/output structure of E , will give the searched module C. For simplicity we will
use two kinds of context arcs: Usual positive context arcs, called condition arcs in the
context of signal nets, which test places for presence of tokens, and negative context
arcs, also called inhibitor arcs in literature ([12]), which test places for absence of
tokens. It is well known that in elementary nets negative context arcs can be equivalently
replaced by a structure using positive context arcs and so-called co-places ([12], see
Figure 15). So CN splits into the set of condition arcs CN+ and inhibitor arcs CN−.
We modify some notions for the enabling of steps w.r.t. CN−: For a transition t we
denote +t = {p | (p, t) ∈ CN+} and −t = {p | (p, t) ∈ CN−}. Given a set ξ ⊆ T of
transitions, we extend the above notions to: +ξ =

⋃
t∈ ξ

+t and −ξ =
⋃

t∈ ξ
−t.

Definition 22 (Potentially enabled for negative context). A step ξ is potentially en-
abled in a markingm if

– All t ∈ ξ are enabled: •t ∪ +t ⊆ m, −t ∩m = ∅ and (t• \ •ξ) ∩m = ∅ and
– All pairs t, t′ ∈ ξ are not in conflict: •t ∩ •t′ = t• ∩ (t′)• = ∅.
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Fig. 15. Introducing coplaces to translate inhibitor arcs into condition arcs.

We set

– P = {ps | s ∈ S}.
– UOR = {tempty

s | s ∈ S} ∪ {tfill
s | s ∈ S} ∪ {ts,i | ∃s x→ s′ ∈ Σ : i ∈ x ∩ I}.

– UAND = {t
s

x→s′ | s x→ s′ ∈ Σ}.

Our aim is to identify each state s ∈ S of A with a unique set of places Ps ⊆ P , and
each edge s

x→ s′ ∈ Σ of A with a unique set of transitions ξ
s

x→s′ ⊆ U ∪ I ∪ O, such
that

– ξ
s

x→s′ is enabled if and only if exactly the places in Ps are marked,
– ξ

s
x→s′ together with an appropriate set of transitions of T build a step in C ∗Ω P ,

and
– •ξ

s
x→s′ = Ps and ξ•

s
x→s′ = Ps′ .

The idea is the following: Assume that C is in the state Ps. Then for each s
x→ s′ ∈ Σ it

should be possible to send the input i ∈ x∩I (if there is one) to the plant synchronizing
a step in the plant (in the case of event inputs) or switching a condition input on/off. In
the first case this step in the plant should synchronize the step of outputs x∩O sent from
the plant. If there is no input i ∈ x∩ I , there should be a step in the plant synchronizing
the step of outputs x ∩ O sent from the plant. Let x be such a set, and let i ∈ x ∩ I .
Since there are in general also states in which i is not allowed to be sent to the plant,
we model the transition ts,i in such a way that

– ts,i is enabled exactly under the marking Ps via condition and inhibitor arcs (Fig-
ures 18 and 20), and

– ts,i synchronizes the transition i (Figure 18).

A transition t
s

x→s′ is intended to simulate the step of signals x in the control module C,
if C is in state Ps. Therefore t

s
x→s′

– is enabled exactly under the marking Ps via condition and inhibitor arcs (Figures
16 and 20),

– synchronizes the transition tempty
s which is intended to empty exactly the places in

Ps (Figure 16),
– synchronizes all transitions tfill

s′′ , which are intended to mark the places ps′′ in the
follower marking Ps′ (Figure 16), and

– is synchronized by all outputs in x∩O and by ts,i for i ∈ x∩I (Figures 17 and 18).
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Fig. 16. For clearness we model only the transition s
{o1,o2}→ s2 of the above behavior (the

black states). The transition t
s
{o1,o2}→ s2

simulates the edge s
{o1,o2}→ s2. t

s
{o1,o2}→ s2

synchronizes

tempty
s to empty the marking Ps, and synchronizes exactly the transitions tfill

p with p ∈ Ps2

(observe in particular ps ∈ Ps and ps2 ∈ Ps2 ). Moreover t
s
{o1,o2}→ s2

tests the places in Ps to be

marked. The event arc connections to input and output transitions are omitted (see Figure 17).

The second part of the last condition is necessary, since in general in the same state
the same step of outputs can occur spontaneous or can be initiated by an input. Observe
that, if C is in state Ps, a step of outputs x∩O synchronizes beside the transition t

s
x→s′

also each transition t
s

y→s′′ with y ⊂ x. See figure 19.
We are now able to define the sets ξ

s
x→s′ and Ps′ :

– From the event arc relation we deduce (Figure 19) ξ
s

x→s′ = {ts,i | i ∈ x∩ I} ∪x∪
{t

s
y→s′′ | y ⊆ x} ∪ {tempty

s } ∪ {tfill
s′′ | ps′′ ∈ Ps′}.

– Because t
s

x→s′ synchronizes tfill
s′ ) the place ps′ belongs to Ps′ . For every s ∈ S

with s
x→ s′ ∈ Σ the step of inputs and outputs x also synchronizes beside the

transition t
s

x→s′ each transition t
s

y→s′′ with y ⊆ x. Therefore we get in such cases
Ps′′ ⊆ Ps′ . This procedure has to be applied recursively. Therefore we define Ps′

to be the smallest set satisfying (Figure 20)
(i) ps′ ∈ Ps′ .

(ii) ∀s x→ s′, s
y→ s′′ ∈ Σ (s′ �= s′′) with y ⊂ x: Ps′′ ⊆ Ps′ .

Altogether we get formally:

– F = {(p, tempty
s ) | s ∈ S, p ∈ Ps} ∪ {(tfill

s ,ps) | s ∈ S},
– CN+ = {(p, t

s
x→s′) | s ∈ S, p ∈ Ps} ∪ {(p, ts,i) | s ∈ S, p ∈ Ps},
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s1

{o1,o2}

s2

{o1}
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&

&

plant

o1

o2

Ps

t s   s2
{o1,o2}t s   s2
{o1,o2}

t s   s1
{o1}t s   s1
{o1}

Fig. 17. The transition t
s
{o1,o2}→ s2

simulates the edge s
{o1,o2}→ s2. It is therefore synchronized by

the output transitions o1 and o2. The occurrence of o1 together with o2 synchronizes also t
s
{o1}→ s1

,

since t
s
{o1}→ s1

is also enabled under Ps. The occurrence of o1 without o2 only synchronizes

t
s
{o1}→ s1

. For clearness the connections to empty- and fill-transitions and places in the follower

marking are omitted (see Figure 16), but observe that this implies ps1 ∈ Ps1 ⊂ Ps2 . (see also
Figure 20).

– CN− = {(p, t
s

x→s′) | ∃s ∈ S : Ps ⊂ Ps ∧ p ∈ Ps \ Ps} ∪ {(p, ts,i) | ∃s ∈ S :
Ps ⊂ Ps ∧ p ∈ Ps \ Ps}, and

– EN = {(ts,i, i) | s ∈ S, i ∈ I} ∪ {(ts,i, ts x→s′) | s ∈ S, i ∈ x∩ I} ∪ {(o, t
s

x→s′) |
s ∈ S, o ∈ x∩O}∪{(t

s
x→s′ , t

fill
s′′ ) | s x→ s′ ∈ Σ, ps′′ ∈ Ps′}∪{(t

s
x→s′ , t

empty
s ) |

s ∈ S},

Remark 3. Observe that ps′ ∈ Ps implies either s′ = s or l(s′) ⊂ l(s). This implies
that for all s, s′ ∈ S: ps �∈ Ps′ and/or ps′ �∈ Ps.

Lemma 8. (a) The mapping φ : S → 2P , φ(s) = Ps is injective.
(b) (ξ

s
x→s′ \ x)• = Ps′ and •(ξ

s
x→s′ \ x) = Ps.

(c) ξ
s

x→s′ \ x is potentially enabled in Ps.
(d) ξ

s
x→s′ is maximal w.r.t. U and Ps: For each transition t ∈ U \ ξ

s
x→s′ with �t ∩

ξ
s

x→s′ �= ∅ the set ξ
s

x→s′ ∪ {t} is not potentially enabled in Ps.

Proof.
ad (a): see remark 3.

ad (b): Follows from

(ξ
s

x→s′ \ x)• =
⋃

ps′′∈Ps′

(tfill
s′′ )• , •(ξ

s
x→s′ \ x) = •(tempty

s ).
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s

s1

{i,o}

s2

{o}

ps

&

&

plant

o

i

ts,iPs

t s   s1
{o}

t s   s2
{i,o}

Fig. 18. Here the label of the edge s
{i,o}→ s2 contains an input transition i. This input transition is

synchronized by the spontaneous transition ts,i, which is exactly enabled under Ps. If i synchro-
nizes the output transition o via transitions in the plant, the transition t

s
{i,o}→ s2

is synchronized

together with the transition t
s
{o}→ s1

(analogously to Figure 17). It is also possible that the plant

sends the output o without the input i. In this case t
s
{o}→ s1

is synchronized alone. Observe that no

cycles of event arcs are produced.

i ts,i

o2
:

T

empty-transiton

fill-transitions

o1t s   s‘
x

Fig. 19. The event arc relation w.r.t. an edge s
{x}→ s′ ∈ E. The event arc from i to T is optional:

it exists only, if i replaces an event input signal, and not in the case i is an on- or off-transition of
an condition imput signal.

ad (c): By definition of F , CN− and CN+, the only sets of places of the form •t, t•

or +t for t ∈ ξ
s

x→s′ \ x which are not empty are:

+t
s

x→s′ = +ts,i = Ps,
•tempty

s = Ps, (t
fill
s′′ )• = {ps′′}.

This gives •t ∪ +t ⊆ Ps. Moreover, −t ∩ Ps = ∅ by definition. Finally, from (b) we
get (t• \ •ξ

s
x→s′) ∩ Ps = (t• \ Ps) ∩ Ps = ∅. By this the first part of the potentially

enabled definition 22 is fulfilled.
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s1

{o1,o2,o3}

s2

{o1,o2}

s3

{o1}

Ps1Ps2Ps3 ps1ps2ps3

s4

{o4}

t s3   s4
{o4}

Fig. 20. By definition we get Ps3 ⊂ Ps2 ⊂ Ps1 . The transition t
s3

{o4}→ s4
has to test the places in

Ps3 for the presence of tokens and the places in Ps1 \ Ps3 for the absence of tokens.

It remains to verify that there are no conflicts w.r.t. pre- resp. postsets in ξ
s

x→s′ \ x:
The only transition in ξ

s
x→s′ \xwith nonempty preset is tempty

s . So there are no conflicts
w.r.t. presets. The only transitions with nonempty postsets in ξ

s
x→s′ \ x are of the form

tfill
s′′ for ps′′ ∈ Ps′ . All postsets of such transitions consist of a unique place, and so are

pairwise distinct.

ad (d): Each transition t ∈ U \ ξ
s

x→s′ with �t ∩ ξ
s

x→s′ �= ∅ is of the form (see figure
19) t = t

s
x→s′ . There are two cases:

– s �= s:
From Ps �= Ps we deduce that t is not enabled. Therefore ξ

s
x→s′ ∪ {t} is not

potentially enabled.
– s = s and l(s′) �⊆ l(s′):

That means �t �⊆ ξ
s

x→s′ . Since t ∈ UAND, ξ
s

x→s′ ∪ {t} is not a step. ��

We are now going to prove λU (LCP) = Lcb. We need some additional notions: For
an occurrence sequence w = x1 . . . xn of E ∗Ω P we denote

– wi = x1 . . . xi,
– mi the marking of E ∗Ω P after the occurrence of wi,
– si = δ(s0, λT (wi)) the state in A after executing λT (wi).
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Observe sε = s0 and xi ∩ (I ∪ O) = ∅ ⇔ si−1 = si. For xi ∩ (I ∪ O) �= ∅ we get
l(si) = λT (xi). Define

ηi =
{
xi ∪ ξ

si−1
x→si

if x = xi ∩ (I ∪O) �= ∅,
xi else.

For a set of transitions σ and a markingm of C ∗Ω P we denote

– σC = λT (σ) andmC = m ∩ P the C-parts, and
– σEP = λU (σ) andmEP = m \ P the E ∗Ω P-parts.

Observe that ηEPi = xi, ηCi = ξ
si−1

x→si
resp. = ∅, (mi ∪ Psi)C = Psi and (mi ∪

Psi)EP = mi. Between the net structure in module E ∗Ω P and the additional net struc-
ture in C ∗Ω P there are only event arc connections. There are no events arc connections
between transitions in T and transitions in U . Therefore:

– σ is potentially enabled in C ∗Ω P under the marking m if and only if both σC is
potentially enabled in C under the marking mC and σEP is potentially enabled in
E ∗Ω P under the markingmEP

– σ is maximal w.r.t. T ∪U andm in the sense of lemma 8 (d) if and only if both σC

is maximal w.r.t. U andmC and σEP is maximal w.r.t. T and mEP in the sense of
lemma 8 (d).

Putting this together, observe that σ is an enabled step in C ∗Ω P under the markingm
if and only if σ is a step and σC and σEP are potentially enabled and maximal as above.

Lemma 9. λU (LCP) ⊇ Lcb.

Proof. We show by induction on the length of w = x1 . . . xn ∈ Lcb:

(A) The occurrence sequence η = η1 . . . ηn is enabled in C ∗Ω P under the marking
m0 ∪ Ps0 .

(B) The occurrence of η gives the follower markingmn ∪ Psn .
(C) x1 . . . xnxn+1 ∈ Lcb implies that the step ηn+1 is enabled in C ∗Ω P under the

markingmn ∪ Psn .

First let w = ε (n = 0): (A) and (B) are clear. Ad (C): Observe that in each case the C-
and EP-parts of η1 are potentially enabled and maximal in the above sense. According
to the above considerations, it remains to show that η1 is a step. We distinguish three
cases:

(i) x1 ⊆ T :
η1 = x1 is clearly a step.

(ii) x1 ⊆ T ∪O and x1 ∩O �= ∅:
x1 builds a step in E ∗Ω P which includes the set of transitions x = l(s1). From
the transitions in x the transition t

s0
x→s1

is synchronized. The transition t
s0

x→s1
synchronizes the empty and fill transitions of ξ

s0
x→s1

(see figure 19).
(iii) x1 ∩ I �= ∅:

analogously to (ii).
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Let w = x1 . . . xn−1xn. By assumption the statements (A) − (C) are valid for wn−1.
This implies (A) for w. Statement (B) is clear (since the markings are unions of the C-
and EP-parts). (C) can be seen analogously to the above argumentation.

Lemma 10. λU (LCP) ⊆ Lcb.

Proof. To see the statement, the controllability of Lcb will play the crucial role: Ob-
serve that λU (LCP ) ⊆ LP . Assume there is σ = σ1 . . . σnσn+1 ∈ λU (LCP ) \ Lcb.
Without loss of generality σ1 . . . σn ∈ Lcb. Denote s = δ(s0, λT (σ1 . . . σn)) and
s′ = δ(s0, λT (σ)).

(i) σn+1 ⊆ T ∪O:
According to the first condition (1) of controllability it follows σ ∈ Lcb. A con-
tradiction.

(ii) σn+1 ∩ I �= ∅:
Let σn+1 ∩ I = {i}. The sequence λT (σ1) . . . λT (σn)λT (σn+1) = λT (σ1) . . .
λT (σn)l(s′) is a path in A from s0 to s′. That means there is a word x1 . . .
xnxn+1 ∈ Lcb with λT (xi) = λT (σi) (i = 1, . . . , n + 1). In particular we have
λT∪O(xn+1) = λO(l(s′)), since every step contains at most one input. According
to the second condition (2) of controllability it follows σ ∈ Lcb. A contradiction.

��

5 Conclusion

In this paper we have presented a methodology for synthesis of the controlled behavior
of discrete event systems employing actuators which try to force events and sensors
which can prohibit event occurrences. As a modelling formalism, we have used mod-
ules of signal nets. The signal nets offer a direct way to model typical actuators behav-
ior. Another advantage of such modules consists in supporting input/output structuring,
modularity and compositionality in an intuitive graphical way.

In the paper we were not focusing on complexity issues. It is known that the com-
plexity of the supervisory control problem is in general PSPACE-hard, and sometimes
even undecidable ([21], pp. 15 - 36). To get efficient algorithms one has to restrict the
setting in some way, for example by considering only very special kinds of specifica-
tions.

As the main result of the paper, we have shown how to synthesize the control mod-
ule from the behavior of the controlled plant under the paradigm, that outputs of the
plant cannot force inputs of the plant via the control module. This paradigm of course
(structurally) restricts the class of modules which can be used as control modules. It
would be interesting to discuss a generalization of this concept, where the composition
of a control module with a plant module is not restricted. That means, in any pair of
composed modules both modules can be considered as the control module symmetri-
cally, or even more generally both modules can be considered to control each other. For
sake of simplicity, we have restricted the control specification over set of outputs. We
are presently working on extension of our methodology for the control specifications
including input signals. The methodology for the specifications over observable states
(i.e. condition output signals) is also an interesting subject of the further research.
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The presented approach considers only Petri nets on a very elementary level. For
complex industrial-size systems, these nets tend to be either very large or too abstract.
In particular, data and time aspects can not be modelled in a natural way. Therefore,
we are working on extension of modules of signal nets by special high-level Petri net
features.
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Abstract. Coloured Petri Nets (CP-nets or CPNs) and their supporting
computer tools have been used in a wide range of application areas such
as communication protocols, software designs, and embedded systems.
The practical application of CP-nets has also covered many phases of
system development ranging from requirements to design, validation, and
implementation. This paper presents four case studies where CP-nets and
their supporting computer tools have been used in system development
projects with industrial partners. The case studies have been selected
such that they illustrate different application areas of CP-nets in various
phases of system development.

1 Introduction

System development and engineering [73] is a complex task involving a multitude
of activities such as analysis, requirement engineering, design, implementation,
and testing. Several approaches to system development have been suggested and
described in the literature such as the classical waterfall approach [44] and the
newer, iterative Rational Unified Process (RUP) [61]. One universal technique
that can be used across many of the activities in system development is mod-
elling. The act of constructing a model of the system to be developed is typically
done in early phases of system development, and is also known from other dis-
ciplines, e.g., when engineers construct bridges and architects design buildings.
The main benefit of modelling is that it provides insight about the properties
of the system prior to implementation. This allows many issues about the sys-
tem to be resolved in the requirements and design phase rather than in the
implementation phase. Many modelling languages have been suggested and are
being used for system development. The most prominent example is the Uni-
fied Modeling Language (UML) [69,78] which is the de-facto standard modelling
language of the software industry and which supports modelling of the structure
and behaviour of systems.

CP-nets [47,48,50,58] is a graphical modelling language suited for modelling
concurrency, synchronisation, and communication in systems. Prototypical ap-
plication domains of CP-nets and Petri nets are communication protocols, data
� Supported by the Danish Natural Science Research Council.

J. Desel, W. Reisig, and G. Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 626–685, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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networks, embedded systems, and other types of reactive systems. CP-nets and
Petri nets are, however, also applicable more generally for modelling systems
where concurrency and communication are key characteristics. Examples of this
are business process/workflow modelling and manufacturing systems.

The CPN modelling language combines Petri nets and programming lan-
guages. Petri nets [24, 77] provide the foundation of the graphical notation and
the semantical foundation for modelling concurrency, synchronisation, and com-
munication in systems. The functional programming language Standard ML [86]
provides the primitives for compactly modelling the sequential aspects of sys-
tems (such as data manipulation) and for creating compact and parameterisable
models. CP-nets have a module concept allowing CPN models to be organised
into several modules (called pages). The module concept is hierarchical, allow-
ing a module to have a number of submodules and allowing a set of modules
to be composed to form new modules. This enables the modeller to work both
top-down and bottom-up when constructing CPN models. CPN models can be
timed, meaning that the time taken by different events in the system can be
modelled. This means that CP-nets can be used to investigate both logical and
functional properties such as absence of deadlocks, and performance properties
such as execution times and queue lengths.

The CPN modelling language is supported by two computer tools: CPN Tools
and Design/CPN. The Design/CPN tool [25] was developed in 1989 and is now
being replaced by the next generation of tool support: CPN Tools [22]. The CPN
computer tools support construction of CPN models including syntax check, type
checking, and simulation (execution) of CPN models. Editing and simulation of
the CPN models are done directly on the graphical representation of CP-nets.
It is also possible to animate the system behaviour using a number of graphical
libraries [13,75]. These libraries can be used on top of the CPN models to display
graphics specific to the application domain. The basic idea in this behavioural
animation is to have the CPN model display the evolution of the system using
other graphical means such as, e.g., message sequence charts [9, 13].

The CPN computer tools support state space (reachability) analysis [48] of
CPN models. The basic idea in state spaces is to calculate all reachable states and
state changes of the system and represent these as a directed graph. The state
space of a CPN model can be used to verify a number of properties of the system
under consideration. A number of state space reduction methods [15, 16, 49] are
also available in the computer tools for alleviating the state explosion problem
[88], i.e., the fact that the number of reachable states can be large for complex
systems. The computer tools also allow the performance of the system to be
analysed based on simulation.

This paper presents four projects where CP-nets and their supporting com-
puter tools have been used in system development. The four projects make it
evident that CP-nets can be used in many phases of system development. CP-
nets is however not a modelling language designed to replace other modelling
languages (such as UML). In our view it should be used as a supplement to ex-
isting modelling languages and methodologies. CP-nets are suited for modelling
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and analysing behaviour in concurrent and distributed systems – an aspect where
many other modelling languages, and in particular UML, are weak. While UML
sequence- and collaboration diagrams are widely used to describe examples of
system behaviour, the UML diagrams available for modelling behaviour in a gen-
eral way, i.e., UML state machines and activity diagrams, are more rarely used.
They have a number of limitations, and, in many cases, there are substantial
technical reasons to prefer CP-nets over, e.g., UML state machines. The latter
lack a well-defined execution semantics, do not support modelling of multiple in-
stances of classes, and do not scale well to large systems [30,55]. CP-nets may be
seen as a convenient supplement to the well-established UML diagram types such
as sequence diagrams and class diagrams. On the other hand, CP-nets are not
suited for giving purely static descriptions of system architecture and structure.

Another characteristic of the CPN modelling language is that it is general
instead of domain specific, i.e., it is not aimed directly at modelling a specific
class of systems, but aimed towards a very broad class of systems that can be
characterised as concurrent and distributed. This is also evident in that the
CPN language has few, but powerful modelling primitives that make it possible
to model systems and concepts at different levels of abstraction. This is both
a weakness and a strength of the CPN modelling language. The capability of
CP-nets to model systems at different levels of abstraction is one of the keys to
making formal analysis (e.g., state space analysis) of such models tractable, as
large and very detailed models will usually be intractable for state space analysis.
Finding the different abstraction levels that are useful at different points in
systems development and more generally finding the right abstraction level is
one of the arts of modelling. Finally, the CPN modelling language is able to
describe large and complex systems. The use of a full programming language
(Standard ML) gives CP-nets a scalability at the modelling level that cannot be
found in low-level Petri nets.

Below we give a brief introduction to the four projects presented in this
paper. The presented CPN models have all been constructed in joint projects
between the CPN group [23] at the University of Aarhus and industrial partners.

Modelling Scenarios in Ad Hoc Networking. This joint project [57] with
Ericsson Telebit A/S [33] was concerned with network architectures for inte-
grating stationary core networks and mobile ad-hoc networks. The presented
CPN model was developed in an early phase of the project to specify the net-
work architecture itself and the mobility and communication scenarios to be
supported by the communication protocols to be developed in later phases.
CPN modelling was hence used to formalise the problem domain and for
specifying requirements for the later implementation. This application of
CP-nets is presented in Sect. 2.

Modelling Requirements in Pervasive Healthcare. This joint project [53]
with Systematic Software Engineering A/S [84] and Aarhus County Hospi-
tal was concerned with specifying the business processes at Aarhus County
Hospital and their support by a new IT system. The CPN model was used to
engineer requirements for the system. Input from nurses was crucial in this
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process. The project demonstrated how application-specific graphics driven
by underlying CPN models can be used to visualise system behaviour and
to discuss requirements with people who are not familiar with the CPN
modelling language. This application of CP-nets in presented in Sect. 3.

State Space Analysis of an Audio/Video Protocol. This joint project
[14] with Bang and Olufsen A/S [5] was concerned with the design of the
communication protocols to be used in the next generation of the B & O
Beolink system. The presented CPN model was used to specify the new
lock management protocol, and state space analysis was used to validate
and analyse the protocol. The project took place in 1995-1996 when only
very basic state space analysis was available in the CPN computer tools.
Since then, a number of new state space methods have been developed and
implemented in the CPN computer tools. A revised CPN model of the lock
management protocol is presented in Sect. 4, together with the application
of the state space methods currently available in the CPN computer tools.

Implementation of a Planning Tool. This joint project [94] with the Aus-
tralian Defence Science and Technology Organisation (DSTO) [4] was con-
cerned with the development of the Course of Action Scheduling Tool
(COAST). CPN modelling has been used to conceptualise and formalise the
planning domain to be supported by the COAST tool. Furthermore, the con-
structed CPN model has been extracted in executable form from the CPN
computer tools and embedded into the server of the COAST tool together
with a number of state space analysis algorithms. This project demonstrated
how a constructed CPN model can be used for the implementation of a com-
puter tool by effectively bridging the gap between the design specified as
a CPN model and the implementation of the system. This application of
CP-nets is presented in Sect. 5.

The four projects presented in this paper can be read in any order, but
we have ordered their presentation according to the typical phases in system
development starting with analysis and requirements, moving on to design and
validation, and finally implementation. For readers with only limited or no prior
knowledge of Petri nets we recommend reading Sect. 2 first as it also gives some
introduction to the basic constructs in the CPN modelling language. We sum up
the conclusions in Sect. 6 and give references to further reading on CP-nets.

2 Modelling Scenarios in Ad-Hoc Networking

The overall topic of this joint research project with Ericsson Telebit A/S [57]
presented in this section is the use of the Internet Protocol v6 (IPv6) [42] for
ad-hoc networking [71]. An ad-hoc data network is a collection of (typically)
mobile nodes, such as laptops, personal digital assistants (PDAs), and mobile
phones, capable of establishing a communication infrastructure for their com-
mon use. Ad-hoc networking differs from conventional data networks in that
the network of nodes operates in a fully self-configuring and distributed man-
ner, i.e., there is no central network management, control, or components at the
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network layer. Furthermore, there is no preexisting infrastructure, such as base
stations and routers, available. One of the challenges in ad-hoc networking is to
design the routing protocols in such a way that they are able to quickly adapt to
the frequent changes in network topology due to node mobility and nodes leav-
ing/joining the network. Ad-hoc networking has a number of application areas,
such as sensor networks, rescue operations in remote areas, mobile conferencing,
home networking, and wireless personal area networks. Routing protocols for ad-
hoc networking are under development by the IETF Mobile Ad-hoc Networks
working group [35]. The main focus of the project is the integration of routing
protocols for conventional wired data networks e.g, OSPF, RIP, and BGP [83])
with routing protocols for ad-hoc networks (e.g, DSR, AODV, and OLSR [71]).

Figure 1 shows the IPv6 based network architecture considered in the project.
The network architecture consists of an IPv6 core network connecting a number
of mobile ad-hoc networks (MANETs) on the edge of the core network. The
network architecture is aimed at supporting communication between nodes re-
siding in different ad-hoc networks and communication between nodes in the
ad-hoc networks and stationary nodes in the core network. Communication be-
tween nodes in the same ad-hoc network is facilitated by the ad-hoc network
itself. Another important aspect of the network architecture is mobility. Macro-
mobility is concerned with the movement of nodes from one ad-hoc network to
another ad-hoc network, and the movement of an entire ad-hoc network from
one point of attachment to the core network to another point of attachment.
Micromobility is concerned with the movement of the nodes within an ad-hoc
network which changes the topology of the ad-hoc network.

IPv6 Core
Network

Ad Hoc
Network

Ad Hoc
Network

Ad Hoc
Network

Ad Hoc
Network

Ad Hoc
Network

Fig. 1. IPv6 based networking architecture.

CPN modelling was used in the first phase of the project to develop the
network architecture shown in Fig. 1 and to capture in a rigorous way the com-
munication and mobility scenarios that must be supported. Capturing these
requirements was done by constructing a CPN model that described mobility
and communication in the above networking architecture. In the following, we
give a detailed description of this CPN model.

2.1 CPN Modelling of Mobility and Communication

Figure 2 shows the hierarchy page of the CPN model. The hierarchy page pro-
vides an overview of the pages (modules) constituting the CPN model and their
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relationship. Each node in Figure 2 represents a page in the CPN model, and is
labelled with a page name and a page number. As an example, the page node
at the top left of Figure 2 is named Scenarios and has page number 1. Page Sce-
narios is the most abstract page in the CPN model. An arc between two nodes
indicates that the destination page is a subpage (submodule) of the source page.
The arc label(s) specifies the name of the substitution transition(s) represent-
ing the corresponding subpage at the source page. Substitution transitions are
explained in more detail later.

Declarations#2

Hierarchy#100Scenarios#1

Communication#3 AHSendReceive

Mobility#5

Macromobility#6

Micromobility#7

M

Type1#9

Type2#12

Type3#13

System#10

Init#11 M

Enter#14

Exit#15

C

CNSendReceive#

SendReceive4

SendReceive2

SendReceive3

SendReceive1Communication

Mobility

Macromobility

Type1

Type2

Type3

System

Enter

Exit

Micromobility

SendReceive

Fig. 2. Hierarchy page - overview of CPN model.

The CPN model consists of three main parts. Page System and its two sub-
pages model the system scenarios which are concerned with ad-hoc nodes en-
tering and leaving the system. Page Mobility and its five subpages model the
mobility scenarios, i.e., the movement of the nodes in the ad-hoc networks. Page
Communication and its two subpages, AHSendReceive and CNSendReceive, model
the communication between nodes in the system.
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Figure 3 depicts page Scenarios which is the most abstract part of the CPN
model. It corresponds to the Scenarios page node in Fig. 2. The rectangles in Fig-
ure 3 are substitution transitions as indicated by the associated HS-tag (in the
lower left corner of each rectangle). Each substitution transition has an associ-
ated subpage modelling the compound behaviour represented by the substitution
transition in more detail. The name of the subpage is given in the dashed box
next to the HS-tag. The communication scenarios are modelled by the substi-
tution transition Communication which has page Communication (see Fig. 2) as
its associated subpage. The mobility scenarios are modelled by the substitution
transition Mobility which has page Mobility as its associated subpage. The sys-
tem scenarios are modelled by the substitution transition System which has page
System as its associated subpage.

Area1

AHNodexState

2

1‘(AHnode(1),(Area1,IDLE))++ 
1‘(AHnode(2),(Area1,IDLE))

Communication

HS Communication#3

Mobility

HS Mobility#5
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AHNodexState

2

1‘(AHnode(3),(Area2,IDLE))++ 
1‘(AHnode(4),(Area2,IDLE))

Area3

AHNodexState

2

1‘(AHnode(5),(Area3,IDLE))++ 
1‘(AHnode(6),(Area3,IDLE))

Area4

AHNodexState

2

1‘(AHnode(7),(Area4,IDLE))++ 
1‘(AHnode(8),(Area4,IDLE))

System

HS System#10

Outside

AHNode

1

1‘AHnode(9)

Core
Network

CNNode

5

1‘CNnode(1)++ 1‘CNnode(2)++ 
1‘CNnode(3)++ 1‘CNnode(4)++ 
1‘CNnode(5)

Fig. 3. The Scenarios page - top level page in the CPN model.

The ellipses in Fig. 3 are called places and are used to model the state of
the system. The state of a CPN model is called a marking and is a distribution
of tokens on the places of the CPN model. Each of the places Area1, Area2,
Area3, and Area4 correspond to areas where ad-hoc networks can exist. In our
scenarios, ad-hoc networks can exist in four areas. Nodes that are part of the ad-
hoc network in a given area are modelled as tokens residing on the corresponding
place. The place CoreNetwork is used for modelling the nodes in the core network.
The place Outside is used for modelling the ad-hoc nodes currently outside of
the system.
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The kind of tokens that may reside on a place is determined by the colour set
of the place. A colour set in a CPN model is similar to a type in a programming
language, and the values in a colour set are referred to as colours. The colour set
of a place is typically written below the place and is declared using the Standard
ML programming languages. As an example, place Area1 has the colour set
AHNodexState. The declarations of the colour sets used in Fig. 3 are listed in
Fig. 4 and will be explained below.

val AHn = 9;

color AHInt = int with 1..AHn;

color AHNode = union AHnode : AHInt;

color Macrostate = with IDLE | MACROMOVE;

color Area = with Area1 | Area2 | Area3 | Area4;

color State = product Area * Macrostate;

color AHNodexState = product AHNode * State;

val CNn = 5;

color CNInt = int with 1..CNn;

color CNNode = union CNnode : CNInt;

Fig. 4. Colour sets used in Fig. 3.

The symbolic constant AHn is used to specify the total number of ad-hoc
nodes in the system. Colour sets are declared using the keyword color. The colour
set AHInt denotes the set of integers in the range from 1 to AHn. The colour set
AHNode is used to model the ad-hoc nodes. An ad-hoc node is specified as a
value (colour) with the form AHnode(i) where 1 ≤ i ≤ AHn. The colour set
Macrostate is used to model the internal state of an ad-hoc node with respect
to movement from one area to another area. The state may either be IDLE
indicating that the node is currently not on the move from one area to another
area, or MACROMOVE indicating that the node is currently on the move from
one area to another area. The state of an ad-hoc node is modelled by the colour
set State which is the cartesian product of the colour sets Area and Macrostate.
Hence, the state of an ad-hoc node specifies the area that the ad-hoc node is
currently in, and whether the ad-hoc node is currently moving from one area to
another. The area places in Fig. 3 all have the colour set AHNodexState. Hence,
tokens residing on these places represents ad-hoc nodes. Place Outside on page
Scenarios has the colour set AHNode. The reason for this is that the state of the
ad-hoc node is not important when the node is outside the system. The colour
set CNNode is used to model the nodes in the core network. A core network node
is specified as a value (colour) with the form CNnode(ci) where 1 ≤ bi ≤ CNn.
Place CoreNetwork in Fig. 3 has the colour set CNNode.
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The small circles and associated dashed boxes in Fig. 3 show the current
marking of the CPN model. The small circle positioned inside a place indicates
the number of tokens on the given place in the current marking. In the marking
shown, there are two ad-hoc nodes in each of the four areas, and ad-hoc node 9
is currently outside the system. There are fives nodes in the core network. The
dashed boxes positioned next to the places specify the colours of the individual
tokens residing on that place. The marking of a place is a multi-set of tokens over
the colour set of the place, i.e., there can be multiple appearances of the same
token. The text inside the dashed boxes specifies the multi-set of tokens residing
on the place using ++ to denote union (pronounced and) and ‘ (pronounced
of) to specify coefficients, i.e., the number of occurrences of tokens with that
value. As an example, on place Area1 in the marking shown in Fig. 3 there is
one token of colour (AHnode(1),(Area1,IDLE)) and one token of colour (AHN-
ode(1),Area1,IDLE). The CPN model contains an initialisation step responsible
for the initial distribution of tokens on the CPN model. It is, however, possible
for the modeller to also manually specify the initial marking of the CPN model.

The transitions and places in Fig. 3 are connected by double-deaded arcs.
Some of these arcs have been partly positioned on top of each other to improve
readability of the figure. A place connected to a substitution transition is called
a socket place, and a socket place is associated to a port place on the subpage as-
sociated with the substitution transition. This is called a port-socket assignment.
This association has the effect that the port and the socket places will always
have identical markings. Note that a place may be a socket place for several sub-
stitution transitions. The dynamics of a CPN model consists of occurrences of
transitions (ordinary, not substitution transitions) which add and remove tokens
to/from the places of the CPN model, thereby changing the current marking. An
arc leading to a place from a substitution transition means that transitions on
the subpage associated with the substitution transitions will add tokens on this
place. Similarly, an arc leading from a place to a substitution transition means
that transitions on the subpage will remove tokens from this place. A double-
deaded arc is a shorthand for an arc in each direction. The basic idea in the
CPN model is to capture mobility scenarios of the network architecture by mov-
ing tokens corresponding to ad-hoc nodes from one area place to another area
place. Similarly, communication scenarios will be modelled by moving tokens in
the CPN model corresponding to packets.

2.2 Modelling Mobility

Figure 5 depicts page Mobility which is the most abstract page in the part of the
CPN model specifying mobility. Two types of mobility are considered: macro-
mobility and micromobility. Recall that macromobility is concerned with the
mobility of ad-hoc nodes between ad-hoc networks. In the CPN model we con-
sider only the macromobility case of one ad-hoc node moving from one ad-hoc
network to another ad-hoc network. The case of an entire ad-hoc network mov-
ing can be viewed as the individual movement of all of the nodes in the ad-hoc
network. Micromobility is concerned with the movement of ad-hoc nodes within
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an ad-hoc network. The two types of mobility are modelled by the subpages of
the substitution transitions Macromobility and Micromobility, respectively. The
four places Area1-4 are port places of this page - indicated by the P-tags posi-
tioned next to them. The I/O-tag specifies that they are input and output port
places. This means that tokens may be added and removed to/from these places.
Each of the area places are associated with the identically named socket place
in Fig. 3. The places Area1-4 are also socket places since they are connected to
the Macromobility and Micromobility substitution transitions.

Area2

AHNodexState

P I/O 2

1‘(AHnode(3),(Area2,IDLE))++ 
1‘(AHnode(4),(Area2,IDLE))

Area1

AHNodexState

P I/O2

1‘(AHnode(1),(Area1,IDLE))++ 
1‘(AHnode(2),(Area1,IDLE))

Area4

AHNodexState

P I/O2

1‘(AHnode(7),(Area4,IDLE))++ 
1‘(AHnode(8),(Area4,IDLE))

Area3

AHNodexState

P I/O 2

1‘(AHnode(5),(Area3,IDLE))++ 
1‘(AHnode(6),(Area3,IDLE))

Macromobility

HS Macromobility#6

Microtopology

AreaxAHTopology

4

1‘(Area1,[])++ 1‘(Area2,[])++ 
1‘(Area3,[])++ 1‘(Area4,[])

Micromobility
HS Micromobility#7

Fig. 5. The Mobility page.

The macromobility scenarios are specified by considering the movement of
ad-hoc nodes between the places Area1-4. The place Microtopology is used to
represent the current topology of the ad-hoc networks. The definition of the
colour set AreaxAHTopology is given in Fig. 6.

color AHNodexAHNode = product AHNode * AHNode;

color AHTopology = list AHNodexAHNode;

color AreaxAHTopology = product Area * AHTopology;

Fig. 6. Declaration of colour set AreaxAHTopology.

The topology of an ad-hoc network is a pair consisting of the ad-hoc network
and a list of pairs specifying the current set of links between the nodes in the
ad-hoc network. For example, a pair (AHnode(6),AHnode(5)) captures that ad-
hoc node 5 can be reached from ad-hoc node 6, but not necessarily the other
way around as links may be unidirectional. In the current marking of place
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Microtopology shown in Fig. 5, no ad-hoc nodes are able to reach each other in
any area, and hence the topology in each area is specified as the empty list []. The
substitution transition Macromobility is connected to the place Microtopology by
a double arc. When a node moves from one area to another area, all existing
links to nodes in the area being moved from disappear.

Micromobility. Figure 7 depicts page Micromobility specifying the micromobil-
ity. The micromobility scenarios are abstractly modelled by viewing the ad-hoc
network as a directed graph where edges represent connectivity. Hence, we have
abstracted from the physical location of the nodes in the ad-hoc networks. The
nodes in the ad-hoc networks are represented as tokens on the area places. The
current topology of the ad-hoc network is represented by the tokens on place
Microtopology. All five places on this page are connected via port-socket rela-
tionships to the identically named places on page Mobility (see Fig. 5). The
two rectangles AddLink and DeleteLink are ordinary transitions. Transition Ad-
dLink models that a new link between two ad-hoc nodes arises, and transition
DeleteLink models that an existing link between two ad-hoc nodes disappears.
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AreaxAHTopologyP I/O

4
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 NotReach ahtopology (AHnode(i),AHnode(j))]
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Link

[Reach ahtopology (AHnode(i),AHnode(j))]
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AHNodexState
2

1‘(AHnode(1),(Area1,IDLE))++ 
1‘(AHnode(2),(Area1,IDLE))

P I/O
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2
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2
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P I/O

(area,
 DeleteReach ahtopology 
        (AHnode(i),AHnode(j)))

(area,
 AddReach ahtopology (AHnode(i),AHnode(j)))

(area,
  ahtopology)

(area,
  ahtopology)

if area = Area1
then (1‘(AHnode(i),statei) ++
1‘(AHnode(j),statej))
else empty

if area = Area2
then (1‘(AHnode(i),statei) ++
1‘(AHnode(j),statej))
else empty

if area = Area3
then (1‘(AHnode(i),statei) ++
1‘(AHnode(j),statej))
else empty

if area = Area4
then (1‘(AHnode(i),statei) ++
1‘(AHnode(j),statej))
else empty

Fig. 7. The Micromobility page.

The actions of a CPN model consist of occurrences of enabled transitions
removing tokens from places connected to incoming arcs and adding tokens to
places connected to outgoing arcs of the transition. The transition AddLink is
enabled in the marking shown in Fig. 7. This is indicated by the thick border of
the transition. Transition AddLink has five input places and five output places. A
transition is required to be enabled before it may occur. A transition is enabled
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if sufficient tokens with adequate colours exist in each of its input places. When
a transition occurs, it removes tokens from input places and adds tokens to
output places. The exact multi-set of tokens required for a transition to be
enabled and removed from input places when it occurs, and the exact multi-set
of tokens added to output places of the transition are determined by assigning
value to the variables of the transition, and by evaluating the arc expressions,
i.e., the inscriptions positioned next to the arcs. Arc expressions are written in
the Standard ML language.

To evaluate the arc expressions on the surrounding arcs of a transition, a
binding of the transition must be created. A binding is an assignment of data
values to the variables of the transition. Figure 8 shows the declaration of the
variables appearing in the surrounding arcs of the NewReach transition in Fig. 7.
The definition of the colour sets have previously been given in Fig. 4.

var area : Area

var i,j : AHInt;

var statei, statej : State;

var ahtopology : AHTopology;

Fig. 8. Variables used on page Micromobility shown in Fig. 7.

A binding of a transition is enabled in the current marking if when evaluating
each of the arc expressions on input arcs, the resulting multi-set of tokens is a
subset of the multi-set of tokens currently present in the corresponding input
place. An enabled binding of the transition AddLink is the following which lists
the value assigned to each variable of the transition:

< area=Area1,i=1, statei=IDLE, j=2, statej=IDLE, ahtopology=[]>

This binding corresponds to the event that ad-hoc node 1 is now able to
reach ad-hoc node 2. Evaluating the input arc expression from place Area1 in
this binding yields the multi-set: 1‘(AHnode(1),IDLE) ++ 1‘(AHnode(2),IDLE).
The result of evaluating the input arc expression from place Microtopology yields
the multi-set 1‘(Area1,[]). The remaining input arc expressions all yield the empty
multi-set since the variable area is bound to the value Area1. This binding is en-
abled since each of the multi-sets of tokens are present on the corresponding
input places, and because the guard (shown in square bracket below the transi-
tion) of the NewReach transition is satisfied. A guard is a boolean expression that
must evaluate to true in the binding in order for the transition to be enabled.
The guard expresses the condition that the two ad-hoc nodes determined by the
binding of the variables i and j must be distinct, and there must not already
exist a link between ad-hoc node i and j. The latter requirement is checked by
the function NotReach which is a function implemented in Standard ML. The
implementation of the NotReach function is shown in Fig. 9. The implementation
of the NotReach function uses the built-in Standard ML function [79] List.all to
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check whether the edge between ad-hoc node i and j already exists in the list ah-
topology corresponding to the current topology. We explain the other functions
listed in Fig. 9 shortly.

fun NotReach ahtopology (ahnode1,ahnode2) =

(List.all (fn edge => edge <> (ahnode1,ahnode2)) ahtopology)

fun AddReach ahtopology (ahnode1,ahnode2) = (ahnode1,ahnode2)::ahtopology

fun Reach ahtopology (ahnode1,ahnode2) =

(List.exists (fn edge => edge = (ahnode1,ahnode2)) ahtopology)

fun DeleteReach ahtopology (ahnode1,ahnode2) =

List.filter (fn edge => edge <> (ahnode1,ahnode2)) ahtopology

Fig. 9. Function used in arc expression on page Micromobility in Fig. 7.

If the above enabled binding of transition AddLink occurs, it will remove the
multi-set of tokens from input places of the transition obtained by evaluating the
input arc expressions, and add the multi-set of tokens to each output place ob-
tained by evaluating the corresponding output arc expression. Since the AddLink
transition is connected to the area places with double arcs, the same multi-set of
tokens will be removed and added for each of these places. Hence, the marking
of these places will remain unchanged. The marking of place Microtopology will
change as the token (Area1,[]) will be removed and a new token will be added
as described by the arc expression from AddLink to Microtopology. This arc ex-
pression uses the function AddReach to add the edge AHnode(i),AHnode(j) to the
microtopology in area 1. The AddReach function uses the list constructor :: to
insert the edge (AHnode(i),AHnode(j)) at the head of the list ahtopology repre-
senting the current topology. Figure 10 shows the marking of page Micromobility
after the occurrence of the above binding of the AddLink transition. The marking
of the place Microtopology has changed so that Ahnode(1) is now able to reach
AHnode(2) in area 1. The transition AddLink is also enabled in other bindings.
In fact, it is enabled in bindings corresponding to all the possible edges that can
arise between nodes given the current location of nodes in the four areas.

In the marking shown in Fig. 10 both transitions are enabled. Transition
DeleteLink is enabled with the binding:

< area=Area1,i=1, j=2, ahtopology=[(AHnode(1),AHnode(2))] >

The guard of the DeleteLink transition uses the function Reach to ensure that
the transition is only enabled in bindings corresponding to links that exists in
the area. The implementation of Reach is given in Fig. 9, and it uses the list
library function List.exists to ensure that the link to be removed is an existing
list in the current topology of the ad-hoc network. The output arc expression to
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Fig. 10. The Micromobility page - after occurrence of AddLink.
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Fig. 11. The Macromobility page.

Microtopology uses the DeleteReach function to delete the edge in the list describ-
ing the topology in the area where the link disappears. If transition DeleteReach
occurs in the above binding, it will result in the marking shown in Fig. 7. This
means that it will remove the link which was added when AddLink occurred.

Macromobility. Figure 11 depicts page Macromobility specifying the macro-
mobility scenarios. Three types of macromobility are considered and modelled
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by the subpages of the accordingly named substitution transitions. All arcs in
Fig. 11 are double-headed arcs, but they have been positioned on top of each
other to reduce the number of crossing arcs. Each of the three types of macro-
mobility is described below.

Type 1: This type specifies the movement of an ad-hoc node from one ad-hoc
network to another ad-hoc network. The subpage Type1 modelling this type is
shown in Fig. 12. The transition InstantMove represents the instantaneous move
from one ad-hoc network to another ad-hoc network, i.e., at the same moment
as the node leaves the ad-hoc network in one area it joins the ad-hoc network
in another area. The declarations used are listed in Fig. 13. The value bound to
the variable i (on the arcs between the area places and InstantMove) of type Int
corresponds to the ad-hoc node that moves. When the InstantMove transition
occurs, the variable to will be bound to the area which is being moved to and the
variable from will be bound to the area being moved from. The microtopology of
the area being moved from is also updated by changing the corresponding token
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if (to = Area4)
then 1‘(AHnode(i),(Area4,IDLE))
else empty

if (to = Area2)
then 1‘(AHnode(i),(Area2,IDLE))
else empty

(from,
  ahtopology)

(from,DeleteAllReach ahtopology (AHnode(i)))

Fig. 12. Macromobility – Type 1.

var area,to,from : Area;

var ahtopology : AHTopology;

fun DeleteAllReach ahtopology ahnode =

List.filter

(fn (snode,dnode) => (snode <> ahnode) andalso (dnode <> ahnode))

ahtopology

Fig. 13. Declarations for macromobility – Type 1.
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on place Microtopology. The function DeleteAllReach uses the built-in function
List.filter to delete all edges in the microtopology related to the ad-hoc node
that moves. An ad-hoc node has to be in its IDLE state to move from one area
to another area. This ensures that the ad-hoc node is not currently moving
according to one of the other types of macromobility types described below. The
guard of the transition ensures that it is only enabled when the variables to and
from are bound to different areas, i.e., the binding corresponds to movement of
nodes between distinct areas.

The following binding is an example of an enabled binding of the transition
InstantMove in the marking shown in Fig. 14. It corresponds to the movement
of ad-hoc node 1 from area 1 to area 2:

< i=1,from=Area1,to=Area2,ahtopology=[AHnode(1),AHnode(2)]>

The transition is enabled in bindings corresponding to all the possible move-
ment of nodes between areas. An occurrence of the above binding results in the
marking shown in Fig. 14 where the token corresponding to ad-hoc node 1 is
now positioned on the place corresponding to area 2 and the link between ad-hoc
nodes 1 and 2 in area 1 no longer exists. The movement of ad-hoc nodes is also
evident on page Scenarios shown in Fig. 15.

Area4

AHNodexState

P I/O

2

1‘(AHnode(7),(Area4,IDLE))++ 
1‘(AHnode(8),(Area4,IDLE))

Area3

AHNodexState

P I/O

2

1‘(AHnode(5),(Area3,IDLE))++ 
1‘(AHnode(6),(Area3,IDLE))

Area2

AHNodexState

P I/O

3

1‘(AHnode(1),(Area2,IDLE))++ 
1‘(AHnode(3),(Area2,IDLE))++ 
1‘(AHnode(4),(Area2,IDLE))

Area1

AHNodexState

P I/O

1

1‘(AHnode(2),(Area1,IDLE))

Instant
Move

[to<>from]

Microtopology

AreaxAHTopology

P I/O4

1‘(Area1,[])++ 1‘(Area2,[])++ 1‘(Area3,[]
)++ 1‘(Area4,[])

if from = Area1
then 1‘(AHnode(i),(Area1,IDLE))
else empty

if (to = Area1)
then 1‘(AHnode(i),(Area1,IDLE))
else empty

if from = Area3
then 1‘(AHnode(i),(Area3,IDLE))
else empty

if (to = Area3)
then 1‘(AHnode(i),(Area3,IDLE))
else empty

if from = Area2
then 1‘(AHnode(i),(Area2,IDLE))
else empty

if from = Area4
then 1‘(AHnode(i),(Area4,IDLE))
else empty

if (to = Area4)
then 1‘(AHnode(i),(Area4,IDLE))
else empty

if (to = Area2)
then 1‘(AHnode(i),(Area2,IDLE))
else empty

(from,
  ahtopology)

(from,DeleteAllReach ahtopology (AHnode(i)))

Fig. 14. Macromobility Type 1 - after occurrence of InstantMove.

Type 2: This type specifies the movement of an ad-hoc node from one ad-hoc
network to another ad-hoc network. The difference between type 2 and type 1
is that there is a period of time in which the nodes moving are not part of any
of the ad-hoc networks in Area1-4. The page for type 2 mobility is similar to the
one for type 1 and is therefore omitted.

Type 3: This type specifies the movement of an ad-hoc node from one ad-hoc
network to another with the addition that there is a period of time in which
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Area1

AHNodexState

1

1‘(AHnode(2),(Area1,IDLE))

Communication

HS Communication#3

Mobility

HS Mobility#5

Area2

AHNodexState

3

1‘(AHnode(1),(Area2,IDLE))++ 
1‘(AHnode(3),(Area2,IDLE))++ 
1‘(AHnode(4),(Area2,IDLE))

Area3

AHNodexState

2

1‘(AHnode(5),(Area3,IDLE))++ 
1‘(AHnode(6),(Area3,IDLE))

Area4

AHNodexState

2

1‘(AHnode(7),(Area4,IDLE))++ 
1‘(AHnode(8),(Area4,IDLE))

System

HS System#10

Outside

AHNode

1

1‘AHnode(9)

Core
Network

CNNode

5

1‘CNnode(1)++ 1‘CNnode(2)++ 
1‘CNnode(3)++ 1‘CNnode(4)++ 
1‘CNnode(5)

Fig. 15. The Scenarios page - after occurrence of InstantMove.

the node moving is part of both the ad-hoc network being moved from and the
ad-hoc network being moved to. The page for type 3 mobility is similar to the
one for type 1 and is therefore omitted.

2.3 Modelling Communication

Figure 16 depicts page Communication which is the most abstract page modelling
the communication. The page models that each of the nodes (ad-hoc and core
network nodes) may send and receive packets. Packets in transit between ad-hoc
nodes are represented as tokens on place Routing. At the abstraction level of the
CPN model, there is no distinction made between communication internally in
an ad-hoc network and between nodes in different ad-hoc networks. The CPN
model simply specifies the requirement that the packet must be delivered to the
appropriate node - no matter in which ad-hoc network the node currently resides.
Place Routing hence abstractly represents the routing functionality that will have
to be implemented to get the packets from the source to the destination. How this
is done is a design and implementation issue. The transition Drop Packet models
that packets for ad-hoc nodes currently outside the system will be dropped.

The declarations used for modelling communication between nodes are listed
in Fig. 17. The colour set Packet is used modelling packets. A packet is abstractly
represented as having a source and destination. As an example, a packet sent
from AHnode(1) to AHnode(2) will be represented as a token with value (colour)
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Area3

AHNodexState

P I/O 2

1‘(AHnode(5),(Area3,IDLE))++ 
1‘(AHnode(6),(Area3,IDLE))

Area4

AHNodexState

P I/O2

1‘(AHnode(7),(Area4,IDLE))++ 
1‘(AHnode(8),(Area4,IDLE))

Area2

AHNodexState

P I/O2

1‘(AHnode(3),(Area2,IDLE))++ 
1‘(AHnode(4),(Area2,IDLE))

Area1

AHNodexState

P I/O 2

1‘(AHnode(1),(Area1,IDLE))++ 
1‘(AHnode(2),(Area1,IDLE))

Routing

Packet

SendReceive1

HS AHSendReceive#4

SendReceive3

HS AHSendReceive#4

SendReceive2

HS AHSendReceive#4

SendReceive4

HS AHSendReceive#4

Outside

AHNode

P I/O1

1‘AHnode(9)

Drop
Packet

Core
Network

CNNode

P I/O 5

1‘CNnode(1)++ 1‘CNnode(2)++ 
1‘CNnode(3)++ 1‘CNnode(4)++ 
1‘CNnode(5)

SendReceive

HS CNSendReceive#16

AHnode(i)

{src=node,dest=AHN(AHnode(i))}

Fig. 16. The Communication page.

color Node = union CNN : CNNode + AHN : AHNode;

color Packet = record src : Node * dest : Node;

var node : Node;

Fig. 17. Declarations for modelling communication.

{src = AHN(AHnode(1)), dest = AHN(AHnode(2))}. Hence for specification of
requirements, we abstract from the actual content of packets.

Page AHSendReceive modelling the sending and receiving of packets by ad-
hoc nodes is shown in Fig. 18. It is the subpage of each of the four SendReceive1-4
substitution transitions in Fig. 16. This means that there will be four instances
of this page when the CPN model is executed, one for each of the substitution
transitions. The marking and enabling of transitions on these instances will be
independent of each other. The instance depicted in Fig. 18 corresponds to the
instance associated with the substitution transition SendReceive1 in Fig. 16. The
transition SendPacket models the transmission of a packet from ad-hoc node i
to a node assigned to the variable node. The transition ReceivePacket models
the reception of a packet by ad-hoc node i. An occurrence of this transition will
remove the token corresponding to the packet being received from place Routing.

An occurrence of the SendPacket transition in Fig. 18 in a binding with:
i=1, state=IDLE,dest=AHN(AHnode(3)) results in the marking shown in Fig. 19.
The corresponding marking of page Communication is shown in Fig. 20. The Re-
ceivePacket transition on the instance of the AHSendReceive page corresponding
to the substitution transition SendReceive2 will now be enabled in binding cor-
responding to ad-hoc node 3 receiving the packet. The reception of the packet
will result in the corresponding token being removed from place Routing.
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Routing P I/O

Packet

Area

AHNodexState

P I/O 2

1‘(AHnode(1),(Area1,IDLE))++ 
1‘(AHnode(2),(Area1,IDLE))

Send
Packet

Receive
Packet

(AHnode(i),state) {src=AHN(AHnode(i)),dest=node}

{src=node,dest=AHN(AHnode(i))}(AHnode(i),state)

Fig. 18. The AHSendReceive page - instance for SendReceive1.

Routing P I/O

Packet

1

1‘{src = AHN(AHnode(1)),
dest = AHN(AHnode(3))}

Area

AHNodexState

P I/O 2

1‘(AHnode(1),(Area1,IDLE))++ 
1‘(AHnode(2),(Area1,IDLE))

Send
Packet

Receive
Packet

(AHnode(i),state) {src=AHN(AHnode(i)),dest=node}

{src=node,dest=AHN(AHnode(i))}(AHnode(i),state)

Fig. 19. The AHSendReceive page - after occurrence of SendPacket.

Area3

AHNodexState

P I/O 2

1‘(AHnode(5),(Area3,IDLE))++ 
1‘(AHnode(6),(Area3,IDLE))

Area4

AHNodexState

P I/O2

1‘(AHnode(7),(Area4,IDLE))++ 
1‘(AHnode(8),(Area4,IDLE))

Area2

AHNodexState

P I/O2

1‘(AHnode(3),(Area2,IDLE))++ 
1‘(AHnode(4),(Area2,IDLE))

Area1

AHNodexState

P I/O 2

1‘(AHnode(1),(Area1,IDLE))++ 
1‘(AHnode(2),(Area1,IDLE))

Routing

Packet

1

1‘{src = AHN(AHnode(1)),
dest = AHN(AHnode(3))}

SendReceive1

HS AHSendReceive#4

SendReceive3

HS AHSendReceive#4

SendReceive2

HS AHSendReceive#4

SendReceive4

HS AHSendReceive#4

Outside

AHNode

P I/O1

1‘AHnode(9)

Drop
Packet

Core
Network

CNNode

P I/O 5

1‘CNnode(1)++ 1‘CNnode(2)++ 
1‘CNnode(3)++ 1‘CNnode(4)++ 
1‘CNnode(5)

SendReceive

HS CNSendReceive#16

AHnode(i)

{src=node,dest=AHN(AHnode(i))}

Fig. 20. Marking of the Communication page - packet in transit.



Application of Coloured Petri Nets in System Development 645

The modelling of send and receive for nodes in the core network is simi-
lar to the ad-hoc nodes. Hence, we do not give a detailed explanation of page
CNSendReceive.

2.4 Conclusions on Modelling Ad-Hoc Networking Scenarios

The CPN model developed describes the abstract network architecture and as-
sociated communication and mobility scenarios considered in the project. A key
point of the CPN model is that it captures the communication and the mobility
aspects in a single model. The CPN model also allows derivation of combined
scenarios involving simultaneously communication and mobility. As such, the
CPN model can be seen as a formal documentation of the network architec-
ture and its communication and mobility requirements. The CPN model is also
suitable for generation of communication and mobility test-cases against which
the later protocol designs can be checked. A number of such interesting scenar-
ios were derived using simulation of the CPN model. The plan is to use these
scenarios as test-cases for the protocols to be developed in later phases of the
project. Finally, and probably most importantly, the development of the CPN
model has served as an important tool for stimulating discussion of the network
architecture and requirements.

The graphical layout of the CPN model currently mimics the network archi-
tecture. This was chosen since it is easier to visualise the behaviour of the system
directly at the level of the CPN model. This has been useful when presenting the
CPN model to people without CPN knowledge. A more compact CPN model
with tokens representing ad-hoc networks instead of tokens representing ad-hoc
nodes could be developed. This would make it possible to model an arbitrary
number of areas where ad-hoc networks can exists and it could be considered a
more direct way of modelling mobility of an entire ad-hoc network. The CPN
model would, however, lose some of its graphical appeal and hence possibly other
means of graphics showing mobility and communication would have to be added
to the CPN model. This approach seems more suitable for later CPN modelling
of the actual protocol designs.

The CPN model does not have an explicit representation of the connection
between the core network and the ad-hoc networks since the purpose of the CPN
model was to abstractly specify the communication and mobility requirements
and scenarios related to nodes in the ad-hoc networks. The operation of gate-
ways integrating the IPv6 core network routing protocols and the ad-hoc routing
protocols is at a lower level of abstraction than the current CPN model. The
purpose of the presented CPN model was to describe the scenarios and hence
capture requirements in an implementation-independent manner.

3 Modelling Requirements in Pervasive Health Care

The pervasive health care system (PHCS) [12] is envisioned in a joint project
between Aarhus County Hospital, the software company Systematic Software
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Engineering A/S [84], and the Centre for Pervasive Computing [10] at the Uni-
versity of Aarhus. In this section, we describe how CP-nets are applied in re-
quirements engineering for PHCS. The section is based on previous descriptions
given in [52–54], and has benefitted from efforts of many participants in the
pervasive health care research project [72].

The aim of PHCS is to improve the electronic patient record (EPR) [1],
which is currently being deployed at the hospitals in Aarhus, Denmark. EPR
is a comprehensive health care IT system with a budget of approximately 15
million US dollars; it will eventually have 8-10,000 users.

EPR solves obvious problems occurring with paper-based patient records
such as being not always up-to-date, only present in one location at a time,
misplaced, and sometimes even lost. However, the version of EPR currently
being deployed is a desktop PC based system which is not very practical for
hospital work, since the users like nurses and doctors are often on the move and
away from their offices (and, thus, desktop PCs). Moreover, users are frequently
interrupted. Therefore, the desktop PC based EPR potentially induces at least
two central problems for its users [6]. The first problem is immobility: in contrast
to a paper-based record, an electronic patient record accessed only from desktop
PCs cannot be easily transported. The second problem is time-consuming login
and navigation: EPR requires user identification and login to ensure information
confidentiality and integrity, and to start using the system for clinical work, a
logged-in user must navigate, e.g., to find a specific document for a given patient.

The motivation for PHCS is to address these problems. In the ideal situation,
the users should have access to the IT system wherever they need it, and it should
be easy to resume a work process which has previously been interrupted.

3.1 The Pervasive Health Care System

Use of personal digital assistants (PDAs), with which nurses and doctors could
access EPR using a wireless network, is a possible solution to the immobility
problem. That approach has been considered, but is not ideal, e.g., because
of well-known characteristics of PDAs like small screens and limited memory,
and because it does not fully address the time-consuming login and navigation
problem. PHCS is a more ambitious solution which to a larger extent takes
advantage of the possibilities of pervasive computing [81,90]. Three basic design
principles are exploited.

The first principle is context-awareness [80]. This means that PHCS is able
to register and react upon certain changes of context. More specifically, nurses,
patients, beds, medicine trays, and other items are equipped with radio frequency
identity (RFID) tags [74], enabling the presence of such items to be detected
automatically by involved context-aware computers, e.g., located by the medicine
cabinet and by the patient beds.

The second design principle is that PHCS is propositional, in the sense that
it makes qualified propositions, or guesses. Context changes may result in au-
tomatic generation of buttons that appear at the task-bar of computers. Users
may explicitly accept a proposition by clicking a button – and implicitly ignore
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or reject it by not clicking. The presence of a nurse holding a medicine tray for
patient P in front of the medicine cabinet is a context that triggers automatic
generation of a button Medicine plan:P, because in many cases, the intention of
the nurse is now to navigate to the medicine plan for P. If the nurse clicks the
button, she is logged in and taken to P’s medicine plan. It is, of course, impossi-
ble always to guess the intention of a user from a given context, and without the
propositional principle, automatic shortcutting could become a nuisance since
guesses would sometimes be wrong.

The third design principle is that PHCS is non-intrusive, i.e., not interfering
with or interrupting hospital work processes in an undesired way. Thus, when a
nurse approaches a computer, it should react to her presence in such a way that
a second nurse, who may currently be working on the computer, is not disturbed
or interrupted. The last two design principles cooperate to ensure satisfaction of
a basic mandatory user requirement: important hospital work processes have to
be executed as conscious and active acts by responsible human personnel, not
automatically by a computer.

Figure 21 outlines PHCS (with an interface that is simplified and translated
into English for the purpose of this paper). The current context of the system is
that nurse Jane Brown is engaged in pouring medicine for patient Bob Jones for
the giving to take place at 12 a.m. The medicine plan on the display shows which
medicine has been prescribed (indicated by ‘Pr’), poured (‘Po’), and given (‘G’)
at the current time. In this way, it can be seen that Advil and Tylenol have been
poured for the 12 a.m. giving, but Comtrex not yet. Moreover, the medicine tray
for another patient, Tom Smith, stands close to the computer, as can be seen
from the task-bar buttons.

Fig. 21. PHCS – outline.

3.2 Medicine Administration

To aid requirements engineering for PHCS, CPN models of envisioned new work
processes and of their proposed computer support were created. The scope of this
section is the work process medicine administration, which is described below.
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Assume that nurse N wants to pour medicine into a medicine tray and give
it to patient P. First, N goes to the room containing the medicine cabinet (the
medicine room). Here is a context-aware computer on which the buttons Login:N
and Patient list:N appear on the task-bar when N approaches. If the second but-
ton is clicked, N is logged in and a list of those patients of which she is in charge
is displayed on the computer. A medicine tray is associated with each patient.
When N takes P’s tray nearby the computer, the button Medicine plan:P will
appear on the task-bar, and a click will make P’s medicine plan appear on the
display. N pours the prescribed medicine into the tray and acknowledges this in
PHCS. When N leaves the medicine room, she is automatically logged out. N
now takes P’s medicine tray and goes to the ward where P lies in a bed, which
is supplied with a context-aware computer. When N approaches, the buttons
Login:N, Patient list:N, and Medicine plan:P will appear on the task-bar. If the
last button is clicked, the medicine plan for P is displayed. Finally, N gives the
medicine tray to P and acknowledges this in PHCS. When N leaves the bed area,
she is automatically logged out again.

The given description captures just one specific combination of sub work
processes. There are numerous other scenarios to take into account, e.g., medicine
may be poured for one or more patients, for only one round of medicine giving, all
four regular rounds of a 24 hours period, or for ad hoc giving; a nurse may have to
fetch trays left at the wards prior to pouring; a nurse may approach the medicine
cabinet without intending to pour medicine, but only to log into EPR (via PHCS)
or to check an already filled medicine tray; two or more nurses may do medicine
administration at the same time. To support a smooth medicine administration
work process, the requirements for PHCS must deal with all these scenarios and
many more. A CPN model, with its fine-grained and coherent nature, is able to
support that.

3.3 Medicine Administration CPN Model

The medicine administration CPN model consists of 11 pages with a total of
54 places and 29 transitions. An overview of the model in terms of the hierar-
chy page is given in Fig. 22. The graph shows how the work process medicine
administration is decomposed in sub-work processes.

We give an impression of the model by describing the page shown in Fig. 23.
The page models the pouring and checking of trays and is represented by the node
PourChkTrays in Fig. 22. The medicine cabinet computer is in focus. It is mod-
elled by a token on the Medicine cabinet computer place. This place has colour set
COMPUTER, whose elements are 4-tuples (compid,display,taskbar,users) consist-
ing of a computer identification, its display (main screen), its task-bar buttons,
and its current users. In the initial marking, the computer has a blank display,
no task-bar buttons, and no users.

The colour set NURSE is used to model nurses. A nurse is represented as a
pair (nurse,trays), where nurse identifies the nurse and trays is a container data
structure holding the medicine trays that this nurse currently has in possession.
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ProvideTrays

Hierarchy#10

PourAndAck#

MedAdm#1 Erklaeringer#

GiveToPat#1

GiveMed#7

PourChkTray FindPlanTray#

PourChkTrays

GiveToPats#9

FindPlan#10

GetTrays#3

Fig. 22. Medicine administration CPN model: hierarchy page.

Initially, the nurses Jane Brown and Mary Green are ready (represented as tokens
in the Ready place) and have no trays.

Occurrence of the Approach medicine cabinet transition models that a nurse
changes from being ready to being busy nearby the medicine cabinet. At the
same time, two buttons are added to the task-bar of the medicine cabinet com-
puter, namely one login button for the nurse and one patient list button for
the nurse. In the CPN model, these task-bar buttons are added by the function
addMedicineCabinetButtons appearing on the arc from the transition Approach
medicine cabinet to the place Medicine cabinet computer.

The possible actions for a nurse who is by the medicine cabinet are modelled
by the three transitions Pour/check tray, Enter EPR via login button, and Leave
medicine cabinet. Often, a nurse at the medicine cabinet wants to pour and/or
check some trays. How this pouring and checking is carried out is modelled on
the subpage PourChkTray, which is the subpage of the substitution transition
Pour/check tray.

The Enter EPR via login button transition models that a nurse clicks on the
login button and makes a general-purpose login to EPR. It is outside the scope
of the model to describe what the nurse subsequently does – the domain of
the model is specifically medicine administration, not general EPR use. The
transition has a guard which checks if a nurse is allowed to log into EPR. When
a nurse logs in, the login button for that nurse is removed from the task-bar of
the computer, modelled by the removeLoginButton function. Moreover, the nurse
is added to the set of current users by the function addUser.

The Leave medicine cabinet transition models the effect of a nurse leaving:
it is checked whether the nurse is currently logged in, modelled by the function
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addMedicineCabinetButtons nurse taskbar,
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if loggedin nurse (compid,display,taskbar,users) then
  (compid, blank, removeMedicineCabinetButtons nurse taskbar, removeUser nurse users)
else
  (compid, display, removeMedicineCabinetButtons nurse taskbar, users)

(compid,display,taskbar,users)

(compid,display,
removeLoginButton nurse taskbar,
addUser nurse users)

Fig. 23. Medicine administration CPN model: PourChkTrays page.

loggedin appearing in the if-then-else expression on the arc going from Leave
medicine cabinet to the Medicine cabinet computer place. If the nurse is logged in,
the medicine cabinet computer automatically returns to a blank screen, removes
the nurse’s task-bar buttons (removeMedicineCabinetButtons), and logs her off
(removeUser). If she is not logged in, the buttons generated because of her pres-
ence are removed, but the state of the computer is otherwise left unaltered. In
any case, the token corresponding to the nurse is put back on the Ready place.

3.4 Medicine Administration Animation

An animation built on top of the CPN model is shown in Fig. 24. The anima-
tion is an interface to the CPN model, i.e., the animation is consistent with
the CPN model and reflects the markings, transition occurrences, and marking
changes that appear when the CPN model is executed. The animation hides the
technicalities of CP-nets, e.g., concepts like places, transitions, tokens, enabling,
occurrence, etc. In this way, the animation supports communication between
users and system developers, by reducing the semantic distance [26] between the
CPN model and the conception by the users of future work processes and their
proposed computer support. The limitations of formal specifications as a means
of communication in general, and, thus, the need for an animation, are widely
recognised, see, e.g. [95].

The link between the CPN model and the animation is that the transitions
of the CPN model are calling drawing functions related to the animation when
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Ward
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Ward Medicine room Bath Ward

Medicine room

Bob Jones
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Take trayPatient list: Jane Brown

Login: Jane Brown

Ward

Fig. 24. Medicine administration animation.

they occur. Occurrence of a transition in this way triggers that graphical objects
like nurse icons are created, moved, deleted, etc. in the animation.

The animation runs in three windows. The Department window (at the top
of Fig. 24) shows the layout of a hospital department with wards, the medicine
room, the so-called team room (the nurses’ office), and two bathrooms. The
Medicine room window (in the middle of Fig. 24) shows the medicine cabinet,
pill boxes, tables, medicine trays, and the computer screen (enlarged). The Ward
window (at the bottom of Fig. 24) shows a patient, a bed, a table, and the
computer screen. Thus, the Department window gives an overview, and the other
windows zoom in on areas of interest.

The animation is interactive in the sense that the animation user is prompted
to make choices. In Fig. 24, the animation shows a situation where nurse Jane
Brown is in the medicine room, shown in the Department window and the
Medicine room window, sufficiently close to produce two task-bar buttons at
the computer. The animation user must make choices in order to drive the an-
imation further. Specifically, by selecting one of the buttons to the right in the
Medicine room window, the animation user can choose to take a tray or leave the
medicine room. Also, the animation user can select one of the task-bar buttons at
the computer. These four choices correspond to enabled transitions in the CPN
model. As examples, if the animation user pushes the Leave medicine cabinet but-
ton, it forces the transition with the same name in the CPN model (cf. Fig. 23)
to occur. The result of the occurrence is experienced by the animation user who
sees Jane Brown walking away from the medicine cabinet and the removal of
the task-bar buttons on the computer screen, which were generated because of



652 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

Jane Brown’s presence. If the animation user pushes the Take tray button and
then selects Bob Jones’ medicine tray, it is moved close to the computer, and a
medicine plan button for Bob Jones appears on the task-bar. If this button is
pushed, the computer will display a screen similar to the one shown in Fig. 21.

3.5 CPN in Requirements Engineering for PHCS

The PHCS project started in early 2001. The first activities were domain analysis
in the form of ethnographic field work, and a series of vision workshops with
participation of nurses, doctors, computer scientists, and an anthropologist. An
outcome of this analysis was natural-language descriptions of work processes and
their proposed computer support. The first version of the CPN model presented
in this section was based on these prose descriptions. The CPN model and the
animation were extended and modified in a number of iterations, each version
based on feedback on the previous versions. The animation has served as a
basis for discussions in evaluation workshops with participation of nurses from
hospitals in Aarhus and personnel from the involved software company.

Through construction and use of the CPN model and the animation, in par-
ticular at the evaluation workshops, we have gained some experiences with CP-
nets in requirements engineering. In the terminology of [89], we have seen that
for PHCS, the CPN model and the animation have been an effective means for
specification, specification analysis, elicitation, and negotiation and agreement.
Each of these concepts will be discussed in more detail below.

Specification and Specification Analysis. Our specification has a sound
foundation because of the formality and unambiguity of the CPN model. From
the CPN model of medicine administration, requirements are precisely described
by the transitions modelling manipulation of the involved computers. Each tran-
sition connected to the places modelling computers, e.g., the place Medicine cab-
inet computer shown in Fig. 23, must be taken into account. The following are
examples of requirements induced by the transitions on the page of Fig. 23:

1. (R1) When a nurse approaches the medicine cabinet, the medicine cabinet
computer must add a login button and a patient list button for that nurse
to the task-bar (transition Approach medicine cabinet).

2. (R2) When a nurse leaves the medicine cabinet, if she is logged in, the
medicine cabinet computer must return to a blank display, remove the nurse’s
login button and patient-list button from the task-bar, and log her out (tran-
sition Leave medicine cabinet).

3. (R3) When a nurse selects her login button, she must be added as a user
of EPR, and the login button must be removed from the task-bar of the
computer (transition Enter EPR via login button).

Specification analysis is well supported through simulation that allows ex-
periments and trial-and-error investigations of various scenarios for the new en-
visioned work process. Specification analysis may also be supported through
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formal verification. However, the CPN model of medicine administration is too
large and complex to make, e.g., verification by exploration of the full state space
possible in practice. In general, we believe that the full state space of a CPN
model made to support requirements engineering typically will be very large. The
reason is that often, in the view of the users who should be actively involved
in the requirements engineering process, a representation of a work process and
its proposed computer support must include many details. This conflicts with
modelling the work process in a more coarse-grained, abstract way, with a corre-
sponding smaller state space. Therefore, verification of CPN models supporting
requirements engineering is an application area where strong methods for state
space reduction, condensation, and exploration are highly needed.

Elicitation. Elicitation includes the discovery of new requirements and the gain
of a better understanding of known requirements. Elicitation is, like specifica-
tion analysis, well supported through simulation. Simulation spurs elicitation by
triggering many questions. Simulation of a CPN model typically catalyses the
participants’ cognition and generates new ideas. Interaction with an executable
model that is a coherent description of multiple scenarios most likely brings up
questions, and issues appear that the participants had not thought about earlier.
Examples of questions (Qs) that have appeared during simulation of the CPN
model for medicine administration and corresponding answers (As) are:

1. (Q1) What happens if two nurses are both close to the medicine cabinet com-
puter? (A1) The computer generates login buttons and patient list buttons
for both of them.

2. (Q2) What happens when a nurse carrying a number of medicine trays ap-
proaches a bed? (A2) In addition to a login button and a patient list button
for that nurse, only one medicine plan button is generated – a button for
the patient associated with that bed.

3. (Q3) Is it possible for one nurse to acknowledge pouring of medicine for a
patient while another nurse at the same time acknowledges giving of medicine
for that same patient? (A3) No, that would require a more fine-grained
concurrency control exercised over the patient records.

Questions like Q1, Q2, and Q3 may imply changes to be made to the CPN
model, because sometimes emergence of a question indicates that the current
version of the CPN model does not reflect the work process properly. As a
concrete example, in an early version of the medicine administration CPN model,
the leaving of any nurse from the medicine cabinet resulted in the computer
display being blanked off. To be compliant with the non-intrusive design principle
for PHCS, the leaving of a nurse who is not logged in, should of course not disturb
another nurse who might be working at the computer, and the CPN model had
to be changed accordingly.

Negotiation and Agreement. Leaving practical issues such as being widely
accepted by involved stakeholders aside, negotiation and agreement may be eased
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via CPN models. In large projects, negotiation about requirements inevitably
takes place during the project. In many cases, this has strong economical con-
sequences, because a requirements specification for a software system may be
an essential part of a legal contract between a customer, e.g., a hospital, and
a software company. Therefore, it is important to be able to determine which
requirements were included in the initial agreement. Questions like Q1, Q2, and
Q3 above may easily be subject to dispute. However, if the involved parties have
the agreement that medicine administration should be supported, and have the
overall stipulation that the formal and unambiguous CPN model is the author-
itative description, many disagreements can quickly be settled.

3.6 Conclusions on Modelling Requirements to the PHCS

In this section, we have demonstrated that CPN models are able to support
various common requirements engineering activities. However, of course, CP-
nets are not a panacea. Use of CP-nets does not address, e.g., how to carry
out the necessary initial domain analysis, interviews with users, etc. Moreover,
the purpose of the presented CPN model is solely to describe the requirements
of an IT system, relative to the work processes to be supported. A number of
other requirements issues are not addressed properly by the CPN model, e.g.,
performance and availability issues.

The CPN model and the animation of the medicine administration work
process can be seen as an alternative to or supplement to UML use cases [20,45].
Use cases model work processes to be supported by a new IT system, and a set
of use cases is interpreted as functional requirements for that system.

A main motivation for our choice of requirements engineering approach for
PHCS was to build on top of prose descriptions of work processes and proposed
computer support, consolidated as UML use cases, with which the stakeholders
of PHCS were already familiar via EPR. A key observation, done many times
before, is that UML use cases have a number of weaknesses and shortcomings,
e.g., [82] points out a number of problems under headlines like use case modelling
misses long-range logical dependency and use case dependency is non-logical and
inconsistent. Various remedies have been proposed, see, e.g., [2, 3].

Having an executable representation of a work process, instead of a static
representation in terms of a UML use case, supports specification analysis and
elicitation as we discussed. This is possible via the CPN model itself, but can
only be done properly by people who are able to read and understand the formal
model. In practice, this often means only the system developers. The animation
enables users like nurses and doctors to be actively engaged in specification anal-
ysis and elicitation, which is crucial. User participation increases the probability
that a system is ultimately built that fits with the future users’ work processes.

4 State Space Analysis of an Audio/Video Protocol

Bang & Olufsen [5] is a Danish manufacturer of audio/video systems. The project
described in this section was originally conducted in 1995-1996 [14] and was
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concerned with the design of the next generation of the BeoLink system. The
BeoLink system makes it possible to connect audio and video devices in a home
via a dedicated network. The CPN modelling and analysis focused on the design
of the lock management protocol in the BeoLink system. This protocol is used
to grant devices exclusive access to services in the system, such as being able
to use the loud speakers when playing music. The lock management protocol
is based on the notion of a key, and a device is required to possess the key to
access services in the system. When the system is switched on, exactly one key
must be generated by the devices currently in the system. Furthermore, this
key must be generated within 2 seconds for the system to be properly working.
Special devices in the system called audio and video masters are responsible for
generating the key when the system is switched on.

A CPN model modelling BeoLink systems with 1-4 devices was constructed
in the original project and analysed using the state space method of CP-nets. The
CPN model constructed in the project was timed, meaning that the time taken
by the various events in the lock management protocol was reflected in the CPN
model. This was needed since the correctness of the lock management protocol
depends on timing. When the project was conducted, the CPN computer tools
had only support for ordinary state spaces, i.e., state spaces in their most basic
form. Since the ordinary state space of the timed CPN model was infinite, this
meant that only the initialisation phase of the lock management protocol could
be validated. The initialisation phase is concerned with generating the key when
the system is switched on. Since then, a number of more powerful state space
methods have been developed and implemented in the CPN computer tools.

In this section we give a brief presentation of a revised and more compact
CPN model of the BeoLink system able to capture any number of devices.
This is followed by a demonstration of how the more elaborate set of state
space analysis methods currently available can be used to verify the full lock
management protocol.

4.1 The Revised BeoLink CPN Model

Figure 25 shows the hierarchy page of the BeoLink CPN model. The subpage
network models the network connecting the devices in the system. Page device and
its subpages model the lock management protocol entities in each device. The
subpages on the right, from reqkey down to fltimeo2 correspond to the different
functional blocks of the lock management protocol. The subpage keyuser models
the behaviour of devices as seen from the lock management protocol.

Figure 26 shows the BeoLink page. The substitution transition Network rep-
resents the network connecting the devices in the system. The substitution tran-
sition Device models the devices in the system. The CPN model provides a folded
representation of the behaviour of the devices. This is achieved by encoding the
identity of the devices as part of the colour of tokens. This makes it possible
to capture any number of devices without having to make changes to the net
structure of the CPN model, and without having an instance of the subpages
of the substitution transition Device for each of the devices in the system. This
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Generation
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Fig. 25. Hierarchy page for the CPN BeoLink model.

Device
HS device#43

recbuf

TLG_BUFFERS

c

CONFIGS

Network
HS network#42

sendbuf

DIDxTLG_LIST

Fig. 26. The BeoLink page.

way of compactly representating any number of devices, and which makes the
CPN model parametric will become evident when we present the keyuser page.

The socket places recbuf and sendbuf in Fig. 26 connecting the two substi-
tution transitions, model send and receive message buffers between the devices
and the network. Messages in the lock management protocol are called telegrams
and are abbreviated TLG. Each device has a buffer for outgoing and incoming
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(did,tlg_list2) 
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Fig. 27. The keyuser page - initial marking.

telegrams. The place c is used for configuration of the CPN model and will not
be explained in any detail.

The behaviour of devices, as seen from the lock management protocol, is
modelled by page keyuser shown in Fig. 27. Each device has a cyclic control
flow where the device is initially idle (modelled by place idle), then it asks for
the key (modelled by the transition requestkey), and it enters a state where it is
waiting for the key (modelled by place waiting). Granting of the key to a device is
modelled by the transition getkey which causes the device to enter a state where
it is using the key (modelled by the place usekey). When the device is finished
using the key, it will release the key and return to the idle state where it may
then ask for the key again. The places fl status, fl cmd list, and fl in are used to
model the internal state of a device. The places sendbuf and recbuf are linked to
the accordingly named places on page BeoLink via port/socket relationship. The
markings of these five places are also changed by the different functional blocks
of the lock management protocol.

Figure 27 shows a marking of the CPN model with three devices all in their
idle state, as represented by the three tokens on place idle. A device is simply
identified by a number. In the marking shown in Fig. 27 any of the three devices
may ask for the key corresponding to the requestkey transition being enabled
in three different bindings depending on the device identifier assigned to the
variable did of colour set DIDT. The domain of the DIDT colour set is the set
of device identifiers. If the transition occurs in a binding with did = 1, the
token with colour 1 will be removed from place idle and added to place waiting.
Figure 28 shows a marking of page keyuser where device 1 uses the key, whereas
devices 2 and 3 have requested but have not been granted the key.
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Fig. 28. The keyuser page - device 1 using the key.

The CPN model of the BeoLink system is timed. This means that the CPN
model captures the time taken by the different events in the protocol. The time
concept of CP-nets is discrete and is based on the introduction of a global clock
used to represent current model time. Furthermore, in addition to a data value,
tokens in a timed CPN model may carry time stamps. The time stamp of a
token describes the earliest model time at which the token can be consumed,
i.e., removed by the occurrence of a transition. The time stamps of tokens are
written as part of the current marking. As an example, the three tokens on
place idle in Fig. 27 all have time stamp 500. This can be seen from the number
in square brackets written after the @ sign in the box showing the details of
the tokens residing on that place. To model that an event corresponding to the
occurrence of a transition takes r time units, the tokens added to output places
of the transition are given a time stamp that is r time units larger than the
model time at which the transition occurs. The time units to add to the current
model time when tokens are produced by the occurrence of a transition are
specified using the @+ operator. As an example, the transition getkey uses the
@+ operator in the arc expression on the output arc leading to the place usekey.
The time units to add to the current model time is specified by the expression
10+40*ran 0 1 where ran 0 1 is a variable that can be bound to either 0 or 1.
This models that the event of obtaining the key take either 10 or 50 time units.

The execution of a timed CPN model is time driven. The CPN model remains
at a given model time as long as there are enabled transitions at that model
time. When no more transitions are enabled at the current model time, the
global clock is incremented to the earliest next model time at which transitions
are enabled. The model time in the marking shown in Fig. 27 is 500. Hence,
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transition requestkey is enabled since the time stamps of the tokens on place idle
are less than or equal to current model time. The model time in the marking
shown in Fig. 28 is 2036. This is the reason why the releasekey transition is not
enabled, since the time stamp of the token residing on place usekey is 2050. In
the marking shown, transitions are enabled in the other pages of the CPN model.

4.2 Full State Spaces

The basic idea of state spaces is to calculate all reachable states and state changes
of the system and represent these as a directed graph. The state space of a CPN
model has a node for each of its reachable markings, i.e., markings that can
be reached by occurrences of transitions starting from the initial marking. The
outgoing arcs of a node n in the state space correspond to the set of enabled
binding elements in that marking. A binding element is a pair consisting of a
transition and an assignment of values to the variables of the transition. The
destination node of an arc originating in node n is the node representing the
marking resulting from the occurrence of the binding element corresponding to
the arc in the marking represented by node n.

1

idle    : 1‘1@[500]++1‘2@[500]++ 
          1‘3@[500]
waiting : tempty
usekey  : tempty

2

idle    : 1‘1@[500]++ 
          1‘2@[500]
waiting : 1‘3@[500]
usekey  : tempty

3

idle    : 1‘1,@[500]++ 
          1‘3,@[500]
waiting : 1‘2,@[500]
use_key : tempty

4

idle    : 1‘2@[500]++ 
          1‘3@[500]
waiting : 1‘1@[500]
usekey  : tempty

5

6 7

8

9

10

requestkey : did=3
requestkey : did=2

requestkey : did=1

keywan : did=2

requestkey : did=3 requestkey : did=1

keywan : did=1

requestkey : did=3

requestkey : did=2

keywan : did=3

requestkey : did=2

requestkey : did=1

Fig. 29. Initial fragment of state space.

Figure 29 shows an initial fragment of the state space for the BeoLink sys-
tem. Node 1 corresponds to the marking previously shown in Fig. 27. Figure 29
shows the nodes in the state space that are reachable by at most two occur-
rences of transitions starting from node 1. In the marking corresponding to node
1, there are three enabled binding elements corresponding to the three outgoing
arcs from node 1. This three outgoing arcs correspond to all three devices being
able to request the key in the marking corresponding to node 1. The dashed



660 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

boxes shown next to nodes 1-4 list the tokens present on selected places on the
keyuser page in the marking represented by the node. The constant tempty de-
notes the empty set of tokens in a timed CPN model. These boxes have been
omitted for some nodes to make the figure readable. The dashed boxes posi-
tioned on top of the arcs describes the enabled binding element to which the arc
corresponds. The transition keywan is on another page in the CPN model.

Figure 29 was created using the support in the CPN computer tools for
drawing selected parts of a state space. The CPN computer tools make it possible
to generate the state space manually as well as automatically. The state space
can be generated either depth-first or breadth-first. From a constructed state
space it is possible to automatically verify a number of properties of the system
such as absense of deadlocks and other safety properties. The CPN computer
tools contain a number of query functions that allow the analyst to investigate
and verify the system using state spaces. The three main correctness criteria of
the lock management protocol are listed below.

1. (C1) Key generation. When the system is booted, a key is eventually gener-
ated. The key is to be generated within 2.0 seconds.

2. (C2) Mutual exclusion. At any time during the operation of the system at
most one key exists.

3. (C3) Key access. Any given device always has the possibility of obtaining
the key, i.e., no device is ever excluded from getting access to the key.

In the original analysis conducted in [14] only the first property was verified.
The remaining properties could not be verified due to the state space of the
timed CPN model being infinite. The key generation property was investigated
by considering a partial state space, i.e., a finite fragment of the full state space.
The partial state space was obtained by not generating successors for states
where the key had been generated or where the model time had passed two
seconds. It was then checked that in all markings for which successor states had
not been generated, a key was present in the system. Table 1 lists some statistics
showing the number of states in the partial state space and the CPU time it
took to generate the partial state space. Configurations written with the form
VM : n are configurations with a video master and a total of n devices. Similarly,
configurations with one audio master and a total of n devices are written with
the form AM : n. CPU time is written on the form h : mm : ss where h is

Table 1. Statistics for partial state space of initialisation phase.

Config Nodes Time

AM : 3 1,839 0:00:07
AM : 4 22,675 0:02:42
AM : 5 282,399 1:47:44

VM : 3 1,130 0:00:04
VM : 4 13,421 0:01:26
VM : 5 164,170 0:58:28
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hours, mm is minutes, and ss is seconds. The results using partial state spaces
and the revised CPN model were obtained on a HP Unix Workstation with 1
Gb of memory.

4.3 Timed Condensed State Spaces

A main problem with state spaces in their most basic form is that they are
infinite for timed CPN models of cyclic/reactive systems. The problem is that
the absolute notion of time as represented by the global clock and the time
stamps of tokens are carried over into the state space. The BeoLink system is
an example of a cyclic system since the devices are executing a loop where they
request the key, are granted the key, and finally release the key. As a concrete
example, consider the marking of the keyuser page shown in Fig. 30. This marking
is similar to the marking previously shown in Fig. 28, except that all devices have
had the key once and device 1 now possesses the key again. The markings in
Fig. 28 and Fig. 30 are, however, represented by two nodes in the state space
because the time stamps of the tokens and the value of the global clock differ.
Intuitively, the markings are, however, similar.
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Fig. 30. The keyuser page - all devices have used the key once.

Timed condensed state spaces [16] have been developed to overcome this
problem, and use equivalence on the states to factor out the absolute notion
of time. In this way, the infinite state space can be condensed into a finite
state space. The condensed state space can be computed using a variant of the
standard algorithm for state space construction, but without first constructing
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the full state space. The basic idea is to normalise each state encountered during
state space generation by:

1. (N1) Setting all time stamps on tokens that are less than current model time
to zero (as their time stamp cannot influence enabling).

2. (N2) Subtracting the current model time from all time stamps of tokens that
are greater than current model time.

3. (N2) Setting the current model time to 0.

It have been proven [16] that all properties of the system expressible in the
real-time temporal logic RCCTL∗ [31] are preserved in the condensed state space.
This set of properties includes all standard dynamic properties of CP-nets. Ta-
ble 2 shows statistics for the condensed state space for the full BeoLink system.
The results were obtained on a HP Unix Workstation with 1Gb of memory. It
was not possible to generate the time condensed state space for more than 3
devices with the available amount of memory. Using the condensed state space
it is now also possible to verify properties C2 and C3 from Sect. 4.2. Property
C2 can be expressed as the property that in no reachable marking is there more
than one token on place usekey (see Fig. 27), and property C3 can be expressed
as the property that from any reachable marking and for any device it is always
possible to reach a marking where the token corresponding to this device is on
place usekey. These two properties can be expressed using the query functions
in the CPN state space tool and answers was computed in a few seconds.

Table 2. Statistics for the time condensed state spaces.

Config Nodes Arcs Time

AM : 2 346 399 0:00:03
AM : 3 27,246 37,625 0:04:10

VM : 2 274 310 0:00:02
VM : 3 10,713 14,917 0:01:34

4.4 The Symmetry Method

Many concurrent systems possess a certain degree of symmetry. For example,
many concurrent systems are composed of similar components whose identities
are interchangeable from a verification point of view. This symmetry is also
reflected in the state spaces of such systems. The basic idea in the symmetry
method [17, 19, 32, 43, 48, 49] is to represent symmetric states and symmetric
binding elements using equivalence classes. State spaces can be reduced by fac-
toring out this symmetry, and the symmetry-reduced state space is typically
orders of magnitude smaller than the full state space. Furthermore, the same
set of dynamic properties can be verified and analysed based on the symmetry-
reduced state space without unfolding to the full state space.



Application of Coloured Petri Nets in System Development 663

The devices in the BeoLink system that are not audio or video masters
are symmetric, in the sense that they behave in the same way. They are only
distinguishable by their device identity. This symmetry is also reflected in the
state space (see Fig. 29). Consider, for instance, the two states 2 and 3 that
correspond to states in which exactly one non-master device (device 1 is the
audio master in the considered configuration) has requested the key. These two
states are symmetric in the sense that node 2 can be obtained from node 3 by
swapping the identity of device 2 and 3. Similarly, the two states represented
by node 5 and node 10 can be obtained from each other by interchanging the
identity of devices 2 and 3. These two states correspond to states in which one
device has requested the key and the lock management protocol has registered
the request. Furthermore, it can be observed that two symmetric states such
as state 2 and state 3 have symmetric sets of enabled binding elements, and
symmetric sets of successor states. This property can be extended to finite and
infinite occurrence sequences of transitions.

Figure 31 shows the initial fragment of the symmetry-reduced state space for
the BeoLink system obtained by considering two states equivalent if one can
be obtained from the other by a permutation of the identity of the non-master
devices. The nodes and arcs now represent equivalence classes of markings and
binding elements, respectively. The equivalence class of states represented by a
node is listed in brackets in the inscription of the node, e.g., node 2 represents the
states 2 and 3 from Fig. 29. A similar notation is used for binding elements. The
basic idea in symmetry-reduced state spaces is to represent these equivalence
classes by picking a representative for each equivalence class. The symmetries
used to reduce the state space are required to be symmetries actually present in
the CPN model. The CPN model is, therefore, required to satisfy a set of static
properties relative to the set of symmetries to be used for the reduction [48].
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{requestkey : did=1}

Fig. 31. Initial fragment of symmetry-reduced state space.

Table 3 shows the results when using the symmetry method on the initial-
isation phase of the BeoLink system. The size of the full state space for the
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Table 3. Statistics for symmetry reduced state space - initialisation phase.

Full State Spaces Symmetry Reduced
Config Nodes Time Nodes Time Factor (n − 1)!

AM : 3 1,839 0:00:07 53.0 % 100.0 % 1.9 2
AM : 4 22,675 0:02:42 19.3 % 40.1 % 5.2 6
AM : 5 282,399 1:47:44 5.6 % 10.4 % 17.8 24
AM : 6 3,417,719 - 1.4 % 2:13:29 71.4 120

VM : 3 1,130 0:00:04 53.2 % 100.0 % 1.9 2
VM : 4 13,421 0:01:26 19.4 % 40.6 % 5.1 6
VM : 5 164,170 0:58:28 5.6 % 10.1 % 17.6 24
VM : 6 1,967,159 - 1.4 % 1:10:35 71.4 120
VM : 7 22,892,208 - 0.3 % ≈15 hours 333.3 840

AM:6, VM:6, and VM:7 configurations has been calculated from the symmetry-
reduced state space by computing the size of each equivalence class. The results
were obtained on a HP Unix Workstation with 1Gb memory. Calculation of the
symmetry-reduced state space is based on calculating canonical representatives
for each equivalence class [63]. This means that whenever a state is generated,
this state is transformed into a canonical representative for its equivalence class.
It is then checked whether this canonical representative is already included in
the state space. The numbers in the Nodes column for the symmetry-reduced
state space are relative to the number of nodes in the full state space, i.e., the
number of nodes in the symmetry-reduced state space divided by the number of
nodes in the full state space. The numbers in the Time column are also relative
to the generation of the full state space for those configurations where the full
state space could be generated. The Factor column gives the number of nodes
in the full state space divided by the number of nodes in the symmetry reduced
state space. The column (n−1)! lists the factorial of n−1 where n is the number
of devices in the configuration. When there are n devices in the configuration,
there are n−1! possible permutations of the non-master devices. Hence, (n−1)!
is the theoretical upper limit on the reduction factor that can be obtained for a
configuration with n devices. It can be seen that the computation time becomes
large for 7 devices. This is due to the calculation of canonical representative
being costly. It has been proven [17] that computing canonical representative
for equivalence classes is at least as hard as the graph isomorphism problem for
which no polynomial time algorithm is known.

Table 4 lists the statistics for the symmetry-reduced state space of the full
BeoLink system. Here we have used the symmetry method and the time con-
densed state space simultaneously. The number of nodes for the AM : 4 and
VM : 4 configurations in the time condensed state space has been computed
from the symmetry reduced state space.

4.5 The Sweep-Line Method

The amount of available main memory is often the limiting factor in the use
of state spaces. During construction of the state space, the set of markings en-
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Table 4. Statistics for symmetry reduced state space - full system.

Time Equivalence Symmetry Reduced
Config Nodes Time Nodes Time Factor (n − 1)!

AM : 2 346 0:00:03 100.0 % 100.0 % 1 1
AM : 3 27,246 0:04:10 50.1 % 52.0 % 1.9 2
AM : 4 12,422,637 - 16.7 % ≈25 hours 5.9 6

VM : 2 274 0:00:02 100. % 100.0 % 1 1
VM : 3 10,713 0:01:34 50.6 % 50.0 % 1.9 2
VM : 4 3,557,441 - 16.7 % 7:10:21 5.9 6

countered are kept in memory to recognise already visited marking and thereby
ensure that the state space generation terminates. The basic idea of the sweep-
line method [15, 59] is to exploit a certain kind of progress exhibited by many
systems. Exploiting progress makes it possible to explore all the reachable mark-
ings of a CPN model, while only storing small fragments of the state space in
memory at a time. This means that the peak memory usage is reduced. The
sweep-line method was used in [38] for verification of transactions in the Wire-
less Application Protocol (WAP) with a reduction in peak memory usage to
20%. The sweep-line method is aimed at on-the-fly verification of safety proper-
ties, e.g., determining whether a reachable marking exists satisfying a given state
predicate. Hence, it can be used to verify properties C1 and C2 of the BeoLink
system, but not property C3.

The Basic Sweep-Line Method. For the BeoLink system, one source of
progress is the time in the system (the model time) as represented by the value
of the global clock in the CPN model. The global clock in a timed CP-net [48]
has the property that for two markings M and M ′, where M ′ is a successor
marking of M , the value of the global clock in M is less than or equal to the
value of the global clock in M ′. This progress can be formalised as a progress
measure mapping a marking into the corresponding value of the global clock.
The progress measure based on the global clock is a monotonic progress measure.

Figure 32 shows how the markings/nodes in the state space fragment from
Fig. 29 can be ordered according to this notion of progress. The intuition of the
ordering is the following: markings in one layer all have the same value of the
progress measure (the global clock), and markings in higher numbered layers
are markings where the system has progressed further than in markings in lower
numbered layers. Layer 0 contains markings in which the global clock has value
0. Layer 1 contains markings where the global clock is 500 time units.

A marking in a given layer has successor markings either in the same layer or
in a layer that represents further progress, but never in a layer that represents
less progress. Markings in Layer 0 can thus never be reached by markings in
Layer 1. If we calculate the markings one layer at a time, moving from one layer
to the next when all markings in the first layer have been calculated and not
before, we can think of it as a sweep-line moving through the state space. At any
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Fig. 32. Initial fragment of full state space – arranged by progress.

one point during state space generation, the sweep-line corresponds to a single
layer—all the states in the layer are “on” the sweep-line—and all new markings
calculated are either on the sweep-line or in front of the sweep-line. Table 5 lists
the statistics for the application of the sweep-line method on the initialisation
phase of the BeoLink system and using the global clock as the progress measure.
The figures in the Sweep-Line Method column are given relative to the numbers
in the Full State Spaces columns. The results were obtained on a Pentium II PC
with 160 Mb of memory.

Table 5. Application of the sweep-line method – initialisation phase.

Full State Spaces Sweep-Line Method
Config Nodes Time Peak Nodes Time

AM: 3 1,839 0:00:11 100.0 % 100.0 %
AM: 4 22,675 0:05:32 22.8 % 84.0 %
AM: 5 282,399 5:03:53 12.4 % 39.4 %

VM: 3 1,130 0:00:06 100.0 % 100.0 %
VM: 4 13,421 0:02:40 38.5 % 106.0 %
VM: 5 164,170 2:30:27 21.3 % 45.4 %

The Generalised Sweep-Line Method. While the basic idea behind the
sweep-line described above is intuitive and simple, it has the obvious drawback
that it only works on systems exhibiting this kind of monotonic progress. While
a lot of systems have a certain degree of progress, it is usually not strictly
monotonic. There will be occasional occurrences of binding elements from high-
progress markings to low-progress markings. The generalised sweep-line method
[59] solves this problem by introducing multiple sweeps of the state space. Each
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sweep follows only binding elements that result in markings with unchanged
or increasing progress measure and collects information about regress-arcs that
result in markings with decreasing progress measure. The markings at the end of
regress-arcs are then marked as persistent meaning that they cannot be deleted
again, and they are used as starting point for a subsequent sweep. The generalised
sweep-line method visits all the reachable markings, but may visit some markings
multiple times.

To apply the sweep-line method for the full BeoLink system we first need
to obtain a finite state space using the time condensed state spaces as described
in Sect. 4.3. This, however, has the drawback that the value of the global clock
becomes 0 in all markings. Hence, the progress measure defined above based on
the global clock will map all markings into 0, resulting in no peak memory re-
duction when we apply the sweep-line method. It is however possible to define a
non-monotonic progress measure for the BeoLink system based on the control
flow of the devices. Recall that the devices have a cyclic control flow where they
are first idle, then they request the key, and finally they obtain the key. When
they have used the key they return to the idle state. This is a kind of local
progress starting from the idle state progressing towards the state where they
have the key. This ordering on the states of the devices can be used to define
a non-monotonic progress measure. Details of such a progress measure can be
found in [59]. With this progress measure, the marking shown in Fig. 28 will
have a higher progress value than the marking shown in Fig. 27. When a device
releases the key and moves to the idle state, then this will result in a regress-arc
in the state space. Table 6 lists statistics for the application of the generalised
sweep-line method to the full BeoLink system using the progress measure in-
formally defined above. The experiments were conducted on a Pentium II PC
with 160 Mb of memory. It can be seen that some states are explored multiple
times which causes a time penalty, but the sweep-line method still achieves a re-
duction in peak memory usage to about 10 %. The relatively large time penalty
is due to an inefficient implementation of deletion of states in the Design/CPN
Sweep-Line Library [37]. A more efficient algorithm for deletion of states has
been developed in [60].

Table 6. Application of the sweep-line method – full system.

Time Equivalence Sweep-Line Method
Config Nodes Time Nodes Explored Peak Nodes Time

AM:2 346 00:02 102.6 % 18.8 % 200.0 %
AM:3 27,246 06:54 104.1 % 9.7 % 327.8 %

VM:2 274 00:02 103.3 % 15.0 % 200.0 %
VM:3 10,713 02:19 106.3 % 9.7 % 207.2 %

Above we have seen that it is possible to combine time condensed state spaces
with both the symmetry method and the sweep-line method. It is also possible
to use the sweep-line method and the symmetry method simultaneously. This
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combination was investigated in [7] where it was demonstrated by means of
experimental results that using the two methods simultaneously leads to better
reduction than when either method is used in isolation.

4.6 Conclusions on Audio/Video Protocol and State Space Analysis

The revised state space analysis of the BeoLink system illustrates the use of
the state space reduction methods that have been developed and implemented
in the CPN computer tools in recent years. In addition to time condensed state
spaces, the symmetry method, and the sweep-line method, several other methods
have been developed to combat the state explosion problem. Examples of these
include partial order reduction methods [70,87,93], the unfolding method [34,65],
and methods based on Binary Decision Diagrams (BDDs) [66]. Until now, the
above methods have only been used in practice on low-level Petri nets or by
unfolding the high-level Petri net into the equivalent low-level Petri net. For CPN
models constructed in industrial projects which often have variables from infinite
domains, approaches based on unfolding to low-level are not feasible. Some work
has been done on developing a version of the stubborn set method for CP-nets
without having to rely on unfolding to low-level Petri net [56]. Methods that
appear more promising for being included in the CPN computer tools include
the bit-state hashing method [40,41] and the state space caching method [39,46]
which both are based on ideas similar to the sweep-line method, i.e., deleting
information about states during the state space exploration. In general, the CPN
computer tools must support a suite of state space reduction methods since
these reduction methods exploit different characteristics of the modelled system
to achieve the reduction. As a consequence, only some reduction methods will
work on a given CPN model. The protocol verification technique used, e.g., in [38]
based on language comparison to verify a protocol specification against a service
specification is another candicate for inclusion into the CPN computer tools.

The support for state space methods in the CPN computer tools differs from
other tools, such as SPIN [85], in its support for drawing selected parts of a
state space and the support for a query language not based on temporal logic
and model checking [18] but on functions to traverse the state space and extract
information from the nodes and arcs. While it seldom makes sense to draw the
full state space of a system, practical experience has shown that being able to
visualise small fragments of the state space is an efficient way of investigating
local behavior of the system in detail. A main reason for supporting a query
language that allows the user to write traversals of the state space is that it
provides better support for analysis. With the available query functions it is
possible to compute quantitative values such as e.g., minimum and maximum
number of tokens on a place rather than just yes/no answers as supported by
temporal logic. Furthermore, query functions for typical dynamic properties of
CPN models is also available. Instantiating these query functions is much more
convenient for practitioners than writing the equivalent formulas in temporal
logic. Support for CTL model checking [11] is, however, available as a library to
the state space tool.
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Another feature of the state space tool that has shown to be valuable in the
practical use of state space methods is the support for generation of a predefined
state space report. The state space report contains information regarding a set
of standard dynamic properties of CP-nets and can be generated fully automat-
ically and then inspected by the user. Generation of the state space report is
usually the first activity in state space analysis, and many errors and problems
in a design are often detectable from the state space report.

5 Implementation of a Planning Tool

This project [94] is concerned with the development of the Course of Action
Scheduling Tool (COAST) by the Australian Defence Science and Technology
Organisation (DSTO) [4]. A Course of Action (COA) (also referred to as a plan)
consists of a set of tasks. The key capability of COAST is the computation of
task schedules called line of operations (LOPs) and is aimed at supporting the
planner in COA Development and COA Analysis which are two of the main
activities in a military planning process. The basic idea in COAST is to use
a CPN model for modelling the execution of tasks according to the pre- and
postconditions of tasks, imposed synchronisations, and available resources. The
LOPs are then obtained by generating a state space for the CPN model and
extracting paths in the state space leading from the initial marking to certain
markings representing end-states.

The COAST planning tool has been developed in close cooperation with
DSTO researchers, the Computer System Engineering Centre at University of
South Australia [21], and planners at the Australian Defence Force. The latter
group is the envisioned user of the tool. The role of CP-nets in the development
of COAST has been threefold. Firstly, CPN modelling has been used in the devel-
opment and specification of the underlying framework. Secondly, the constructed
CPN model has been used directly in the implementation of COAST by embed-
ding it into the COAST server which constitutes the computation back-end of
COAST. Hence, CP-nets provide the semantical foundation by formalising and
implementing the abstract conceptual framework underlying the tool. Finally,
the analysis capabilities of COAST are based on state space methods.

5.1 An Example Plan

In this section we give a brief overview of the conceptual framework of the
COAST and present a small example plan used as a running example throughout
this section. The framework underlying COAST is based on four key concepts:

Tasks are the basic units in a plan and have associated preconditions and ef-
fects describing the conditions required for a task to start and the effect
of executing the task. A task also includes a specification of the resources
required to execute the task, and may also have a specified duration. Tasks
also have other attributes, but these are omitted in this presentation.
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Conditions are used to describe the explicit logical dependencies between tasks
via preconditions and effects. As an example, a task T1 may have an effect
used as a precondition of a task T2. Hence, T2 logically depends on T1 in
the sense that it cannot be started until T1 has been executed.

Resources are used by tasks during their execution. Resources typically repre-
sent planes, ships, and personal required to executed a task. Resources may
be available only at certain times due to e.g., service intervals. Resources
may be lost in the course of executing a task.

Synchronisation can be used to capture that a set of tasks must begin or end
simultaneously, that there has to be a specific amount of time between the
start and end of certain tasks, and that a task can only start after a certain
point in time. A set of tasks that are required to begin at the same time is
said to be begin-synchronised. A set of tasks required to end at the same time
is said to be end-synchronised. End-synchronisations can cause the duration
of tasks to be extended.

Table 7 lists an example of a plan with 6 tasks. The table specifies for
each task its preconditions, its effects, the required resources, and the dura-
tion of the tasks. In addition to the information provided in the table, the set
{T5,T6} of tasks are begin-synchronised and the set {T4,T5,T6} of tasks are end-
synchronised. The assigned resources are: 4’R1++3‘R2++3‘R3++1‘R5++1‘R6
(written as a multi-set). Figure 33 provides a graphical illustration of the depen-
dencies between tasks using dashed lines to indicate begin-synchronisations and
end-synchronisations.

Table 7. A example plan with 6 tasks.

Task Preconditions Effects Resources Duration

T1 - E1 4‘R1 2
T2 E1 E2 2‘R2 ++ 2‘R3 4

T3 E1 E3 2‘R2 ++ 2‘R3 7
T4 E1 E4 1‘R2 ++ 1‘R3 -

T5 E2 E5 1‘R5 7
T6 E3 E6 1‘R6 7

For this example, we are interested in the possible ways (if any) that the set
of tasks can be sequenced such that a state satisfying conditions E4, E5, and
E6 can be reached given the assigned resources and synchronisation constraints.
Figure 34 illustrates one such possible line of operation (LOP) by giving the
start and end time of tasks such that the desired end-state is reached.

5.2 Engineering COAST

Figure 35 shows the client-server software architecture of COAST. The COAST
client, which includes a domain-specific graphical user interface, is implemented
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Fig. 33. Illustration of dependencies between tasks in the example plan.
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Fig. 34. One possible line of operation for the example plan.

in Java, whereas the COAST server is implemented in Standard ML (SML) via
the embedded CPN model which forms the core of the COAST server. Com-
munication between the client and the server is based on Comms/CPN and
Comms/JAVA [36], a library supporting TCP/IP communication between CPN
models and external applications. A SML session layer has been implemented on
top of Comms/CPN. This layer allows the client to invoke functions available
in the server and receive the corresponding results. The SML Session layer is
implemented by allowing the client to submit SML code to the server for eval-
uation. The received SML code is then executed by the server, and results are
sent back to the client. The SML code sent to the server corresponds to the in-
vocation of the SML functions made available by the server by the COA Analysis
module. The COAST client consists of two main parts: an Editor for creating
and editing plans, and an Analyser for the analysis of plans. The COAST server
consists of three main parts. The Initialisation module allows the CPN model to
be initialised according to the plan to be analysed. The Simulation Code module
for executing the CPN model which consists of the simulation code generated by
the CPN computer tools for executing CPN models. The State Space Code and
COA Analysis modules support the generation of state spaces and LOPs. The
State Space Code module consists of the code for generation of state spaces in
the CPN computer tools.

Figure 36 is a snapshot from the COAST client illustrating how the user views
the plans in the editor. There are four main windows. A window displaying the
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Fig. 35. Architectural overview of the COAST tool.

Fig. 36. Snapshot from the COAST editor.

set of tasks, a window showing the assigned resources, and a window showing
the conditions, and a window showing the synchronisations.

Figure 37 shows an example of how LOPs are reported to the user in the
Analyser part of the COAST client. The window gives a specification of the LOP
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Fig. 37. Snapshot from the COAST analyser.

for the example plan corresponding to the one previously shown in Fig. 34. That
the COAST server uses a CPN model as a basis for the scheduling analysis is
fully transparent to the analyst using the COAST client.

5.3 The CPN Model

The CPN model has been parameterised with respect to the set of tasks, re-
sources, conditions, and task synchronisations. This ensures that a given set of
tasks, resources, and task synchronisation can be analysed by setting the initial
marking of the CPN model accordingly, i.e., no changes to the structure of the
CPN model are required to analyse a different set of tasks. Figure 38 shows the
hierarchy page for the CPN model. The page CoastServer is the top level page
in the CPN model which consists of three main parts. Page Execute (left) and
its subpages model the execution of tasks, i.e, start, termination, abortion, and
failure of tasks according to the set of tasks, resources, conditions, and synchroni-
sation in the plan. Page Environment and its subpages model the environment in
which tasks execute, and is responsible for managing the availability of resources
over time, change of conditions over time, and task failures. Page Initialisation
and its subpages are used for the initialisation of the model according to the
concrete set of tasks, synchronisation, and resources in a plan. The CPN model
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Fig. 38. Hierarchy page of the COAST CPN model.

is timed since capturing the time taken by executing a task is an important part
of the computation of LOPs.

The COAST server was obtained from the CPN model by first generating the
standard simulation and state space code. SML files implementing Comms/CPN
and the SML session layer were then loaded together with the functions imple-
menting the server and the LOP generation algorithms. The resulting executable
file constitutes the COAST server and includes the functions required to exe-
cute the CPN model and to conduct state space analysis. The COAST server is
totally detached from the GUI of the CPN computer tools. When the COAST
server is started, it will wait for an incoming TCP connection, and once the
COAST client has established a connection, it can start invoking functions on
the COAST server and thereby conduct the task scheduling analysis.

Figure 39 shows the top level page of the CPN model with the three main
parts of the CPN model represented as the substitution transitions Initialise,
Execute, and Environment. The marking shown is the marking of the CPN model
after initialisation of the CPN model with the example plan from Table 7. Place
Tasks contains six tokens corresponding to the six tasks in the example plan.
Place Conditions contains one token which is a list containing the conditions in
the plan and their truth value. It can be seen that all conditions are initially
false. Place Resources contains two tokens. There is one token consisting of a list
describing the current set of idle (available) resources, and one token consisting
of a list describing the resources that have been lost until now. Since the colour
of the tokens on the places Resources and Tasks are of a complex colour set,
we have not shown the detailed colours of the tokens but only the number of
tokens. As an example, the colour set Task modelling tasks is record type with
more than 15 fields.
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Fig. 39. The CoastServer page after initialisation.
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Fig. 40. The CoastServer page – all tasks executed.

Figure 40 shows the top level page of the CPN model in a marking where
all six tasks in the example plan have been executed. All six tokens have been
removed from place Tasks since the tasks have now been executed. The marking
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shown corresponds to a desired end-state since the conditions E4, E5, and E6 are
now all satisfied as can be seen from the marking of place Conditions.

5.4 Line of Operation Generation

The main analysis capability of COAST is the generation of LOPs. A LOP is a
specification of start and end times for the tasks in the plan. The LOP generation
implemented in the COAST server consists of two phases. In the first phase, the
state space is generated relative to the plan to be analysed. Successors are not
generated for states that qualify as desired end-states according to the conditions
specified by the user. In the second phase, LOPs are computed by traversing the
constructed state space. The LOPs are determined from the paths in the state
space, and they are divided into two classes. Complete LOPs are LOPs that
lead from the initial marking to a marking representing a desired end-state.
The incomplete LOPs are LOPs that lead to markings representing undesired
end-states, i.e., markings without enabled transitions that do not satisfy the
conditions specified by the user. When incomplete LOPs are reported, the user
will typically investigate the causes of these using queries about tasks, conditions,
and resources in different states. In that sense, COAST also supports the planner
in identifying errors and inconsistencies in the plan under analysis.
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Fig. 41. State space for the example plan.

Figure 41 shows the state space for the example plan from Fig. 7. Node 1 to
the left corresponds to the initial marking previously shown in Fig. 39. Node 21
to the lower right corresponds to the marking previously shown in Fig. 39. The
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thick arcs in the state space correspond to start and termination of tasks. The
other arcs correspond to internal events in the CPN model related to the start
and termination of tasks. The thick arcs have labels of the form T i : t where
i specifies the task number and t specifies the time at which the event takes
place. As an example, task T1 starts at time 0 as specified by the label on the
outgoing arc from node 1, and terminates at time 2 as specified by the label on
the outgoing arc from node 2.

The computation of LOPs is based on a breadth-first traversal of the state
space starting from the initial marking. The basic idea is to compute the LOPs
leading to each marking encountered during the traversal of the state space,
where the LOPs in a given marking are computed from the LOPs associated
with its predecessor markings. The LOPs associated with a given marking are
then deleted once the LOPs have been computed for all its successor markings.
The algorithm exploits the fact that the state space of the CPN model is acyclic
for any plan, and that the paths leading to a given marking in the state space
all have the same length measured in occuring binding elements.
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Fig. 42. LOP generation after initial marking has been processed.

We now illustrate how the algorithm operates. Figure 42 shows the LOPs
information associated with each marking in the first part of the state space.
The LOP associated with the initial marking is the empty LOP represented
as the empty list []. LOPs for the successor marking of the initial marking are
now computed. Since the arc leading to the successor marking corresponds to
the start of a task, the LOP is augmented with information about the time at
which T1 was started. This results in the LOP: [(T1,0,?)] being associated with
the successor marking of the initial marking. The LOP remains the same until
the arc corresponding to the termination of T1 at time 2 is reached. In this
case, the termination time of T1 can be recorded in the LOP. This results in
associating the LOP [T1,0,2] with the successor marking of node 2. The LOP
now associated with the succesor of node 2 is propagated forward. The LOP
generation now proceeds and when node 3 is reached, the LOPs are propagated
along three branches corresponding to the three successor markings of node 3.
The LOP generation will now continue until the nodes 7, 8, 9, and 10 are reached.
Here the LOPs associated with nodes 7 and 8 will be merged and associated with
node 11 since the start and termination time of each of the tasks in the LOPs
are identical. Similarly, the LOPs associated with node 9 and 10 will be merged
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and associated with node 12. The breadth-first traversal will now continue until
eventually the situation shown in Fig. 43 is reached where the two complete
LOPs leading to the desired end-state have been computed.

9 9 9 9 9 20 1 1 1 1 1 1 1 1 1 1 21
T4/T5/T6:20

[(T1,0,2),(T2,2,6),(T4,2,20),(T3,6,13),(T5,13,20),(T6,13,20)]
[(T1,0,2),(T4,2,20),(T3,2,9),(T2,9,13),(T5,13,20),(T6,13,20)]

Fig. 43. Termination of the LOP generation.

Typical planning problems to which COAST is applied consist of 15 to 25
tasks resulting in state spaces with 10,000 to 20,000 nodes and 25,000 to 35,000
arcs. Such state spaces can be generated in less than 2 minutes on a standard PC.
The state spaces are relatively small because the conditions, available resources,
and imposed synchronisations in practice strongly limit the possible orders in
which the tasks can be executed.

5.5 Conclusions on the Development of COAST

The development of the COAST tool is an example of how the usual gap between
design as specified by a CPN model and the final implementation of a system
can be overcome. The CPN model that was constructed to develop the concep-
tual and semantical foundation of COAST is being used directly in the final
implementation of the COAST server. The project also demonstrates the value
of having a full programming language environment in the form of the Standard
ML compiler integrated in the CPN computer tools. The use of Standard ML as
part of the CPN computer tools was crucial in several ways in the development
of COAST. It allowed a highly compact and parameterisable CPN model to be
constructed, and it allowed the CPN model to become the implementation of the
COAST server. The parameterisation is important to ensure that the COAST
server is able to analyse any set of tasks, resources, and synchronisations without
having to make changes to the CPN model. Having a full programming language
available also made it possible to extend the COAST server with the specialised
algorithms required to extract the task schedules from a generated state space.

6 Conclusions and Future Directions

In this paper we have presented four projects where the CPN modelling language
and computer tools have been put into practical use in system development
projects. The project on modelling communication and mobility scenarios for
ad-hoc networking illustrates how quite abstract CPN models can be used in an
early phase of system development to determine the boundaries of the project
and specify requirements. The pervasive health care project illustrated how CP-
nets can be used to construct an executable use case in the form of an animated
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CPN model. An informal use case described in prose was augmented with notions
of execution, formality, and animation. We have illustrated the use of state space
methods for the analysis of the BeoLink system and for obtaining lines of
operation in the COAST tool. The revised case study on the BeoLink system
demonstrates that significant progress has been made in recent years on the
support for state space analysis. The work presented on the COAST tool also
shows how a CPN model can be integrated into an application making the use
of CP-nets transparent to the user and overcoming the usual gap between design
and implementation. Another example of automatic code generation from CPN
models can be found in [67]. The paper [62] describes an approach to making a
tailored graphical user interface on top of a CPN model using web technology.

In general, many CPN projects have been carried out and documented in
papers and reports. As examples, the proceedings of the CPN workshops 1998-
2002 [51], and the two special issues of the Software Tools for Technology Transfer
journal [27, 28] contain many papers on practical use of CP-nets. The most
comprehensive overview of application and industrial use of CP-nets can be found
on the web pages [22,23,25] that are maintained by our research group. Together,
all these projects provide solid evidence that CP-nets have good potential to be
used in the software industry. On the other hand, as evidenced by the recent
survey [68], in general formal methods (like CP-nets) are only rarely used in
the software industry. An interesting direction for future research is to try to
increase the use of Petri nets in the software industry. That is for obvious reasons
attractive for us as Petri net researchers. However, it may also be attractive
for many parts of the software industry. It is widely recognised that today’s
mainstream software development methods and tools are not always adequate
for solving the range of difficult problems that software developers are facing.

The choice of formal modelling language to be used in a system development
project is non-trivial, and many aspects must be taken into account, e.g., avail-
able tool support and background of the involved system developers. Choosing
CP-nets has a number of virtues. CP-nets has a sound, mathematically well-
founded execution semantics, is well-proven, and has proper tool support. This
includes support for creating animations of CPN models, which has been used in
a number of projects, see, e.g., [76] for an alarm system, [64] for mobile phones,
and [8] for ISDN services.

Even though we see a number of advantages of using Petri nets, other re-
searchers and practitioners may have other opinions and preferences. If we want
to advocate wide-spread and long-term use of Petri nets in system development
in a company, we have to convince not only the software developers, but also
higher-level decision makers like business and project managers. In conversations
with the latter, we must stress the key business question: How does my company
save time and money by using Petri nets? Sometimes, we should perhaps talk
about reducing time to market, increasing return of investment, and limitation
of risks, instead of about, e.g., nice theoretical properties like formal semantics.
We should also promote Petri nets as a supplement to existing software devel-
opment practices, not as something fundamentally new. In particular, with the
success of UML, the software industry has in large scale adopted modelling as a
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valuable discipline in everyday software development. Many software developers
appreciate UML (in particular the static parts of UML such as class diagrams)
as a productive asset to help them in their work. Those who have also tried
to model behavioural aspects in UML might have encountered problems with
UML state machines and activity diagrams. Therefore, for many developers, the
motivation to use a supplementary modelling language together with UML may
be quite high. In this way, the success of UML can be seen as a good chance to
establish Petri nets more broadly in the software industry.

The reader interested in getting started with CPN modelling is referred to
the paper [58] and the book [47]. The paper introduces the CPN modelling
language using a simple communication protocol, whereas the book contains
several smaller examples and also the formal definition of CP-nets. Readers
interested in getting started using the state space method is referred to the
book [48], the introductory paper [58], and the examples found on the web
pages [22, 25]. The reader interested in the recent work on state space methods
is referred to [16] for the time condensed state spaces, [15,59] for the sweep-line
method, and [29] for the symmetry method. CPN models can also be analysed
using simulation, and the papers [91,92] describe how quantitative measures such
as throughput and delay of the system can be obtained using simulation-based
performance analysis and the CPN computer tools.

The web pages for the CPN computer tools [22, 25] contain several tutorials
and small examples of CPN models useful for getting started using CPN mod-
elling and the CPN computer tools. A license for the CPN computer tools can
be obtained free of charge, and a licence form is available electronically from
our web-pages [22]. Mailing lists have also been established for users of the CPN
computer tools.
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Abstract. A simple example is given of the use of bigraphical reactive systems
(BRSs). It provides a behavioural semantics for condition-event Petri nets whose
interfaces are named condition nodes, using a simple form of BRS equipped with
a labelled transition system and its associated bisimilarity equivalence. Both of
the latter are derived from the standard net firing rules by a uniform technique in
bigraphs, which also ensures that the bisimilarity is a congruence. Furthermore,
this bisimilarity is shown to coincide with one induced by a natural notion of
experiment on condition-event nets, defined independently of bigraphs.
The paper is intended as a bridge between Petri net theory and bigraphs, as well
as a pedagogical exercise in the latter.

1 Introduction

This paper conducts a simple exercise in bigraphical reactive systems (BRSs) [4], con-
sisting of a behavioural study of condition-event Petri nets [12]. The exercise has two
very different purposes. The first is pedagogical: condition-event nets can be modelled
as a link-graph reactive system (LRS), which is a simple form of BRS, so they illustrate
the use of bigraphs while avoiding some of their complexity. The other purpose is to
promote future research: since bigraphs model systems that can reconfigure both their
placing and their linking, the exercise illustrates a framework in which Petri nets may
be generalised to deal with mobile informatic systems.

The exercise involves the interpretation of condition-event nets in terms of bisim-
ilarity [8]. As in process calculi, it may sometimes be useful to employ an abstract
model of the behaviour of a Petri net in which two nets are regarded as equivalent if
they cannot be distinguished by certain forms of experiment. If an experiment e can be
carried out on a system in state g, changing its state to g′, we write

g e
� g′

and call it a labelled transition between the two states. If we fix a vocabulary of labels e
and define the possible transitions for each one, we have a (labelled) transition system
(TS) L. Then a symmetric binary relation R between two system states is said to be a
bisimulation (for L) if

whenever fRg and f e
� f ′, there exists

a state g′ such that g e
� g′ and f ′Rg′.

In other words: given two related processes, whatever one of them can do, the other can
also do without losing the relationship. The bisimulation property is preserved by union

J. Desel, W. Reisig, and G. Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 686–701, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Bigraphs for Petri Nets 687

of relations, so there is a largest bisimulation which is the union of all bisimulations,
and it is easily found to be an equivalence relation. We call it bisimilarity (for L).

All this holds for any interpretation of ‘experiment’. We call bisimulations (and
bisimilarity) weak or strong, and denote the equivalence by ≈ or ∼, according to
whether or not a single experiment e can be accompanied by any finite amount of
internal activity. In the strong case we consider each individual internal action as an
experiment, even though it is indistinguishable from any other such action. Both weak
and strong bisimilarity abstract away from the causal behaviour of systems, but the
weak form is more generous in turning a blind eye to internal activity.

We now consider what might be an experiment on a condition-event net. There are
various ways to make parts of a net externally accessible, in order to observe – or induce
– behaviour of the net from the outside. Authors (some of whom are cited in the next
section) have considered making accessible certain events or actions, or alternatively
certain conditions or states. This exercise is of the latter kind; we allow an experimenter
to change certain conditions from holding to not holding or vice versa, by removing or
adding a token. This choice was made because it makes the exercise simple, but the
alternatives may well yield to a similar approach.

x y

Consider the above net, for example. At different times the experimenter will be able
to add or remove a token at x or at y. In general, given a state g, i.e. a marking of the
net, the transition g +x

� g′ or g −x
� g′ represents the addition or subtraction of a token

at x. Since we are dealing with condition-event nets, in any given state exactly one of
these experiments is possible for each accessible condition. A third kind of transition,
g τ

� g′, represents an internal event involving no external participation.
These three kinds of transition are the basis of a TS; we shall it call it Lp, and

its induced bisimilarity ∼p. In the rest of this paper we shall compare this TS and its
bisimilarity with another one, which arises from setting up condition-event nets as an
LRS and then deriving a TS Lg by a construction [5, 4] that is uniform over all LRSs
(and BRSs). We shall find that the labels of Lg differ from those of Lp, but that the two
bisimilarities ∼p and ∼ coincide. This gives us confidence that the dynamics of nets
may be faithfully presented in bigraph theory.
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2 Related Work on Petri Nets

In the introduction we declared two goals: first, to give a simple tutorial in bigraphs;
second, to treat Petri nets in the bigraphical framework, thus perhaps easing the exten-
sion of the net model to admit mobility. We shall tackle both goals by means of a simple
case study. In this section we briefly describe how the study relates to existing work in
Petri net behaviour, with reference to some recent papers on that topic.

Pomello, Rozenberg and Simone [10] give a comprehensive survey of behavioural
equivalences for Petri nets. They cover those based on observation both of actions and
of states, and range from fine equivalences respecting causality to coarser ones, for
example the failures equivalence from CSP, the coarsest which respects deadlock. The
study of congruence is reported as being rather incomplete at that date (1992).

Nielsen, Priese and Sassone [9] characterise some behavioural congruences on nets.
Given semantic function B that assigns an abstract behaviour to each net, they consider
the congruence ≈ it induces upon nets; this is defined by

N0 ≈ N1
def⇔ B(C[N0]) = B(C[N1]) for every context C .

This definition presupposes a precise notion of context. An important contribution of
their paper is to define such a notion, by means of a set of combinators upon nets. They
are then able to characterise the congruences, for each of four semantic functions B,
by showing that for each pair N0, N1 there is a single easily identified context that is
sufficient to determine whether or notN0 ≈ N1.

Priese and Wimmel [11] continue this programme; they enrich the net combinators,
and consider a wider range of semantic functions.

The Petri Box calculus of Best, Devillers and Hall [1], like the previous two, em-
phasises combinators and algebra. By identifying certain net-patterns as operators, it
presents a modular semantics of nets in terms of equivalence classes of Boxes (a spe-
cial class of nets). A main result of the paper is agreement between this denotational
semantics and a structured operational semantics of Box expressions.

This brief summary does not do justice to the four papers, which represent well the
progress towards a modular treatment of Petri nets. But it helps us to identify differences
with bigraph theory, which suggest contributions that can be made by the latter. The first
difference is that, since bigraphs and their contexts are the arrows of a category, when-
ever a class of agents (e.g. nets) is encoded in bigraphs the contexts and combinators
are already determined; they need not be defined specifically for each class. The second
difference is that the semantic function on bigraphical agents is defined not by specific
means, but as the quotient by a generic equivalence relation that pertains to all bigraph-
ical systems. Finally, many such equivalences – including bisimulation (which we use
in this paper) but also others – are guaranteed by bigraphical theory to be congruences.

In this brief discussion we have tried to explain the way in which bigraphs aim at a
theory shared by different models of concurrency. Much work is needed to determine
how far they can achieve this aim. Success can be measured in two ways: by the range
of different models that can be satisfactorily treated in bigraphs, and by the depth of the
theory thus shared among them. The present paper begins to evaluate these measures
with particular reference to Petri nets.
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Fig. 1. A typical bigraph

3 Bigraphs and Link Graphs

Figure 1 shows a typical bigraph. The ovals and circles are nodes. Associated with each
node is a control which indicates what kind of node it is. Here we show three controls,
k, m and n; the controls of other nodes are not shown. Each control has an arity, a finite
ordinal indicating the number of ports on that kind of node; here k, m and n have arity
2, 3 and 2 respectively.

A bigraph is so called because its nodes are structured in two ways. The first struc-
ture is placing; the nodes are nested inside one another, giving an ordered set of trees,
i.e. a forest. In our example there are two trees; each has a root – not itself a node – rep-
resented by a dotted rectangle. The second structure is linking; the ports of the bigraphs
are partitioned into links, shown by curved lines. A link may be open or closed; each
open link has a distinct name (here x or y). Names allow bigraphs to be joined via their
open links.

The two structures are totally independent; note here how the links cross node
boundaries and even link different trees in the forest.

In other applications of bigraphs the nesting of nodes plays an important role in the
way bigraphs reconfigure themselves; both placing and linking may vary dynamically.
But in our present application the placing vanishes, so we shall work only with link
graphs, i.e. the linkage structure. In following sections we shall explain only those parts
of link-graph theory that we need.

Link graphs. It is common in graph theory to distinguish between concrete and abstract
graphs. In the former the nodes and edges have identity, and we distinguish two graphs
that differ only by a bijection between their nodes and edges; in the latter we equate
them. For link graphs we are interested in both kinds; for applications we usually want
the abstract ones, but the concrete ones provide us a convenient means to develop the



690 Robin Milner

theory. Here we shall work mainly with the concrete link graphs; at the end we point
out how the results, once derived, transfer to the abstract ones.

We treat concrete link graphs, then, as the morphisms of a supported precategory.
This is like a category except that each morphism has a finite set, its support, and the
composition of two morphisms is defined only if their supports are disjoint. The support
of a composite morphism is the union of the supports of its components. Identity mor-
phisms have empty support. Two morphisms F and F ′ are support equivalent, written
F � F ′, if they differ only by a bijection between their supports.

Working with supported precategories is hardly different from working with cate-
gories; in this paper the reader can rest assured that any concept familiar from the latter
means practically the same for the former. More discussion of this point can be found
in the concluding section.

In the supported precategory of (concrete) link graphs, the objects are finite sets
X,Y, . . . of names. A link graph H : X → Y has inner face X and outer face Y . An
example appears in Figure 2; think of H as a context in which to embed a link graph
G with outer face X . The points of a link graph are its ports and its inner names, so
H has eleven points: three ports for each a-node, two for the b-node and three inner
names X = {x1, x2, x3}. (Note that the points do not include the outer names.) The
links constitute a partition of the points, and to each open link (which we mentioned
already) is assigned a distinct outer name; for H , these are Y = {y1, y2}. Note that H
has two open and three closed links.

Fig. 2. The composite H ◦G of link graphs G : ∅→X and H : X→Y

The support of a link graph consists of its nodes and its closed links (the latter cor-
responding to the edges of a classical graph). Their identity is not shown in the diagram,
but when we show a composition of two link graphs we assume disjoint supports. Fig-
ure 2 shows the composition of G : ∅ →X and H : X → Y ; each open link in G is
joined to the link in H that contains the corresponding inner name, and then that name
is erased. The outer and inner names of a link graph need not be disjoint. The identi-
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ties are those link graphs idX : X→X with empty support in which each outer name
x ∈ X is assigned to the link whose only point is the inner name x.

A link graph with empty inner face, such as G in the diagram, is called ground;
ground link graphs, and more generally ground bigraphs, are used to represent agents,
such as a condition-event net with no missing pieces. We typically use lower case letters
f, g, h, . . . for ground link graphs.

Algebra. Let us review briefly how complex link graphs may be built from simpler ones.
As well as composition, we use tensor product: if F1 and F2 have disjoint supports,
disjoint inner faces X1 and X2, and also disjoint outer faces Y1 and Y2, then their
tensor product

F1 ⊗ F2 : X1 ∪X2 →Y1 ∪ Y2

is formed by placing them side-by-side. The unit for ⊗ is just id∅. Using composition
and tensor product we can build all link graphs from the atomic ones (those with a
single node) with the help of wirings (those with no nodes). If k is a control with arity
n and x a sequence of n distinct names then a k-atom with ports named x1, . . . , xn is
denoted by kx. All wirings can be built from two elementary kinds: a linker y/x and a
closure /x. These three elementary link graphs are as follows, when x = x1x2x3:

y

y/x

x3x2x1

/x

x

x3x2x1

k

kx

For example, suppose the outer face of F is {xyz}. We may want to replace x and y by
v, leaving z unaffected; or we may want to do the same but close off the link z. In each
case we can form ω ◦F , where the wiring ω is respectively

ω = v/xy ⊗ idz or ω = v/xy ⊗ /z .

More generally, the algebra of link graphs consists of expressions built from the ele-
ments using ◦ , ⊗ and identities, and satisfying some simple equations. In this paper we
shall use a little algebra, but rely more upon diagrams.

One abbreviation will come in handy. If F has outer face {xyz} andG has inner face
{xy}, then we may writeG ◦F instead of (G⊗ idz) ◦F . In other words, we sometimes
omit identities in composition when no confusion arises.

Sorting. For many purposes, it is useful to enrich link graphs by imposing a sorting,
i.e. a discipline of sorts (or types). We set up a sorting in three stages:

1. Specify a set S = {α, β, . . .} of sorts.
2. Declare for each control with arity n an ordered list of n sorts. This determines a

sort for every port in a link graph.
3. Enrich interfacesX,Y, . . . by assigning a sort to each name.

We may then define a well-sorted link graph to be one that satisfies certain con-
straints. Here we are interested especially in many-one sorting, in which there are just
two sorts α and β. Each link may have any number of α-points, but β-points are con-
strained follows:
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• A closed link has exactly one β-point;
• An open link with a β-name has exactly one β-point;
• An open link with an α-name has no β-points.

As an example, for link graphs with controls a and b we may declare that every port of
an a-node has sort α, and every port of an b-node has sort β. It can be checked for Fig-
ure 2 that G, H and H ◦G are well-sorted if X has the sorting {x1 : α, x2 : α, x3 : β}
and Y has the sorting {y1 : α, y2 : α}. The reader may like to look ahead and see the
rôle of sorting in representing condition-event nets; it ensures that each port on an event
node will be connected to at most one pre- or post-condition node.

Dynamics. To equip link graphs with behaviour, we first specify a subclass of the inter-
faces called agent interfaces. If X is such an interface we call any f : ∅ →X an agent;
these are the link graphs whose behaviour we want to define. For this purpose we spec-
ify a set of reaction rules, each being a pair (r, r′) of ground link graphs with the same
outer face. In each rule we call r the redex and r′ the reactum. Then we specify the
reaction relation � over agents to be the smallest such that

D ◦ r �D ◦ r′

for every reaction rule (r, r′) and every context D for which the compositions are de-
fined and are agents. We also require both the rule-set and the reaction relation to be
closed under support-equivalence. In the next section we shall set up the firing rules of
condition-event nets as reaction rules.

What we have defined so far is called a reactive system. In process calculi it has
become usual to refine this to a (labelled) transition system (TS), with transitions of the
form f �

� f ′, where the labels 
 are specific to each calculus. Intuitively, 
 represents
the contribution that f may make to a reaction; typically this contribution is incomplete,
so the transition makes precise the idea that both and agent and its environment may
contribute to a reaction. In terms of these TSs, one may define bisimilarity and other
equivalences and preorders over agents; a test of a good TS is that these behavioural
relations are congruential, i.e. preserved by insertion into any context.

In bigraph theory we adopted a proposal by Leifer and Milner [5] to derive TSs
uniformly over all bigraphical reactive systems, in a way that guarantees congruential
behavioural relations. For link graphs, it works as follows. We consider a label L to be
a (link graph) context into which an agent may be inserted in order to enable a reaction
to occur; that is, we define the transition

f L
� f ′

to mean that the equation L ◦ f = D ◦ r holds for some context D and reaction rule
(r, r′), and moreover that f ′ � D ◦ r′. Think of this as inserting f into a (small) context
L so that an instance of the redex r occurs in the composite L ◦ f , and then replace this
occurrence by r′.

r

L

f D
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But if we were to allow all such contexts as labels L, there would be an unwieldy
multitude of labels. Indeed, a moment’s reflection reveals that if L is a transition label,
then so would be any larger context C ◦L! To avoid this, the theory limits labels L to
be the (in some sense) smallest for which the equation L ◦ f = D ◦ r holds for someD,
given f and r. It turns out that strong bisimilarity is congruential for any TS so defined,
and we believe that this extends to other behavioural relations. By smallest, we mean
that the above diagram should not only commute but should also be an idem pushout
(IPO), a weaker version of the more familiar pushout.

We need not explain IPOs here, because our precategory of condition-event nets ac-
tually has pushouts where we need them. We shall not show how to construct pushouts
for link graphs; we shall just exhibit the resulting TS and then work with it. The con-
struction can be found in the Technical Report by Jensen and Milner [4]. We should
note that pushouts – even IPOs – exist only for concrete bigraphs, not for abstract ones.
Intuitively, support provides a means of defining exactly which nodes and edges are
shared between two link graphs.

4 Condition-Event Nets as Link Graphs

We are now ready to set up condition-event nets as link graphs1. There are many ways to
do it; we choose one that appears to give a smooth treatment. We shall use the example
from the introduction as an illustration:

x y

u uu

m

u

e21 e12

e11

e11

We choose three kinds of control: m (‘marked’) and u (‘unmarked’) for holding and
non-holding conditions, and ehk for events with h pre- and k post-conditions. The shape
and colour of each node will save us from writing controls in diagrams. Conditions have
arity 1; we site the single port of a condition node in its centre. An ehk-node has h+ k
ports; h pre-ports for pre-conditions, k post-ports for post-conditions. You may like to
check that the above net has two open and three closed links.

1 Terminology can become confused when discussing two different formalisms. In particular,
Petri nets and bigraphs differ in their use of the terms ‘transition’ and ‘place’. Fortunately, in
this paper we are concerned only with condition-event nets, not place-transition nets, so we
are able to avoid confusion.
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We adopt the many-one sorting described above. Specifically, there are two sorts, γ
for condition ports and η for event ports. An interface assigns one of these sorts to each
of its names. When a net satisfies the many-one sorting constraints from the previous
section (with η and γ for α and β) we call it well-sorted. Thus, in a well-sorted net, each
condition has a single link to all its pre- and post-events, and each event port is linked
to at most one condition. Let us denote the precategory of well-sorted condition-event
nets by ´CE; the accent means that we are dealing with concrete link graphs.

In general an interface may contain both γ-names and η-names. But in the example
you will notice that both x and y are γ-names, because each names a link containing
a condition. In fact we shall confine our attention to the subprecategory ´CEγwhose
interfaces contain only γ-names, and whose nets are well-sorted. We call these γ-nets,
for short. The ground γ-nets are our agents; note in particular that an agent contains all
the pre- and post-conditions of its events.

The reader should note that our encoding of condition-event nets into γ-nets is not
surjective, even up to support equivalence. The reason is that, in an encoded condition-
event net, each pre-condition of a single event is linked to exactly one of its pre-ports
(and similarly for post-conditions). This constraint is illustrated thus:

There are γ-nets that violate this constraint; it is not imposed by many-one sorting.
This situation arises because in ´CEγ we have equipped events with several ports, for
technical reasons. But these spurious γ-nets need not disturb us, for it can be shown that
a spurious one never arises from a genuine one as the result of a transition.

Let us now add dynamics to ´CEγ , making it a reactive system. To do this, we intro-
duce the usual Petri-net firing rules as reaction rules (r, r′), one for each ehk. Figure 3
shows the rule for h = 1, k = 2. Note that r and r′ are indeed agents. Note also that
all the links of r are open; this means for every occurrence of r in an agent f there is
a context D such that f = D ◦ r. You may be concerned that we have given particu-
lar names to the interface of our reaction rules; this is no constraint, because by using
wirings we can rename – or close – these names at will.

Fig. 3. A link-graph reaction rule for condition-event nets

We are now ready to examine the behaviour of γ-agents. Recall from the introduc-
tion that we already have a TS for them, namely Lp, defined without any help from link

graph theory; the labels 
 in its transitions f �
� f ′ take one of the forms +x,−x or τ .
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We shall assume each transition relation �
� to be closed under support equivalence.

Denote by ∼p the strong bisimilarity induced by Lp.
To compare this with the strong bisimilarity ∼ induced by link graph theory, let

us now define the latter equivalence accurately. First recall that in the TS Lg, each L-

transition f L
� f ′ is such that, for some D and reaction rule (r, r′), the pair (L,D)

is a pushout for (f, r), and f ′ � D ◦ r′. This ensures that Lg also is closed under
support equivalence. Then, recalling the introduction, the equivalence ∼ is the largest
symmetric relation such that

whenever f ∼ g and f L
� f ′, with L ◦ g defined,

there exists g′ such that g L
� g′ and f ′ ∼ g′.

(The condition thatL ◦ g be defined is needed because we are working in a precategory.)
Unlike ∼p, the bisimilarity ∼ is guaranteed by link graph theory to be a congruence,
i.e. preserved by insertion into any context.

Our first task is to characterise the labels of Lg. We omit the detailed analysis. It
turns out that (up to isomorphism in ´CEγ) each label is either an identity, or an open
γ-net with exactly one e-node, linked to zero or more m-nodes as preconditions and u-
nodes as post-conditions. An identity label just signifies that the agent makes a transition
with no assistance from its environment. In fact f id

� f ′ iff f � f ′; this justifies our
use of the same arrow for both reactions and transitions.

Figure 4 shows a non-identity label. It is not quite a redex; it requires its client agent

Fig. 4. A typical label in Lg

to provide one marked precondition and one unmarked postcondition. Figure 5 shows
the anatomy of a transition f L

� f ′ with this label. Note that f ′ takes the form L ◦ f ;
we call L and f the residuals of L and f respectively. We see that a single transition
may change the marking of several named conditions of f , however far apart they may
lie in f . Any other agent g with the same interface as f will have a similar transition,
provided only that it has the same initial marking of its named conditions.

The two TSs Lp and Lg are significantly different, so it is not immediately clear that
they will induce the same bisimilarity. We prove that they do so in the next section.

5 Coincidence of Bisimilarities

In ´CEγ we have two TSs on condition-event nets: Lp defined directly with labels 
 of
the form +x, −x or τ , and Lg derived in link graph theory, with labels L consisting of
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Fig. 5. Anatomy of a transition f
L

� f ′ in Lg

link graph contexts having at most a single event node. The bisimilarities for the two
TSs are ∼p and ∼ respectively.

We shall first show that ∼ ⊆ ∼p . This asserts that if we can distinguish two γ-nets
f and g by using ‘experiments’ 
 like +x and −x, then we can also do so using ‘exper-
iments’ L that are elementary link graph contexts. So, among the labels L generated by
our theory (see Figure 4), we need to find those that can do the job of the experiments
+x and −x.

It turns out that such labels need only involve events with one pre- and one post-
condition; we call them input and output probes respectively. They are denoted by inxz

and outxz , and are shown in the first column of Figure 6. The second column shows
the spent probes, the residuals of the probes. The third column shows the spent probes
with their conditions closed; they are defined by inx

def= /z ◦ inxz and outx
def= /z ◦ outxz .

They may be called twigs because, up to the equivalence ∼, they can be broken off. The

OUTPUT

PROBE SPENT PROBE TWIG

INPUT

Fig. 6. Probes: labels in Lg for observing conditions in a γ-net



Bigraphs for Petri Nets 697

intuition is simply that a twig occurring anywhere in a net can never fire. In fact we
have a lemma, proved easily in link graph theory:

Lemma 1. For any γ-agent f having x in its outer face, inx ◦ f ∼ outx ◦ f ∼ f .

Now to prove that ∼ ⊆ ∼p it is enough to show that ∼ is an Lp-bisimulation. For

this, suppose that f ∼ g, and let f �
� f ′ in Lp. We must find g′ such that g �

� g′

and f ′ ∼ g′. If 
 = τ this is easy, because then our assumption implies that f � f ′,
and hence f id

� f ′ in Lg; but then by bisimilarity in Lg we have g id
� g′ ∼ f ′, and

by reversing the reasoning for f we get that g τ
� g′ and we are done.

Now let 
 = +x (the case for −x is dual), so that f +x
� f ′. This means that f has

an unmarked condition named x, so that in Lg we have

f inxz � f ′′ def= inxz ◦ f ′ .

Hence by bisimilarity in Lg we have

g inxz � g′′ = inxz ◦ g′

where f ′′ ∼ g′′ and g′ is the residual of g′′ under the transition. This residual g′ differs
from g only in having a marked condition named x that was unmarked in g, and hence
we also have g +x

� g′ in Lp. It remains only to show that f ′ ∼ g′. We deduce this using
the congruence of ∼ and Lemma 1:

f ′ ∼ inx ◦ f ′ = /z ◦ inxz ◦ f ′ = /z ◦ f ′′
∼ /z ◦ g′′ = /z ◦ inxz ◦ g′ = inx ◦ g′
∼ g′ ,

and so we have proved

Lemma 2. ∼ ⊆ ∼p .

To complete our theorem we must prove the converse, ∼p ⊆ ∼ . It would be enough
to prove that ∼p is an Lg-bisimulation; but this is false. Instead we have to consider the
closure of ∼p under all contexts, namely

S def= { (C ◦ f, C ◦ g) | f ∼p g } .

In fact it will be enough to prove that S�, the closure of S under support equivalence,
is a bisimulation. We get the required result by considering the case C = id.

So let us assume that f ∼p g, and that C ◦ f M
� f ′′ in Lg. Then there is a reaction

rule r and context D such that (M,D) forms a pushout for (C ◦ f, r), as shown in
the left-hand diagram of Figure 7, and f ′′ � D ◦ r′. We now take the pushout (L,F )
for (f, r), and properties of pushouts yield the right-hand diagram, in which the upper

square is also a pushout. So there is a transition f L
� f ′, where f ′ � F ◦ r′; note also

that f ′′ � C′ ◦ f ′.
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Fig. 7. Pushouts underlying transitions of C ◦ f and f

Now consider the anatomy of this transition, exemplified in Figure 5. We know
that the residual f differs from f only in the changed marking of zero or more named
conditions. It follows therefore that in Lp there is a sequence of transitions

f
�1 � f1 . . .

�n � fn = f (n ≥ 0)

where 
i ∈ {+xi,−xi}; each transition marks or unmarks a single named condition.
Moreover f ′ = L ◦ f . Since f ∼p g there exists a similar sequence

g �1 � g1 . . .
�n � gn = g

with f ∼p g. This implies that g has the same initial marking as f for the named con-
ditions involved in the transitions. But we know that L ◦ g is defined (since we assumed
M ◦C ◦ g = C′ ◦L ◦ g to be defined), so in Lg there is a transition g L

� g′ def= L ◦ g.
Its underlying pushout is shown in the left-hand diagram of Figure 8. Also it has an
underlying reaction rule (s, s′), with g′ � G ◦ s′.

Fig. 8. Pushouts underlying transitions of g and C ◦ g

Now we form the right-hand diagram of Figure 8 by replacing this pushout for the
lower square in right-hand diagram of Figure 7. Since both small squares are pushouts,
so is the large square; therefore it underlies an Lg-transition

C ◦ g M
� g′′ def= E ◦ s′ .
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To complete our proof we need only show that the pair (f ′′, g′′) lies in S�. We already
know that f ′′ � C′ ◦ f ′ = C′ ◦L ◦ f . We can now compute

g′′ = E ◦ s′ = C′ ◦G ◦ s′ � C′ ◦ g′ = C′ ◦L ◦ g ,

and hence (f ′′, g′′) ∈ S� since f ∼p g. It follows that ∼p ⊆ ∼.
So we have proved:

Theorem 1. (coincidence of bisimilarities) ∼ = ∼p in ´CEγ .

The reader will remember that we have worked in concrete link graphs ´CEγ in
order to ensure the existence of IPOs (in fact pushouts); these were needed to define a
transition system in a way that ensures congruence of bisimilarity. Having done this, we
can now tranfer both the transitions and the bisimilarity to the corresponding category
CEγ of abstract link graphs, which has no IPOs. Note that CEγ is indeed a category,
not just a precategory, because support no longer places a constraint upon composition.

IfG is a concrete link graph, let [G] denote the corresponding abstract one – essen-
tially the support-equivalence class of G. Then we define the transition system [Lg] in
CEγ to be the smallest set such that

if g L
� g′ in Lg then [g] [L]

� [g′] in [Lg] .

Similarly we define [Lp] in CEγ ; this is even simpler because its labels 
 are not subject
to support equivalence.

These two abstract transition systems induce corresponding bisimilarities in CEγ ;
we shall again denote them by ∼ and ∼p. They are simply related to those in ´CEγ . We
conclude by stating this relationship, omitting the proof; it also has the consequence
that the assertion of Theorem 1 for concrete link graphs is matched for abstract link
graphs.

Corollary 1. (coincidence of bisimilarities in abstract condition-event nets)

1. f ∼ g in ´CEγ iff [f ] ∼ [g] in CEγ .
2. f ∼p g in ´CEγ iff [f ] ∼p [g] in CEγ .
3. In CEγ bisimilarity ∼ is a congruence and coincides with ∼p .

6 Discussion

This exercise has shown that a particular class of Petri nets, condition-event nets, can be
modelled and analysed in link graphs. It has not shown that this modelling is canonical,
nor that it extends to other net disciplines. I hope that the relatively simplicity of the
present analysis may provoke interest in these questions.

This would not only determine how far the present theory of bigraphs goes for Petri
nets; it may also suggest improvements and variations of bigraph theory. Indeed it was
by trying to analyse other concurrency models – especially the π-calculus of Milner,
Parrow and Walker [7] and the mobile ambients of Cardelli and Gordon [2] – that bi-
graphs evolved from their predecessor action calculi, Milner [6]. A large concern in
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defining bigraphs has been to admit theoretical analysis (such as we have illustrated)
which could not be provided so well for action calculi. Furthermore, Jensen and Mil-
ner [3] have recently shown that the behavioural theory of a version of the π-calculus
can be exactly mirrored in bigraphs.

Even within the present exercise, interesting points emerge. In the present encoding
of Petri nets, we stratify the event controls ehk by their arities; this limits the number
of pre- and post-conditions that can be connected to a given event in any context. In
contrast, Nielsen et al [9] use a recursion combinator that connects a given condition to
a given event. Thus the algebraic combinators provided uniformly by link graphs may
not coincide with those designed for a particular application, and the comparison of the
two requires further examination.

Another interesting outcome is the mismatch between the transition system Lg gen-
erated by link-graph theory and the simple specific transition system Lp, despite the
coincidence of the bisimilarities they induce. It is clear that the labels in Lg are re-
dundant, in the sense that the same phenomenon may be detected by more than one
experiment. This is not surprising, because the labels are generated from each reaction
rule separately; no attempt has yet been made to discover to what extent the labels from
a family of reaction rules duplicate each other’s discriminating power. The exercise sug-
gests that in further development the theory of BRSs we should try to identify general
properties of rule-sets that lead to such redundancies; this could yield more economical
transition systems.

Our formulation of bigraphs uses precategories for two reasons. First, they provide
concrete bigraphs with RPOs, which categories do not. Second, more generally, they
provide a very direct way to distinguish different occurrences within the same bigraph.
Although manipulation with precategories is not troublesome, they are not standard
in category theory. Sassone and Sobocinski [13] have provided a valuable link with
a more standard categorical concept, 2-categories; using these they have been able to
recover exactly the RPO theory and congruence theory. Whether 2-categories will ease
the further development of bigraphical theory, as presented in Jensen and Milner [4], is
a topic for further research. But there is already advantage in an alternative formulation.

Finally, although no proposal is made here about how to enrich Petri nets with mo-
bility, the present exercise offers a microcosm in which to test such proposals.

In summary, Petri nets and bigraphs may be able to enrich one another.
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Abstract. A constraint is a piece of (partial) information on the values of the
variables of a system. Concurrent constraint programming (ccp) is a model of
concurrency in which agents (also called processes) interact by telling and ask-
ing information (constraints) to and from a shared store (a constraint). Timed (or
temporal) ccp (tccp) extends ccp by agents evolving over time. A distinguishing
feature of tccp, is that it combines in one framework an operational and alge-
braic view from process algebra with a declarative view based upon temporal
logic. Tccp has been widely used to specify, analyze and program reactive sys-
tems.
This note provides a comprehensive introduction to the background for and cen-
tral notions from the theory of tccp. Furthermore, it surveys recent results on a
particular tccp calculus, ntcc , and it provides a classification of the expressive
power of various tccp languages.

1 Introduction

Saraswat’s concurrent constraint programming (ccp) [45] is a well-established formal-
ism for concurrency based upon the shared-variables communication model where in-
teraction arises via constraint-imposition over shared-variables. In ccp, agents can in-
teract by adding (or telling) partial information to a medium, a so-called store. Partial
information is represented by constraints (i.e., first-order formulae such as x > 42) on
the shared variables of the system. The other way in which agents can interact is by
asking partial information to the store. This provides the synchronization mechanism of
the model; asking agents are suspended until there is enough information in the store to
answer their query.

As other models of concurrency, ccp has been extended to capture aspects such as
mobility [8,12,37], stochastic behavior [13], and most prominently time [5,14,40,42].
Timed ccp extends ccp by allowing agents to be constrained by time requirements.

Modal extensions of logic study time in logic reasoning, and in the same way mature
models of concurrency have been extended with explicit notions of time. For instance,
neither Milner’s CCS [25], Hoare’s CSP [19], nor Petri Nets [33], in their original form,
were concerned explicitly with temporal behavior, but they all have been extended to
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incorporate an explicit notion of time, e.g. Timed CCS [53], Timed CSP [35], and Timed
Petri Nets [54].

A distinctive feature of timed ccp is that it combines in one framework an oper-
ational and algebraic view based upon process calculi with a declarative view based
upon temporal logic. So, processes can be treated as computing agents, algebraic terms
and temporal formulae, and the combination in one framework of the alternative views
of processes, allows timed ccp to benefit from the large body of techniques of well
established theories.

Furthermore, timed ccp allows processes to be (1) expressed using a vocabulary
and concepts appropriate to the specific domain (of some application under consider-
ation), and (2) read and understood as temporal logic specifications. This feature is
suitable for timed concurrent systems, since they often involve specific domains (e.g.,
controllers, databases, reservation systems) and have time-constraints specifying their
behavior. Several timed extensions of ccp have been developed as settings for the mod-
eling, programming and specification of timed systems [5, 14, 40, 43].

Organization. This note provides an overview of timed ccp with its basic background
and various approaches explored in the literature. Furthermore, the note offers an intro-
duction to a particular timed ccp process calculus called ntcc . In Sections 2 and 3 we
give a basic background on ccp and timed ccp. Section 4 is devoted to present the devel-
opments of the timed ccp calculus ntcc [30]. In Section 5 we describe in detail several
timed ccp languages and provide a classification of their expressive power. Finally, in
Section 6 we discuss briefly some related and future work on timed ccp.

2 Background: Concurrent Constraint Programming

In his seminal PhD thesis [39], Saraswat proposed concurrent constraint programming
as a model of concurrency based on the shared-variables communication model and a
few primitive ideas taking root in logic. As informally described in the next section, the
ccp model elegantly combines logic concepts and concurrency mechanisms.

Concurrent constraint programming traces its origins back to Montanari’s pioneer-
ing work [28] leading to constraint programming and Shapiro’s concurrent logic pro-
gramming [46]. The ccp model has received a significant theoretical and implementa-
tional attention: Saraswat, Rinard and Panangaden [45] as well as De Boer, Di Pierro
and Palamidessi [6] gave fixed-point denotational semantics to ccp, whilst Montanari
and Rossi [36] gave a (true-concurrent) Petri-Net semantics (using the formalism of
contextual nets); De Boer, Gabrielli et al [7] developed an inference system for proving
properties of ccp processes; Smolka’s Oz [48] as well as Haridi and Janson’s AKL [17]
programming languages are built upon ccp ideas.

The ccp Model. A concurrent system is specified in the ccp model in terms of con-
straints over the variables of the system. A constraint is a first-order formula represent-
ing partial information about the values of variables. As an example, for a system with
variables x and y taking natural numbers as values, the constraint x+ y > 16 specifies
possible values for x and y (those satisfying the inequation). The ccp model is parame-
terized by a constraint system, which specifies the constraints of relevance for the kind
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of system under consideration, and an entailment relation |= between constraints (e.g,
x+ y > 16 |= x+ y > 0).

During a ccp computation, the state of the system is specified by an entity called
the store in which information about the variables of the system resides. The store is
represented as a constraint, and thus it may provide only partial information about the
variables. This differs fundamentally from the traditional view of a store based on the
Von Neumann memory model, in which each variable is assigned a uniquely determined
value (e.g., x = 16 and y = 7), rather than a set of possible values.

The notion of store in ccp suggests a model of concurrency with a central memory.
This is, however, only an abstraction which simplifies the presentation of the model. The
store may be distributed in several sites according to the sharing of variables (see [39]
for further discussions about this matter). Conceptually, the store in ccp is the medium
through which agents interact with each other.

A ccp process can update the state of the system only by adding (or telling) informa-
tion to the store. This is represented as the (logical) conjunction of the store representing
the previous state and the constraint being added. Hence, updating does not change the
values of the variables as such, but constrains further some of the previously possible
values.

Furthermore, ccp processes can synchronize by querying (or asking) information
from the store. Asking is blocked until there is enough information in the store to en-
tail (i.e., answer positively) the query, i.e. the ask operation determines whether the
constraint representing the store entails the query.

A ccp computation terminates whenever it reaches a point, called a resting or a
quiescent point, in which no more information can be added to the store. The output of
the computation is defined to be the final store, also called the quiescent store.

Example 1. Consider the simple ccp scenario illustrated in Figure 1. We have four
agents (or processes) wishing to interact through an initially empty store. Let us name
them, starting from the upper leftmost agent in a clockwise fashion,A1, A2, A3 andA4,
respectively.

In this scenario, A1 may move first and tell the others through the store the (par-
tial) information that the temperature value is greater than 42 degrees. This causes the
addition of the item “temperature>42” to the previously empty store.

Now A2 may ask whether the temperature is exactly 50 degrees, and if so it wishes
to execute a process P . From the current information in the store, however, the exact
value of the temperature can not be entailed. Hence, the agent A2 is blocked, and so is
the agentA3 since from the store it cannot be determined either whether the temperature
is between 0 and 100 degrees.

However, A4 may tell the information that the temperature is less than 70 degrees.
The store becomes “temperature > 42 ∧ temperature < 70”, and now process A3 can
executeQ, since its query is entailed by the information in the store . The 2 agentA2 is
doomed to be blocked forever unless Q adds enough information to the store to entail
its query. ��

In the spirit of process calculi, the language of processes in the ccp model is given by
a small number of primitive operators or combinators. A typical ccp process language
contains the following operators:
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temperature=50?.Ptemperature>42

temperature<70 0<temperature<100?.Q

S T O R  E
(MEDIUM)

Fig. 1. A simple ccp scenario

– A tell operator, telling constraints (e.g., agent A1 above).
– An ask operator, prefixing another process, its continuation (e.g. the agent A2

above).
– Parallel composition, combining processes concurrently. For example the scenario

in Figure 1 can be specified as the parallel composition of A1, A2, A3 and A4.
– Hiding (also called restriction or locality), introducing local variables, thus restrict-

ing the interface through which a process can interact with others.
– Summation, expressing a nondeterministic combination of agents to allow alternate

courses of action.
– Recursion, defining infinite behavior.

It is worth pointing out that without summation, the ccp model is deterministic, in
the sense that the final store is always the same, independently of the execution order
(scheduling) of the parallel components [45].

3 Timed Concurrent Constraint Programming

The first timed ccp model was introduced by Saraswat et al [40] as an extension of ccp
aimed at programming and modeling timed, reactive systems. This tcc model elegantly
combines ccp with ideas from the paradigms of Synchronous Languages [2, 15].

The tcc model takes the view of reactive computation as proceeding determinis-
tically in discrete time units (or time intervals). In other words, time is conceptually
divided into discrete intervals. In each time interval, a deterministic ccp process re-
ceives a stimulus (i.e. a constraint) from the environment, it executes with this stimulus
as the initial store, and when it reaches its resting point, it responds to the environment
with the final store. Furthermore, the resting point determines a residual process, which
is then executed in the next time interval.

This view of reactive computation is particularly appropriate for programming reac-
tive systems such as robotic devices, micro-controllers, databases and reservation sys-
tems. These systems typically operate in a cyclic fashion; in each cycle they receive and
input from the environment, compute on this input, and then return the corresponding
output to the environment.

The tcc model extends the standard ccp with fundamental operations for program-
ming reactive systems, e.g. delay and time-out operations. The delay operation forces
the execution of a process to be postponed to the next time interval. The time-out (or
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weak pre-emption) operation waits during the current time interval for a given piece of
information to be present and if it is not, triggers a process in the next time interval.

In spite of its simplicity, the tcc extension to ccp is far-reaching. Many interesting
temporal constructs can be expressed, see [40] for details, As an example, tcc allows
processes to be “clocked” by other processes. This provides meaningful pre-emption
constructs and the ability of defining multiple forms of time instead of only having a
unique global clock.

The tcc model has attracted a lot of attention recently. Several extensions have been
introduced and studied in the literature. One example can be found in [43], adding a
notion of strong pre-emption: the time-out operations can trigger activity in the current
time interval. Other extensions of tcc have been proposed in [14], in which processes
can evolve continuously as well as discretely.

The tccp framework, introduced in [5] by Gabrielli et al, is a fundamental repre-
sentative model of nondeterministic timed ccp. In [5] the authors advocate the need of
nondeterminism in the context of timed ccp. In fact, they use tccp to model interesting
applications involving nondeterministic timed systems (see [5]).

It would be hard to introduce all the tcc extensions in detail, and hence we focus
in the following on the ntcc calculus, which is a generalization of the tcc model in-
troduced in [30] by Palamidessi and the present authors. The calculus is built upon
few basic ideas but it captures several aspects of timed systems. As tcc, ntcc can
model unit delays, time-outs, pre-emption and synchrony. Additionally, it can model
unbounded but finite delays, bounded eventuality, asynchrony and nondeterminism. The
applicability of the calculus has been illustrated with several examples of discrete-time
systems involving , mutable data structures, robotic devices, multi-agent systems and
music applications [38].

The major difference between tccp model from [5] and ntcc is that the former
extends the original ccp while the latter extends the tcc model. More precisely, in tccp
the information about the store is carried through the time units, thus the semantic
setting is completely different. The notion of time is also different; in tccp each time
unit is identified with the time needed to ask and tell information to the store. As for
the constructs, unlike ntcc, tccp provides for arbitrary recursion and does not have an
operator for specifying unbounded but finite delays.

4 The ntcc Process Calculus

This section gives a formal introduction to the ntcc model. We introduce the syntax
and the semantics of the ntcc process language, and illustrate the expressiveness by
modeling robotic devices. Furthermore, we shall present some of the reasoning tech-
niques provided by ntcc focusing on

1. Behavioural equivalences, which are characterized operationally, relating process
behavior much like the behavioral equivalences for traditional process calculi (e.g.,
bisimilarity and trace-equivalence).

2. A denotational semantics which interprets a given process as the set of sequences
of input/output behaviours it can potentially exhibit while interacting with arbitrary
environments.
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3. A process logic expressing specifications of behaviors of processes, and an associ-
ated inference system providing proofs of processes fulfilling specifications.

Informal Description of ntcc Processes

We shall begin with an informal description of the process calculus with examples.
These examples are also meant to give a flavour of the range of application of ntcc .

As for the tcc model, the ntcc model is parameterized by a constraint system.
A constraint system provides a signature from which syntactically denotable objects
called constraints can be constructed, and an entailment relation |= specifying inter-
dependencies between these constraints.

We can set up the notion of constraint system by using first-order logic. Let us
suppose that Σ is a signature (i.e., a set of constants, functions and predicate symbols)
and that Δ is a consistent first-order theory over Σ (i.e., a set of sentences over Σ
having at least one model). Constraints can be thought of as first-order formulae over
Σ. We can then decree that c |= d if the implication c ⇒ d is valid in Δ. This gives us
a simple and general formalization of the notion of constraint system as a pair (Σ,Δ).

In the examples below we shall assume that, in the underlying constraint system,
Σ is the set {=, <, 0, 1 . . .} and Δ is the set of sentences over Σ valid for the natural
numbers.

We now proceed to describe with examples the basic ideas underlying the behavior
of ntcc processes. For this purpose we shall model simple behavior of controllers such
as Programmable Logic Controllers (PLC’s) and RCX bricks.

PLC’s are often used in timed systems of industrial applications [9], whilst RCX
bricks are mainly used to construct autonomous robotic devices [21]. These controllers
have external input and output ports. One can attach, for example, sensors of light,
touch or temperature to the input ports, and actuators like motors, lights or alarms to
the output ports. Typically PLC’s and RCX bricks operate in a cyclic fashion. Each
cycle consists of receiving an input from the environment, computing on this input, and
returning the corresponding output to the environment.

Our processes will operate similarly. Time is conceptually divided into discrete in-
tervals (or time units). In a particular time interval, a process Pi receives a stimulus
ci from the environment. The stimulus is some piece of information, i.e., a constraint.
The process Pi executes with this stimulus as the initial store, and when it reaches its
resting point (i.e., a point in which no further computation is possible), it responds to
the environment with a resulting store di. Also the resting point determines a residual
process Pi+1, which is then executed in the next time interval.

The following sequence illustrates the stimulus-response interactions between an
environment that inputs c1, c2, . . . and a process that outputs d1, d2, . . . on such inputs
as described above.

P1
(c1,d1)====⇒ P2

(c2,d2)====⇒ . . . Pi
(ci,di)====⇒ Pi+1

(ci+1,di+1)======⇒ . . . (1)

Telling and Asking Information. The ntcc processes communicate with each other
by posting and reading partial information about the variables of system they model.
The basic actions for communication provide the telling and asking of information. A
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tell action adds a piece of information to the common store. An ask action queries the
store to decide whether a given piece of information is present. The store is a constra-
int itself. In this way, addition of information corresponds to logical conjunction, and
determining the presence of information corresponds to logical entailment.

The tell and ask processes have the syntactic forms respectively

tell(c) and when c do P. (2)

The only action of a tell process tell(c) is to add, within a time unit, c to the current
store d. The store then becomes d ∧ c. The addition of c is carried out even if the store
becomes inconsistent, i.e., (d ∧ c) = false, in which case we can think of such an
addition as generating a failure.

Example 2. Suppose that d = (motor1_speed > motor2_speed). Intuitively, d
tells us that the speed of motor one is greater than that of motor two. It does not tell us
the specific speed values. The execution in store d of process

tell(motor2_speed > 10)

causes the store to become (motor1_speed > motor2_speed > 10) in the current
time interval, thus increasing the information we know about the system.

Notice that in the underlying constraint system d |= motor1_speed > 0, there-
fore the process

tell(motor1_speed = 0)

in store d causes a failure. ��

The process when c do P performs the action of asking c. If during the current
time interval c can eventually be inferred from the store d (i.e., d |= c ) then P is
executed within the same time interval. Otherwise, when c do P is precluded from
execution (i.e., it becomes permanently inactive).

Example 3. Suppose that d = (motor1_speed > motor2_speed) is the store.
The process

P = when motor1_speed > 0 do Q

will executeQ in the current time interval since d |= motor1_speed > 0, by contrast
the process

P ′ = when motor1_speed > 10 do Q

will not execute Q, unless more information is added to the store during the current
time interval entailing motor1_speed > 10.

��

Nondeterminism. As argued above, partial information allows us to model behavior
for alternative values of variables. In concurrent systems it is often convenient to model
behavior for alternative courses of action, i.e., nondeterministic behavior.
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We generalize the processes of the form when c do P described above to guarded-
choice summation processes of the form∑

i∈I

when ci do Pi (3)

where I is a finite set of indices. The expression
∑

i∈I when ci do Pi represents
a process that, in the current time interval, nondeterministically chooses a process
Pj (j ∈ I) whose corresponding constraint cj is entailed by the store. The chosen
alternative, if any, precludes the others. If no choice is possible during the current time
unit, all the alternatives are precluded from execution. In the following example we
shall use “+” for binary summations.

Example 4. Often RCX programs operate in a set of simple stimulus-response rules of
the form IF E THEN C. The expression E is a condition typically depending on the
sensor variables, and C is a command, typically an assignment. In [11] these programs
respond to the environment by choosing a rule whose condition is met and executing its
command.

If we wish to abstract from the particular implementation of the mechanism that
chooses the rule, we can model the execution of these programs by using the summation
process. For example, the program operating in the set{

(IF sensor1 > 0 THEN motor1_speed := 2),
(IF sensor2 > 99 THEN motor1_speed := 0)

}
corresponds to the summation process

P =
when sensor1 > 0 do tell(motor1_speed = 2)
+
when sensor2 > 99 do tell(motor1_speed = 0).

In the store d = (sensor1 > 10), the process P causes the store to become
d ∧ (motor1_speed = 2) since tell(motor1_speed = 2) is chosen for execution
and the other alternative is precluded. In the store true, P cannot add any information.
In the store e = (sensor1 = 10 ∧ sensor2 = 100), P causes the store to become
either e ∧ (motor1_speed = 2) or e ∧ (motor1_speed = 0). ��

Parallel Composition. Given P and Q we denote their parallel composition by the
process

P ‖ Q (4)

In one time unit processes P and Q operate concurrently, “communicating” via the
common store by telling and asking information.

Example 5. Let P be defined as in Example 4 and

Q =
when motor1_speed = 0 do tell(motor2_speed = 0)
+
when motor2_speed = 0 do tell(motor1_speed = 0).

Intuitively Q turns off one motor if the other is detected to be off. The parallel
composition P ‖ Q in the store d = (sensor2 > 100) will, in one time unit, cause
the store to become d ∧ (motor1_speed = motor2_speed = 0). ��
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Local Behavior. Most process calculi have a construct to restrict the interface through
which processes can interact with each other, thus providing for the modeling of local
(or hidden) behavior. We introduce processes of the form

(localx)P (5)

The process (local x)P declares a variable x, private to P . This process behaves
like P , except that all the information about x produced by P is hidden from external
processes and the information about x produced by other external processes is hidden
from P .

Example 6. In modeling RCX or PLC’s one uses “global” variables to represent ports
(e.g., sensor and motors). However, one often also uses variables, which represent some
local (or private) computational data.

Suppose that R is a given process modeling some controller task. Furthermore,
suppose that R uses a variable z, which is set at random to a value v ∈ {0, 1} in the
process P , i.e.

P = (
∑

v∈{0,1}
when true do tell(z = v)) ‖ R

representing the behavior of R under P ’s random assignment of z.
We may want to declare z in P to be local since it does not represent an input or

output port. Moreover, notice that if we need to run two copies of P , i.e., processP ‖ P ,
a failure may arise as each copy can assign a different value to z. Therefore, the behavior
of R under the random assignment to z can be best represented by P ′ = (local z)P .
In fact, if we run two copies of P ′, no failure can arise from the random assignment to
the z’s as they are private to each P ′. ��

The processes hitherto described generate activity within the current time interval
only. We now turn to constructs that can generate activity in future time intervals.

Unit Delays and Time-Outs. As in the Synchronous Languages [2] we have constructs
whose actions can delay the execution of processes. These constructs are needed to
model time dependency between actions, e.g., actions depending on preceding actions.

The unit-delay operators have the form

nextP and unless c nextP (6)

The process nextP represents the activation of P in the next time interval. The
process unless c nextP is similar, but P will be activated only if c cannot be inferred
from the resulting (or final) store d in the current time interval, i.e., d �|= c. The “unless”
processes add time-outs to the calculus, i.e., they wait during the current time interval
for a piece of information c to be present and if it is not, they trigger activity in the next
time interval.

Notice that unless c nextP is not equivalent to when ¬c do nextP since d �|= c
does not necessarily imply d |= ¬c. Notice also that Q = unless false nextP is
not the same as R = nextP , since R (unlike Q) always activates P in the next time
interval, even if the store entails false.
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Example 7. Let us consider the following process:

P = when false do next tell(motor1_speed = motor2_speed = 0).

P turns the motors off by decreeing that motor1_speed = motor2_speed = 0 in
the next time interval if a failure takes place in the current time interval. Similarly, the
process

unless false next (tell(motor1_speed > 0) ‖ tell(motor2_speed > 0))

makes the motors move at some speed in the next time unit, unless a failure takes place
in the current time interval. ��

Asynchrony. We now introduce a construct that, unlike the previous ones, can describe
arbitrary (finite) delays. The importance of this construct is that it allows us to model
asynchronous behavior across the time intervals.

We use the operator “�” which corresponds to the unbounded but finite delay oper-
ator for synchronous CCS [26]. The process

� P (7)

represents an arbitrary long but finite delay for the activation of P . Thus, � tell(c) can
be viewed as a message c that is eventually delivered but there is no upper bound on the
delivery time.

Example 8. Let S = � tell(malfunction(motor1_status)). The process S can
be used to specify that motor1, at some unpredictable point in time, is doomed to
malfunction ��

Infinite Behavior. Finally, we need a construct to define infinite behavior. We shall use
the operator “!” as a delayed version of the replication operator for the π−calculus [27].
Given a process P , the process

!P (8)

represents P ‖ (nextP ) ‖ (next nextP ) ‖ · · · ‖!P , i.e., unboundedly many copies
of P , but one at a time. The process !P executes P in one time unit and persists in the
next time unit.

Example 9. The processR below repeatedly checks the state of motor1. If a malfunc-
tion is reported,R tells that motor1 must be turned off.

R = !when malfunction(motor1_status) do tell(motor1_speed = 0)

Thus,R ‖ S with S = � tell(malfunction(motor1_status)) (Example 8) even-
tually tells that motor1 is turned off. ��
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Some Derived Forms

We have informally introduced the basic process constructs of ntcc and illustrated
how they can be used to model or specify system behavior. In this section we shall
illustrate how they can be used to obtain some convenient derived constructs.

In the following we shall omit “when true do” if no confusion arises. The
“blind-choice” process

∑
i∈I when true do Pi, for example, can be written as∑

i∈I Pi. We shall use
∏

i∈I Pi, where I is finite, to denote the parallel composition of
all the Pi’s. We use nextn(P ) as an abbreviation for next(next(. . . (nextP ) . . . )),
where next is repeated n times.

Inactivity. The process doing nothing whatsoever, skip can be defined as an abbrevia-
tion of the empty summation

∑
i∈∅ Pi. This process corresponds to the inactive proce-

sses 0 of CCS and STOP of CSP. We should expect the behavior of P ‖ skip to be
the same as that of P under any reasonable notion of behavioral equivalence.

Abortion. Another useful construct is the process abort which is somehow to the
opposite extreme of skip. Whilst having skip in a system causes no change whatso-
ever, having abort can make the whole system fail. Hence abort corresponds to the
CHAOS operator in CSP. In Section 4 we mentioned that a tell process causes a failure,
at the current time interval, if it leaves the store inconsistent. Therefore, we can define
abort as ! tell(false), i.e., the process that once activated causes a constant fail-
ure. Therefore, any reasonable notion of behavioral equivalence should not distinguish
between P ‖ abort and abort.

Asynchronous Parallel Composition. Notice that in P ‖ Q both P and Q are forced
to move in the current time unit, thus our parallel composition can be regarded as being
a synchronous operator. There are situations where an asynchronous version of “‖” is
desirable. For example, modeling the interaction of several controllers operating con-
currently where some of them could be faster or slower than the others at responding to
their environment.

By using the star operator we can define a (fair) asynchronous parallel composition
P | Q as

(P ‖ � Q) + (� P ‖ Q)

A move of P | Q is either one of P or one of Q (or both). Moreover, both P andQ
are eventually executed (i.e. a fair execution of P | Q). This process corresponds to the
asynchronous parallel operator described in [26].

We should expect operator “|” to enjoy properties of parallel composition. Namely,
we should expect P | Q to be the same as Q | P and P | (Q | R) to be the same
as (P | Q) | R. Unlike in P ‖ skip, however, in P | skip the execution of P may
be arbitrary postponed, therefore we may want to distinguish between P | skip and
P . Similarly, unlike in P ‖ abort, in P | abort the execution of abort may be
arbitrarily postponed.

Bounded Eventuality and Invariance. We may want to specify that a certain behavior
is exhibited within a certain number of time units, i.e., bounded eventuality, or during a
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certain number of time units, i.e., bounded invariance. An example of bounded eventu-
ality is “the light must be switched off within the next ten time units” and an example
of bounded invariance is “the motor should not be turned on during the next sixty time
units”.

The kind of behavior described above can be specified by using the bounded ver-
sions of !P and � P , which can be derived using summation and parallel composition
in the obvious way. We define !IP and �IP , where I is a closed interval of the natural
numbers, as an abbreviation for∏

i∈I

nextiP and
∑
i∈I

nextiP

respectively. Intuitively, �[m,n]P means that P is eventually active between the nextm
andm+ n time units, while ![m,n]P means that P is always active between the nextm
andm+ n time units.

4.1 The Operational Semantics of ntcc

Following the informal description of ntcc above, we now proceed with a formal def-
inition. We shall begin by formalizing the notion of constraint system and the syntax
of ntcc . We shall then give meaning to the ntcc processes by means of an oper-
ational semantics. The semantics, which resembles the reduction semantics of the π-
calculus [27], provides internal and external transitions describing process evolutions.
The internal transitions describe evolutions within a time unit, and they are considered
to be unobservable. The external transitions describe evolution across the time units,
and they are considered to be observable.

Constraint Systems. For our purposes it will suffice to consider the notion of constraint
system based on first-order logic, following e.g. [47].

Definition 1 (Constraint System). A constraint system (cs) is a pair (Σ,Δ) where Σ
is a signature of function and predicate symbols, and Δ is a decidable theory over Σ
(i.e., a decidable set of sentences overΣ with a least one model).

Given a constraint system (Σ,Δ), let (Σ,V ,S) be its underlying first-order lan-
guage, where V is a countable set of variables x, y, . . ., and S is the set of logic sym-
bols ¬,∧,∨,⇒, ∃, ∀,true and false. Constraints c, d, . . . are formulae over this
first-order language. We say that c entails d in Δ, written c |= d, iff c ⇒ d is true in
all models of Δ. The relation |=, which is decidable by the definition of Δ, induces an
equivalence ≈ given by c ≈ d iff c |= d and d |= c.

Convention 1 Henceforth, C denotes the set of constraints modulo ≈ under consider-
ation in the underlying constraint system.

Let us now give some examples of constraint systems. The classical example is the
Herbrand constraint system [39].

Definition 2 (Herbrand Constraint System). The Herbrand constraint system is such
that:
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– Σ is a set with infinitely many function symbols of each arity and equality =.
– Δ is given by Clark’s Equality Theory with the schemas
f(x1, . . . , xn)=f(y1, . . . , yn) ⇒ x1 = y1 ∧ . . . ∧ xn = yn
f(x1, . . . , xn)=g(y1, . . . , yn) ⇒ false, if f, g are distinct symbols

x = f(. . . x . . .) ⇒ false .

The importance of the Herbrand constraint system is that it underlies conventional
logic programming and many first-order theorem provers. Its value lies in the Herbrand
Theorem, which reduces the problem of checking unsatisfiability of a first-order for-
mula to the unsatisfiability of a quantifier-free formula interpreted over finite trees.

Another widely used constraint system is the finite-domain constraint system FD
defined in [18]. In FD variables are assumed to range over finite domains and, in ad-
dition to equality, we may have predicates that restrict the range of a variable to some
finite set. The following is a simplified finite-domain constraint system.

Definition 3 (A Finite-Domain Constraint System). Let n > 0. Define FD[n] as the
constraint system such that:

– Σ is given by the constants symbols 0, 1, ...., n− 1 and the equality =.
– Δ is given by the axioms of equational theory x = x, x = y ⇒ y = x, x = y∧y =
z ⇒ x = z, and v = w ⇒ false for each two different constants v, w in Σ.

Intuitively FD[n] provides a theory of variables ranging over a finite domain of
values {0, . . . , n− 1} with syntactic equality over these values.

The following is a somewhat more complex finite-domain constraint system.

Definition 4 (Modular Arithmetic Constraint System). Let n > 0. Define A[n] as
the constraint system such that:

– Σ is given by {0, 1, ...., n− 1,succ,pred,+,×,=, >}.
– Δ is the set of sentences valid in arithmetic modulo n.

The intended meaning of A[n] is the natural numbers interpreted as in arithmetic
modulo n. Due to the familiar operations it provides, we shall often assume that A[n]
is the underlying constraint system in our examples and applications.

Other examples of constraint systems include: Rational intervals, Enumerated type,
the Kahn constraint system and the Gentzen constraint system (see [45] and [39] for
details).

Process Syntax and Semantics

Following the informal description above, the process constructions in the ntcc calcu-
lus are given by the following syntax:

Definition (Processes, Proc). Processes P , Q, . . . ∈ Proc are built from constraints
c ∈ C and variables x ∈ V in the underlying constraint system by:

P,Q, . . . ::= tell(c) |
∑
i∈I

when ci do Pi | P ‖ Q | (localx)P

| nextP | unless c nextP | � P | !P
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The informal semantic meaning provided above of the constructs is formalized in
terms of the following structural operational semantics (SOS) of ntcc . This semantics
defines transitions between process-store configurations of the form 〈P, c〉, with stores
represented as constraints and processes quotiented by the congruence ≡ below.

Let us define precisely what we mean by the term “congruence” of processes, a key
concept in the theory of process algebra. First, we need to introduce the standard notion
of process context. Informally speaking, a process context is a process expression with
a single hole, represented by [·], such that placing a process in the hole yields a well-
formed process. More precisely,

Definition 5 (Process Context). Process contexts C are given by the syntax

C ::= [·] | when c do C +M | C ‖ P | P ‖ C |(localx)C
| nextC | unless c nextC | � C | !C

whereM stands for summations. The process C[Q] results from the textual substitution
of the hole [·] in C with Q.

An equivalence relation is a congruence if it respects all contexts:

Definition 6 (Process Congruence). An equivalence relation ∼= on processes is said to
be a process congruence iff for all contexts C, P ∼= Q implies C[P ] ∼= C[Q].

We can now introduce the structural congruence ≡. Intuitively, the relation ≡ de-
scribes irrelevant syntactic aspects of processes. It states that (Proc/ ≡, ‖, skip) is a
commutative monoid.

Definition 7 (Structural Congruence). Let ≡ be the smallest congruence over proce-
sses satisfying the following axioms:

1. P ‖ skip ≡ P
2. P ‖ Q ≡ Q ‖ P
3. P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R.

We extend ≡ to configurations by decreeing that 〈P, c〉 ≡ 〈Q, c〉 iff P ≡ Q.

Convention 2 Following standard notation, we extend the syntax with a construct
local (x, d) inP , to represent the evolution of a process of the form localx inQ,
where d is the local information (or store) produced during this evolution. Initially
d is “empty”, so we regard localx inP as local (x,true) in P .

The transitions of the SOS are given by the relations −→ and =⇒ defined in Table 1.
The internal transition 〈P, d〉 −→ 〈P ′, d′〉 should be read as “P with store d reduces, in

one internal step, to P ′ with store d′ ”. The observable transition P
(c,d)

====⇒ R should
be read as “P on input c, reduces in one time unit to R and outputs d”.

Intuitively, the observable reduction is obtained from a sequence of internal reduc-
tions starting in P with initial store c and terminating in a process Q with final store
d. The process R, which is the one to be executed in the next time interval (or time
unit), is obtained by removing from Q what was meant to be executed only during the
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Table 1. Rules for internal reduction −→ (upper part) and observable reduction =⇒ (lower part).
γ �−→ in OBS holds iff for no γ′, γ −→ γ′. ≡ and F are given in Definitions 7 and 8.

TELL
〈tell(c), d〉 −→ 〈skip, d ∧ c〉

SUM
d |= cj j ∈ I〈∑

i∈I when ci do Pi, d
〉 −→ 〈Pj , d〉

PAR
〈P, c〉 −→ 〈

P ′, d
〉

〈P ‖ Q, c〉 −→ 〈
P ′ ‖ Q, d

〉 LOC
〈P, c ∧ ∃xd〉 −→ 〈

P ′, c′
〉

〈(localx, c) P, d〉 −→ 〈
(localx, c′) P ′, d ∧ ∃xc′

〉
UNL

〈unless c nextP, d〉 −→ 〈skip, d〉
if d |= c

REP
〈! P, d〉 −→ 〈P ‖ next ! P, d〉

STAR
〈� P, d〉 −→ 〈next nP, d〉

if n ≥ 0

STR
γ1 −→ γ2

γ′
1 −→ γ′

2

if γ1 ≡ γ′
1 and γ2 ≡ γ′

2

OBS
〈P, c〉 −→∗ 〈Q, d〉 �−→

P
(c,d)
====⇒ R

if R ≡ F (Q)

current time interval. Notice that the store d is not transferred to the next time interval,
i.e. information in d can only be transfered to the next time unit by P itself.

Most of the rules in Table 1 should be straightforward from the informal description
of the intended semantics given above. For detailed comments we refer to [30], and
here we only comment on two of the rules: the rule for local variables LOC and OBS
(covering the seemingly missing rules for “next” and “unless” processes).

Consider the process

Q = (local x, c)P

in Rule LOC. The global store is d and the local store is c. We distinguish between
the external (corresponding to Q) and the internal point of view (corresponding to P ).
From the internal point of view, the information about x, possibly appearing in the
“global” store d, cannot be observed. Thus, before reducing P we should first hide the
information about x that Q may have in d. We can do this by existentially quantifying
x in d. Similarly, from the external point of view, the observable information about
x that the reduction of internal agent P may produce (i.e., c′) cannot be observed.
Thus we hide it by existentially quantifying x in c′ before adding it to the global store
corresponding to the evolution of Q. Additionally, we should make c′ the new private
store of the evolution of the internal process for its future reductions.

Rule OBS says that an observable transition from P labeled with (c, d) is obtained
from a terminating sequence of internal transitions from 〈P, c〉 to a 〈Q, d〉. The process
R to be executed in the next time interval is equivalent to F (Q) (the “future” of Q).
F (Q) is obtained by removing fromQ summations that did not trigger activity and any
local information which has been stored in Q, and by “unfolding” the sub-terms within
“next” and “unless” expressions.
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Definition 8 (Future Function). Let F : Proc ⇀ Proc be defined by

F (Q) =

⎧⎪⎪⎨⎪⎪⎩
skip if Q =

∑
i∈I when ci do Qi

F (Q1) ‖ F (Q2) if Q = Q1 ‖ Q2

(localx)F (R) if Q = (local x, c)R
R if Q = nextR orQ = unless c nextR

Remark 1. F need no to be total since whenever we need to apply F to a Q (OBS in Table 1),
every tell(c), � R and ! R in Q will occur within a “next” or “unless” expression.

Example 10. Recall Example 9. Processes R and S were defined as:

R = !when c do tell(e)
S = � tell(c)

where c = malfunction(motor1_status) and e = (motor1_speed = 0).
Let P = R ‖ S, S′ = tell(c) and R′ = when c do tell(e). One can verify

that for an arbitrarym > 0, the following is a valid sequence of observable transitions
starting with P :

R ‖ S (c,c∧e)
====⇒ R ‖ next mS′ (true,true)

====⇒ R ‖ next m−1S′ (true,true)
====⇒ . . .

. . .
(true,true)

====⇒ R ‖ S′ (true,c∧e)
====⇒ R

(true,true)
====⇒ . . . .

Intuitively, in the first time interval the environment tells c (i.e., c is given as input
to P ) thus R′, which is created by !R, tells e. The output is then c ∧ e. Furthermore, S
creates an S′ which is to be triggered in an arbitrary number of time units m + 1. In
the following time units the environment does not provide any input whatsoever. In the
m+ 1-th time unit S′ tells c and then R′ tells e. ��

4.2 Observable Behavior

In this section we recall some notions introduced in [31] of process observations. We
assume that what happens within a time unit cannot be directly observed, and thus
we abstract from internal transitions, and focus on observations in terms of external
transitions.

Notation 1 Throughout this paper Cω denotes the set of infinite sequences of con-
straints in the underlying set of constraints C. We use α, α′, . . . to range over Cω.

Let α = c1.c2. . . . and α′ = c′1.c
′
2. . . .. We use the notation P

(α,α′)
====⇒ω to denote

the existence of an infinite sequence of observable transitions (or run): P = P1
(c1,c′1)
====⇒

P2
(c2,c′2)
====⇒ . . . .

IO and Output Behavior. Consider a run of P as above. At the time unit i, the environ-
ment inputs ci to Pi, which then responds with an output c′i. As observers, we can see

that on α, P responds with α′. We refer to the set of all (α, α′) such that P
(α,α′)
====⇒ω
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as the input-output (io) behavior of P . Alternatively, if α = trueω, we interpret the
run as an interaction among the parallel components in P without the influence of any
(external) environment; as observers what we see is that P produces α on its own. We

refer to the set of all α′ such that P
(trueω ,α′)
====⇒ ω as the output behavior of P .

Quiescent Sequences and SP. As a third alternative, we may observe the quiescent
input sequences of a process. These are sequences of input on which P can run without

adding any information; we observe whether α = α′ whenever P
(α,α′)
====⇒ω.

In [30] it is shown that the set of quiescent sequences of a given P can be char-
acterized as the set of infinite sequences that P can possibly output under arbitrary
environments; the strongest postcondition (sp) of P .

Summing up, we have the following notions of observable behavior.

Definition 9 (Observable Behavior). The behavioral observations that can be made
of a process are:

1. The input-output (or stimulus-response) behavior of P , written, io(P ), defined as

io(P ) = {(α, α′) | P (α,α′)
====⇒ω}.

2. The (default) output behavior of P , written o(P ), defined as

o(P ) = {α′ | P (trueω ,α′)
====⇒ ω}.

3. The strongest postcondition behavior of P , written sp(P ), defined as

sp(P ) = {α | P (α′,α)
====⇒ω for some α′}.

Given these notions of observable behaviors, we have the following naturally in-
duced equivalences and congruences (recall the notion of congruence given in Defini-
tion 6.)

Definition 10 (Behavioral Equivalences). Let l ∈ {io, o, sp}. Define P ∼l Q iff
l(P ) = l(Q). Furthermore, let ≈l the congruence induced by ∼l, i.e., P ≈l Q iff
C[P ] ∼l C[Q] for every process context C.

We shall refer to equivalences defined above as observational equivalences. No-
tice, that they identify processes whose internal behavior may differ widely. Such an
abstraction from internal behavior is essential in the theory of several process calculi;
most notably in weak bisimilarity for CCS [25].

Example 11. Let a, b, c, d and e mutually exclusive constraints. Consider the processes
P andQ below:

when a do next
when b do next tell(d)
+
when c do next tell(e)︸ ︷︷ ︸

,
when a do nextwhen b do next tell(d)
+
when a do nextwhen c do next tell(e)︸ ︷︷ ︸

P Q

The reader may verify that P ∼o Q since o(P ) = o(Q) = {trueω}. However,
P �∼io Q nor P �∼sp Q since if α = a.c.trueω then (α, α) ∈ io(Q) and α ∈ sp(Q)
but (α, α) �∈ io(P ) and α �∈ sp(P ). ��
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Congruence and Decidability Issues. In [30] it is proven that none of the three obser-
vational equivalences introduced in Definition 10 are congruences. However, ∼sp is a
congruence if we confine our attention to the so-called locally-independent fragment of
the calculus, i.e. the fragment without non-unary summations and “unless” operations,
whose guards depend on local variables.

Definition 11 (Locally-Independent Processes). P is locally-independent iff for ev-
ery unless c nextQ and

∑
i∈I when ci do Qi (|I| ≥ 2) in P , neither c nor the ci’s

contain variables in bv(P ) (i.e., the bound variables of P ).

The locally-independent fragment is indeed very expressive. Every summation pro-
cess whose guards are either all equivalent or mutually exclusive can be encoded in this
fragment [51]. Moreover, the applicability of this fragment is witnessed by the fact all
the ntcc applications we are aware of [30,31,51] can be model as locally-independent
processes. Also, the (parameterless-recursion) tcc model can be expressed in this frag-
ment as, from the expressiveness point of view, the local operator is redundant in tcc
with parameterless-recursion [29]. Furthermore, it allows us to express infinite-state
processes (i.e., there are processes that can evolve into infinitely many other processes).
Hence, it is rather surprising that ∼sp is decidable for the local-independent fragment
as recently proved in [52]. In 5 below we shall present a number of other seemingly
surprising decidability results for other fragments of ntcc .

� � �

4.3 Denotational Semantics

In the previous section we introduced the notion of strongest-postcondition of ntcc
processes in operational terms. In the following we show the abstract denotational
model of this notion, first presented in [32].

The denotational semantics is defined as a function [[·]] associating with each pro-
cess a set of infinite constraint sequences, [[·]] : Proc → P(Cω). The definition of this
function is given in Table 2. Intuitively, [[P ]] is meant to capture the set of all sequences
P can possibly output. For instance, the sequences associated with tell(c) are those
for which the first element is stronger than c (see DTELL, Table 2). Process nextP
has not influence on the first element of a sequence, thus d.α is a possible output if
α is a possible output of P (see DNEXT, Table 2). The other cases can be explained
analogously.

From [7] we know that there cannot be a f : Proc → P(Cω), compositionally
defined, such that f(P ) = sp(P ) for all P . Nevertheless, as stated in the theorem
below, Palamidessi et al [32] showed that the sp denotational semantics matches its
operational counter-part for the locally-independent fragment 11.

Theorem 1 (Full Abstraction, [32]). For every ntcc process P , sp(P ) ⊆ [[P ]] and if
P is locally-independent then [[P ]] ⊆ sp(P ).

The full-abstraction result above has an important theoretical value; i.e., for a signif-
icant fragment of the calculus we can abstract away from operational details by working
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Table 2. Denotational semantics of ntcc . Symbols α and α′ range over the set of infinite
sequences of constraints Cω; β ranges over the set of finite sequences of constraints C∗. Notation
∃xα denotes the sequence resulting by applying ∃x to each constraint in α.

DTELL: [[tell(c)]] = {d.α | d |= c}

DSUM: [[
∑

i∈I when ci do Pi ]] =
⋃

i∈I

{d.α | d |= ci and d.α ∈ [[Pi]]} ∪ ⋂
i∈I{d.α | d �|= ci}

DPAR: [[P ‖ Q]] = [[P ]] ∩ [[Q]]

DLOC: [[(localx) P ]] = {α | there exists α′ ∈ [[P ]] s.t. ∃xα′ = ∃xα}

DNEXT: [[nextP ]] = {d.α | α ∈ [[P ]]}

DUNL: [[unless c nextP ]] = {d.α | d |= c} ∪ {d.α | d �|= c and α ∈ [[P ]]}

DREP: [[! P ]] = {α | for all β, α′ s.t. α = β.α′, we have α′ ∈ [[P ]]}

DSTAR: [[� P ]] = {β.α | α ∈ [[P ]]}

with [[P ]] rather than sp(P ). Furthermore, an interesting corollary of the full-abstraction
result is that ∼sp is a congruence, if we confine ourselves to locally-independent pro-
cesses.

4.4 LTL Specification and Verification

Processes in ntcc denote observable behavior of timed systems. As with other such
formalisms, it is often convenient to express specifications of such behaviors in logical
formalisms. In this section we present the ntcc logic first introduced in [32]. We start
by defining a linear-time temporal logic (LTL) expressing temporal properties over in-
finite sequences of constraints. We then define what it means for a process to satisfy a
specification given as a formula in this logic. Finally, we present an inference system
aimed at proving processes satisfying specifications.

A Temporal Logic. The ntcc LTL expresses properties of infinite sequences of con-
straints, and we shall refer to it as CLTL.

Definition 12 (CLTL Syntax). The formulae F,G, ... ∈ F are built from constraints
c ∈ C and variables x ∈ V in the underlying constraint system by:

F,G, . . . := c | ˙true | ˙false | F ∧̇G | F ∨̇G | ¬̇F | ∃̇x F | ◦F | �F | ♦F

Here c is a constraint (i.e., a first-order formula in the underlying constraint system)
representing a state formula c. The symbols ˙true, ˙false, ∧̇, ∨̇, ¬̇, ∃̇ represent linear-
temporal logic true, false, conjunction, disjunction, negation and existential quantifica-
tion. As clarified later, the dotted notation is introduced since in CLTL these operators
may have different interpretations from the symbols true,false,∧,∨,¬, ∃ in the
underlying constraint system. The symbols ◦, �, and ♦ denote the temporal operators
next, always and sometime.
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The standard interpretation structures of linear temporal logic are infinite sequences
of states [22]. In the case of ntcc , it is natural to replace states by constraints, and
hence our interpretations are elements of Cω.

The CLTL semantics is given in Definition 14. Following [22] we introduce the
notion of x-variant.

Notation 2 Given a sequence α = c1.c2. . . ., we use ∃xα to denote the sequence
∃xc1∃xc2 . . . . We shall use α(i) to denote the i− th element of α.

Definition 13 (x-variant). A constraint d is an x-variant of c iff ∃xc = ∃xd. Similarly
α′ is an x-variant of α iff ∃xα = ∃xα

′.

Intuitively, d and α′ are x-variants of c and α, respectively, if they are logically the
same except for information about x. For example, x = 0 ∧ y = 0 is an x-variant of
x = 1 ∧ y = 0.

Definition 14 (CLTL Semantics). We say that α ∈ Cω satisfies (or that it is a model
of) the CLTL formula F , written α |=CLTL F , iff 〈α, 1〉 |=CLTL F , where:

〈α, i〉 |=CLTL ˙true 〈α, i〉 �|=CLTL ˙false
〈α, i〉 |=CLTL c iff α(i) |= c
〈α, i〉 |=CLTL ¬̇F iff 〈α, i〉 �|=CLTL F
〈α, i〉 |=CLTL F ∧̇G iff 〈α, i〉 |=CLTL F and 〈α, i〉 |=CLTL G
〈α, i〉 |=CLTL F ∨̇G iff 〈α, i〉 |=CLTL F or 〈α, i〉 |=CLTL G
〈α, i〉 |=CLTL ◦F iff 〈α, i+ 1〉 |=CLTL F
〈α, i〉 |=CLTL �F iff for all j ≥ i 〈α, j〉 |=CLTL F
〈α, i〉 |=CLTL ♦F iff there is a j ≥ i such that 〈α, j〉 |=CLTL F

〈α, i〉 |=CLTL ∃̇x F iff there is an x-variant α′ of α such that 〈α′, i〉 |=CLTL F.

Define [[F ]]={α | α |=CLTL F}. We say that F is CLTL valid iff [[F ]] = Cω, and that F
is CLTL satisfiable iff [[F ]] �= ∅.

State Formulae as Constraints. Let us comment briefly on the role of constraints as
state formulae in our logic. A temporal formula F expresses a property of sequences
of constraints. As a state formula, c expresses a property, which is satisfied by those
e.α′ such that e |= c. Hence, the state formula false (and consequently �false) is
satisfied by falseω. On the other hand, the temporal formula ˙false has no model
whatsoever.

Similarly, the models of the temporal formula c ∨̇ d are those e.α′ such that either
e |= c or e |= d holds. Therefore, the formula c ∨̇ d and the atomic proposition c ∨ d
may have different models since, in general, one can verify that e |= c ∨ d may hold
while neither e |= c nor e |= d hold – e.g. take e = (x = 1 ∨ x = 2), c = (x = 1) and
d = (x = 2).

In contrast, the formula c ∧̇ d and the atomic proposition c∧d have the same models
since e |= (c ∧ d) holds if and only if both e |= c and e |= d hold.

The above discussion tells us that the operators of the constraint system should
not be confused with those of the temporal logic. In particular, the operators ∨ and
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Table 3. A proof system for linear-temporal properties of ntcc processes.

LTELL: tell(c) � c LPAR:
P � F Q � G

P ‖ Q � F ∧̇G

LSUM:
∀i ∈ I Pi � Fi∑

i∈I

when ci do Pi �
∨̇
i∈I

(ci ∧̇Fi) ∨̇
∧̇
i∈I

¬̇ ci

LLOC:
P � F

(localx) P � ∃̇x F

LNEXT:
P � F

nextP � ◦F
LUNL:

P � F

unless c next P � c ∨̇◦F

LREP:
P � F

! P � �F
LSTAR:

P � F

� P � ♦F

LCONS:
P � F

P � G
if F ⇒̇G

∨̇. This distinction does not make our logic intuitionistic. In fact, classically (but not
intuitionistically) valid statements such as ¬̇A ∨̇A and ¬̇ ¬̇A ⇒̇A are also valid in our
logic.

Process Verification

We are now ready to define what it means for a process P to satisfy a specification F .

Definition 15 (Verification). P satisfies F , written P |=CLTL F , iff sp(P ) ⊆ [[F ]].

Thus, the intended meaning of P |=CLTL F is that every sequence P can possi-
bly output on inputs from arbitrary environments satisfies the temporal formula F . For
example, � tell(c) |= ♦c, since in every infinite sequence output by � tell(c) on arbi-
trary inputs, there must be an element entailing c.

Following the discussion above, notice that P = tell(c) + tell(d) |= (c ∨̇ d) as
every constraint e output by P entails either c or d. In contrast, Q = tell(c ∨ d) �|=
(c ∨̇ d) in general since Q can output a constraint e which entails c ∨ d, but neither c
nor d.

4.5 Proof System for Verification

[32] introduces a proof (or inference) system for assertions of the form P / F , where
P / F is intended to be the “counterpart” of P |= F in the sense that P / F should
approximateP |=CLTL F as closely as possible (ideally, they should be equivalent). The
system is presented in Table 3.

Definition 16 (P / F ). We say that P / F iff the assertion P / F has a proof in the
system in Table 3.
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Inference Rules. Let us briefly comment on (the soundness of) some of the inference
rules of the proof system. The inference rule for the tell operator is given by

LTELL: tell(c) / c

Rule LTELL gives a proof reflecting the fact that every output of tell(c) on arbitrary
input, indeed satisfies the atomic proposition c, i.e., tell(c) |=CLTL c.

Consider now the rule for the choice operator:

LSUM:
∀i ∈ I Pi / Fi∑

i∈I

when ci do Pi /
∨̇
i∈I

(ci ∧̇Fi) ∨̇
∧̇
i∈I

¬̇ ci

Rule LSUM can be explained as follows. Suppose that for P =
∑

i∈I when ci do Pi

we are given a proof that each Pi satisfies Fi, i.e. (inductively) Pi |=CLTL Fi. Then we
may conclude that every output of P on arbitrary input will satisfy either: (a) some of
the guards ci and their corresponding Fi (i.e.,

∨̇
i∈I(ci ∧̇Fi)), or (b) none of the guards

(i.e.,
∧̇

i∈I ¬̇ ci).
The inference rule for parallel composition is defined as

LPAR:
P / F Q / G

P ‖ Q / F ∧̇G

The soundness of this rule can be justified as follows. Assume that each output of P ,
under the influence of arbitrary environments, satisfies F . Assume the same about Q
and G. In P ‖ Q, the process Q can be thought as one of those arbitrary environment
under which P satisfies F . Then P ‖ Q must satisfy F . Similarly, P can be one of
those arbitrary environment under which Q satisfies G. Hence, P ‖ Q must satisfy G
as well. We therefore have grounds to conclude that P ‖ Q satisfies F ∧̇G.

The inference rule for the local operator is

LLOC:
P / F

(local x)P / ∃̇x F

The intuition is that since the outputs of (localx)P are outputs of P with x hidden
then if P satisfies F , (localx)P should satisfy F with x hidden, i.e., ∃̇x F .

The following are the inference rules for the temporal ntcc constructs:

LNEXT:
P / F

nextP / ◦F
LUNL:

P / F

unless c nextP / c ∨̇ ◦F
LREP:

P / F

!P / �F
LSTAR:

P / F

�P / ♦F

Assume that P / F , i.e. (inductively) P |=CLTL F . Rule LNEXT reflects that we may
then conclude that also the process nextP satisfies ◦F . Rule LUNL is similar, except
that P can also be precluded from execution, if some environment provides c. Thus
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unless c nextP satisfies either c or ◦F . Rule LREP says that if F is satisfied by P ,
then executing P in each time interval will imply F to be satisfied in each time interval,
i.e. !P satisfies �F . Rule LSTAR reflects that if P is executed in some time interval,
then in that time interval F is satisfied, and hence � P satisfies ♦F .

Finally, we have the rule:

LCONS:
P / F

P / G
if F ⇒̇G

Notice that this rule refers to some unspecified way of inferring validity of CLTL for-
mulae. We shall return to this point shortly. Rule LCONS simply says that if P satisfies
a specification F then it also satisfies any weaker specification G. We shall also refer to
LCONS as the consequence rule.

Notice that the inference rules reveal a pleasant correspondence between ntcc op-
erators and the logic operators. For example, parallel composition and locality corre-
sponds to conjunction and existential quantification. The choice operator corresponds
to some special kind of conjunction. The next, replication and star operators correspond
to the next, always, and eventuality temporal operator.

The Proof System at Work. Let us now give a simple example illustrating a proof in
inference system.

Example 12. Recall Example 9. We have a process R which was repeatedly checking
the state of motor1. If a malfunction is reported, R would tell that motor1 must
be turned off. We also have a process S stating that motor motor1 is doomed to
malfunction. Let R =!when c do tell(e) and S = � tell(c) with the constraints
c = malfunction(motor1_status) and e = (motor1_speed = 0). We want
to provide a proof of the assertion: R ‖ S / ♦ e. Intuitively, this means that the par-
allel execution of R and S satisfies the specification stating that motor1 is eventually
turned off. The following is a derivation of the above assertion.

when c do tell(e) / (c ∧̇ e) ∨̇ ¬̇ c LSUM

when c do tell(e) / c ⇒̇ e
LCONS

R / � (c ⇒̇ e)
LREP

tell(c) / c LTELL

S / ♦ c LSTAR

R ‖ S / � (c ⇒̇ e) ∧̇ ♦c LPAR

R ‖ S / ♦ e LCONS

More complex examples of the use of the proof system for proving the satisfaction of
processes specification can be found in [30]—in particular for proving properties of
mutable data structures. ��

Let us now return to the issue of the relationship between / and |=CLTL.

Theorem 2 (Relative Completeness, [30]). If P is locally-independent then P / F iff
P |=CLTL F.
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Notice that this is indeed a “relative completeness” result, in the sense that, as men-
tioned earlier, one of our proof rules refer to the validity of temporal implication. This
means that our proof system is complete, if we are equipped with an oracle that is guar-
anteed to provide a proof or a confirmation of each valid temporal implication. Because
of this, one may wonder about the decidability of the validity problem for our temporal
logic. We look at this issue next.

Decidability Results. In [52] it is shown that the verification problem (i.e., given P
and F whether P |=CLTL F ) is decidable for the locally-independent fragment of ntcc
and negation-free CLTL formulae. Please recall that the locally-independent fragment
of ntcc admits infinite-state processes. Also note that CLTL is first-order. Most first-
order LTL’s in computer science are not recursively axiomatizable, let alone decid-
able [1].

Furthermore, [52] proves the decidability of the validity problem for implication
of negation-free CLTL formulae. This is done by appealing to the close connection
between ntcc processes and LTL formulae to reduce the validity of implication to the
verification problem. More precisely, it is shown that given two negation-free formulae
F andG, one can construct a process PF such that sp(PF ) = [[F ]] and then it follows
that PF |=CLTL G iff F ⇒̇G. As a corollary of this result, we obtain the decidability of
satisfiability for the negation-free first-order fragment of CLTL

A theoretical application of the theory of ntcc is presented in [52], stating a new
positive decidability result for a first-order fragment of Pnueli’s first-order LTL [22].
The result is obtained from a reduction to CLTL satisfiability, and thus it also con-
tributes to the understanding of the relationship between (timed) ccp and (temporal)
classic logic.

5 A Hierarchy of Timed CCP Languages

In the literature several timed ccp languages have been introduced, differing in their way
of expressing infinite behavior. In this section we shall introduce a few fundamental
representatives of mechanisms introducing infinite behavior, expressed as variants of
the ntcc calculus. We shall also characterize their relative expressiveness following
[29].

Since timed CCP languages are deterministic we shall confine our attention to the
deterministic processes of ntcc as described in [30]. These are all the star-free proce-
sses with all summations having at most one guard. On top of this fragment we consider
the following variants:

– rep: deterministic ntcc ; infinite behavior given by replication.
– recp: obtained from deterministic ntcc replacing replication by parametric re-

cursion. In recp each procedures body has no free variables other than its formal
parameters.

– reci: same as recp, but where the actual parameters in recursive calls are iden-
tical to the formal parameters; i.e., we do not vary the parameters in the recursive
calls.
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– recd: obtained by using parameterless recursion, but including free variables in
procedure bodies with dynamic scope.

– recs: same as recd but with static scope.

In the following, the expressive power of these process languages is compared with
respect to the notion of input-output behavior, as introduced in Section 4.2. More pre-
cisely, one language is considered at least as expressive as another, if any input-output
behavior expressed by a process in the latter can be expressed also by a process in the
former. The comparison results can be summarized as follows:

– recp and recd are equally expressive, and strictly more expressive than the other
languages,

– rep, recs and reci are equally expressive.

In fact, [29] shows a strong separation result between the languages recp/recd
and rep/recs/reci: the input-output equivalence is undecidable for the languages in
the first class, but decidable for the languages in the second class.

The undecidability results holds even if we fix an underling constraint system with
a finite domain having at least one element. The undecidability result is obtained by
a reduction from Post’s correspondence problem [34] and an input-output preserving
encoding between recp/recd.

The decidability results hold for arbitrary constraint systems, and follow from Büchi
automata [3] representation of ntcc processes and input-output preserving encodings
between the languages in rep/recs/reci.

The expressiveness gaps illustrated above may look surprising to readers familiar
with the π-calculus [27], since it is well known that the π-calculus correspondents of
rep,reci and recp all have the same expressive power. The reason for these differ-
ences can be attributed to the fact that the π-calculus has some powerful mechanisms
(such as mobility), which compensate for the weakness of replication and the lower
forms of recursion.

We start by formally defining our five classes of process languages.

5.1 Replication

We shall use rep to denote the deterministic fragment of ntcc . The processes in the
deterministic fragment are those star-free processes in which the cardinality of every
summation index set is at most one. Thus, the resulting syntax of process in rep is
given by:

P,Q, . . . ::= skip | tell(c) | when c do P | P ‖ Q | (localx)P
| nextP | unless c nextP | !P (9)

Infinite behavior in rep is provided by using replication. This way of expressing
infinite behavior is also considered in [43]. To be precise, [43] uses the hence operator.
However, henceP is equivalent to next !P and, similarly !P is equivalent to P ‖
henceP .
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5.2 Recursion

Infinite behavior in tcc languages may also be introduced by adding recursion, as e.g.
in [40,41,49]. Consider the process syntax obtained from replacing replication !P with
process (or procedure) calls A(y1, . . . , yn), i.e.:

P,Q, . . . ::= skip | tell(c) | when c do P | P ‖ Q | (localx)P
| nextP | unless c nextP | A(y1, . . . , yn) (10)

The processA(y1, . . . , yn) is an identifier with arity n. We assume that every identi-

fier has a (recursive) process (or procedure) definition of the formA(x1, . . . , xn) def= P
where the xi’s are pairwise distinct, and the intuition is that A(y1, . . . , yn) behaves as
P with yi replacing xi for each i.

We declare D to be the set of recursive definitions under consideration. We shall
often use the notation x as an abbreviation of x1, x2, . . . , xn if n is unimportant or
obvious. We shall sometimes say that A(y) is an invocation with actual parameters y,

and givenA(x) def= P we shall refer to P as its body and to x as its formal parameters.

Finite Dependency and Guarded Recursion Following [40], we shall require, for all
the forms of recursion defined next, the following: (1) any process to depend only on
finitely many definitions and (2) recursion to be “next” guarded. For example, given

A(x) def= P , every invocation A(y) in P must occur within the scope of a “next”
or “unless” operator operator. This avoids non-terminating sequences of internal reduc-
tions (i.e., non-terminating computation within a time interval). Below we give a precise
formulation of (1) and (2).

GivenA1(x1)
def= P1 andA2(x2)

def= P2, we say thatA1 (directly) depends onA2,
written A1 � A2, if there is an invocation A2(y) in P1. Requirement (1) can be then
formalized by requiring the strict ordering induced by �∗ (the reflexive and transitive
closure of �)1 to be well founded.

To formalize (2), suppose that A1 � A2 � . . . � An � An+1 = A1, where

Ai(x1)
def= Pi. We shall require that for at least one i, 1 ≤ i ≤ n, the occurrences of

Ai+1 in Pi are within the scope of a “next” or an “unless” operator.

Parametric Recursion

We consider a further restriction for the case of recursion involving parameters. All the
free variables in definitions’ bodies must be formal parameters; more precisely, for each

A(x1, . . . , xn) def= P , we decree that fv (P ) ⊆ {x1, . . . , xn}.
We shall use recp to denote the tcc language with recursion with the above syntac-

tic restriction. The operational rules for recp are obtained from Table 1 by replacing
the rule for replication REP with the following rule for recursion:

REC
〈A(y), d〉 −→ 〈P [y/x], d〉

A(x) def= P (11)

1 The relation �∗ is a pre-ordering. By induced strict ordering we mean the strict component of
�∗ modulo the equivalence relation obtained by taking the symmetric closure of �∗.
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As usual P [y1, . . . , yn/x1, . . . , xn], with all the xi’s being pairwise distinct, is the pro-
cess that results from syntactically replacing every free occurrence of xi by yi using
α-conversion wherever needed to avoid capture.

Identical Parameters Recursion. An interesting tcc language considered in [40] arises
from recp by restricting the parameters not to change through recursive invocations.
In the π-calculus this restriction does not cause any loss of expressive power since such
form of recursion can encode general recursion (see [27]).

An example satisfying the above restriction is RP (x) def= P ‖ nextRP (x). Here
the actual parameters of the invocation in the body of the definition are the same as the

formal parameters of RP . An example not satisfying the restriction is R′
P (x) def= P ‖

next (localx)R′
P (x). Here the actual parameters are bound and therefore different

from those of the formal parameters.
One can formalize the identical parameters restriction on a set of mutually recursive

definitions as follows. Suppose that A1 � A2 and A2 �∗ A1 with A1(x1)
def= P1

and A2(x2)
def= P2 in the underlying set of definitions D. Then for each invocation

A2(y) in P1 we should require y = x2 and y �∈ bv(P1). In other words the actual
parameters of the invocation A2 in P1 (i.e., y) should be syntactically the same as its
formal parameters (i.e., x2). Furthermore, they should not be bound in P1 to avoid cases
such as R′

P (x) above.
The processes of tcc with identical parameters are those of recp that satisfy this

requirement. We shall refer to this language as reci.

Parameterless Recursion

Tcc with parameterless recursion have been studied in [40]. All identifiers have arity
zero, and hence, for convenience, we omit the “( )” in A( ).

Given a parameterless definition A
def= P , requiring all variables in fv(P ) to be

formal parameters, as in recp, would mean that the body P has no free variables, and
the resulting class of process languages would be expressively weak. Hence, we now
suggest to allow free variables in procedure bodies.

Now. assuming that the operational rules for parameterless recursion are the same
as for recp, what are the resulting scope rules for free variables in procedure bodies?
Traditionally, one distinguishes between dynamic and static scoping, as illustrated in
the following example.

Example 13. Consider a constant identifier A with the following definition

A
def= tell(x = 1)

‖ next (localx) (A ‖ when x = 1 do tell(z = 1))

In the case of dynamic scoping, an outside invocation A causes the execution tell(z =
1) in the second time interval. The reason is that (localx) binds the x resulting from
the unfolding of the A inside the definition’s body. In fact, the telling of x = 1, in the
second time unit, will not be visible in the store. In the case of static scoping, (localx)
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does not bind the x of the unfolding of A because such an x is intuitively a “global”
variable, and hence tell(z = 1) will not be executed. In fact, the telling of x = 1, will
also be visible in the store in the second time interval. ��

Parameterless Recursion with Dynamic Scoping. The rule LOC in Table 1 combined
with REC causes the parameterless recursion to have dynamic scoping2. As illustrated
in the example below, the idea is that since (local x)P reduces to a process of the form
(local x)Q, the free occurrences of x in the unfolding of invocations in P get bounded.

Example 14. Consider A as defined in Example 13. Let us abbreviate the definition of

A as A
def= tell(x = 1) ‖ P . Also let Q = skip ‖ P . We have the following reduction

of (localx)A in store true.

〈tell(x = 1),true〉 −→ 〈skip, x = 1〉 TELL

〈tell(x = 1) ‖ P, true〉 −→ 〈Q, x = 1〉 PAR

〈A,true〉 −→ 〈Q, x = 1〉 REC

〈(local x,true)A,true〉 −→ 〈(local x, x = 1) Q,true〉 LOC

Thus, (localx)A in store true reduces to (localx, x = 1) (skip ‖ P ) in store
true. Notice that the free x in A’s body become local to (localx, x = 1) (skip ‖ P ),
i.e, it now occurs in the local store but not in the global one. ��

We shall refer to the language allowing only parameterless recursion with free-
variables in the procedure bodies as recd; parameterless recursion with dynamic scop-
ing.

Remark 2. It should be noticed that, unlike in recp, we cannot freely α-convert proce-
sses in recd without changing behavior. For example, we could α-convert the process
(local x)A in the above example into (local z)A (since A[z/x] is syntactically equal
to A) but the behavior of (local z)A would not be the same as that of (localx)A.

Parameterless Recursion with Static Scoping. From the previous section it follows
that static scoping as in [40] requires an alternative to the rule for local behavior LOC .

The rule LOC′ defines locality for the parameterless recursion with static scoping
language henceforth referred to as recs.

LOC′ 〈P [y/x], d〉 −→ 〈P ′, d′〉

〈(local x)P, d〉 −→ 〈P ′, d′〉
if y is fresh (12)

As in [24], we use the notion of fresh variable meaning that it does not occur else-
where in a process definition or in the store. It will be convenient to presuppose that the
set of variables V is partitioned into two infinite sets F and V − F . We shall assume
that the fresh variables are taken from F and that no input from the environment or

2 Rules LOC and REC are basically the same in ccp, hence the observations made in this section
regarding dynamic scoping apply to ccp as well.
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processes, other than the ones generated when applying LOC′, can contain variables
in F .

The fresh variables introduced by LOC′ are not to be visible from the outside. We
hide these fresh variables, as suggested in [43], by using existential quantification in the
output constraint of observable transitions. More precisely, we replace in Table 1 the
rule for the observable transitions OBS with the rule

OBS′ 〈P, c〉 −→∗ 〈Q, d〉 �−→

P
(c,∃Fd)
====⇒ F (Q) (13)

where ∃Fd represents the constraint resulting from the existential quantification in d of
free occurrences of variables in F .

In order to see why LOC′ causes static scoping in recs, suppose that P in Rule

LOC′ in Equation 12 contains an invocation A where A
def= R. When replacing x with

y in P , A remains the same since A[y/x] is A. Furthermore, since y is chosen from
F , there will be no capture of free variables in R when unfolding A. This causes the
scoping to be static. Let us illustrate this by revisiting the previous example.

Example 15. LetA,P andQ as in the previous example. We have the following reduc-
tion of (localx)A in store true.

〈tell(x = 1),true〉 −→ 〈skip, x = 1〉 TELL

〈tell(x = 1) ‖ P,true〉 −→ 〈Q, x = 1〉 PAR

〈A,true〉 −→ 〈Q, x = 1〉 REC

〈(local x)A,true〉 −→ 〈Q, x = 1〉 LOC′

Thus, (local x)A in store true reduces to skip ‖ P in store (x = 1) making the free
x in A’s body visible in the “global” store . ��

Remark 3. Notice that, as in recd, in recs we do not need α-conversion since in the
reductions of recs we only use syntactic replacements of variables by fresh variables.

5.3 Summary of TCC Languages

We have described five classes of tcc languages with infinite behabior, based on the
literature. We adopt the following convention.

Convention 3 We shall use L to designate the set of tcc languages

{rep,recp,reci,recd,recs}.

Furthermore, we shall index sets and relations involving tcc processes with the appro-
priate tcc language name to make it clear what is the language under consideration.
We shall omit the index when it is unimportant or clear from the context.

For example, −→recp and
(.,.)

====⇒recp refer to the (internal and observable) reduc-
tion of recp. Similarly, Procrecp denotes the set of processes in recp, ∼recp

io denotes
the input-output equivalence (Definition 10) for processes in Procrecp , and ≈recp

io de-
notes congruence induced by ∼recp

io .
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5.4 The TCC Equivalences

In this section we relate the equivalences and their congruences for the various tcc lan-
guages. Each behavioral equivalence (and congruence) for a tcc language 
 is obtained
by taking the ntcc transitions given in Definition 9 (and thus in Definition 10) to be

those of 
 (i.e., replace
(.,.)

====⇒ with
(.,.,)

====⇒�).
The theorem below states the relationship among the equivalences.

Theorem 3 (Equivalence Results, [29]). For each 
 ∈ L,

1. If 
 = recs then ≈�
io = ≈�

o ⊂ ∼�
io⊂ ∼�

o .
2. If 
 �= recs then ≈�

io = ≈�
o = ∼�

io ⊂ ∼�
o.

The theorem says the input-output and output congruences coincide for all lan-
guages. It also states that the input-output behavior is a congruence for every tcc lan-
guage but recs. This reveals a distinction between recs and the other tcc languages
and, in fact, between recs and the standard model of concurrent constraint program-
ming [45].

In the following sections we shall classify the tcc languages based on the decidabil-
ity of their input-output equivalence.

5.5 Undecidability Results

In [29] it is shown that ∼recp
io is undecidable for processes with an underlying finite-

domain constraint system. Recall that a finite-domain constraint system FD[n] (see
Definition 3) provides a theory of variables ranging over a finite domain of values
D = {0, 1, . . . , n− 1} with syntactic equality over these values. We shall also prove a
stronger version of this result establishing that ∼recp

io is undecidable even for the finite-
domain constraint system with one single constant FD[1], i.e., |D| = 1. In sections
5.7 we shall give an input-output preserving constructive encoding from recp into the
parameterless recursion language recd, thus proving also the undecidability of ∼recd

io .

Theorem 4 (Undec. of ∼recp
io , [29]). The problem of deciding given P,Q ∈ Procrecp

in a finite-domain constraint system, whether or not P ∼recp
io Q, is undecidable.

We find it convinient to outline the proof of the above theorem given in [29] since
it decribes very well the computational power of recp. The proof is a reduction from
Post’s correspondence problem (PCP) [34].

Definition 17 (PCP). A Post’s Correspondence Problem (PCP) instance is a tuple
(V,W ), where V = {v0, . . . , vn} and W = {w0, . . . , wn} are two lists of non-empty
words over the alphabet {0, 1}. A solution to this instance is a sequence of indexes
i0, . . . , im in I = {0, . . . , n} with i0 = 0 s.t.

vi0 .vi2 . . . vim = wi0 .wi2 . . . wim .

PCP is the following problem: given a PCP instance (V,W ), does it have a solu-
tion?

The Post’s Correspondence Problem is known to be undecidable [34]. We reduce
PCP to the problem of deciding input-output equivalence between recp processes, thus
proving Theorem 4.
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The Post’s Correspondence Problem Reduction. Let (V,W ) be a PCP instance where
V = {v0, . . . , vn} and W = {w0, . . . , wn} are sets of non-empty words. Let FD[m]
(Definition 3) be the underlying constraint system where m = max (|V |, 2) (i.e., we
need at least two constants in the encoding below).

For each i ∈ I = {0, . . . , |V | − 1}, we shall a define process Ai(a, b, index , x)
which intuitively behaves as follows:

1. It waits until is told that a = 1 to start writing vi, one symbol per time unit. Each
such a symbol, say s, will be written in x by telling x = s. Similarly, it waits until
b = 1 to start writing wi, one symbol per time unit. Each such a symbol will also
be written in x.

2. It spawns a process Aj(a′, b′, index , x) when the environment inputs an index
index = j in I .

3. It sets a = 0 and a′ = 1 when it finishes writing vi, i.e., |vi| time units later after
it started writing vi (this way it announces that its job of writing vi is done, and
allows Aj to start writing vj). Similarly, it sets b = 0 and b′ = 1 when it finishes
writing wi.

4. It aborts unless the environment provides an index in I . It also aborts if an incon-
sistency arises: Either two symbols (one from a V word and another from a W
word) are written in x in the same time unit and they do not match (thus generating
false), or the environment itself inputs false.

Thus, intuitively the Ai’s keep writing V andW words, as the environment dictates, as
long as the symbols match and the environment keeps providing indexes in I at each
time unit.

Auxiliary Constructs We use the following constructs:

Wc,P (x) def= when c do P ‖ unless c nextWc,P (x)
RQ(y) def= Q ‖ nextRQ(y)

where fv (P ) ∪ fv (c) = {x} and fv(Q) = {y}. We use the more readable notation
wait c do P and repeat Q forWc,P (x) and RQ(y), respectively. We also define
whenever c do P as an abbreviation of repeat when c do P .

We now define Ai(a, b, index , x) for each i ∈ I according to Items 1-4. The local
variable ichosen is used as flag to check whether the environment inputs an index.

Ai(a, b, index , x) def= (local a′ b′ ichosen) (
wait a = 1 do Vi

‖ wait b = 1 doWi

‖
∏

j∈I when index = j do (tell(ichosen = 1)
‖ nextAj(a′, b′, index , x))

‖ Abort )

The process Vi writes, one by one, the vi symbols in x (notation vi(n) denotes the
n−th element of vi). Furthermore it sets a = 0 and a′ = 1 when it finishes writing vi.
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The processWi is defined analogously.

Vi =
∏

0≤k<|vi|
next ktell(x = vi(k)) ‖ next |vi|(tell(a = 0) ‖ tell(a′ = 1))

Wi =
∏

0≤k<|wi|
next ktell(x = wi(k)) ‖ next |wi|(tell(b = 0) ‖ tell(b′ = 1))

The process Abort aborts, according to Item 4 above, by telling false thereafter
(thus creating a constant inconsistency).

Abort =
‖ unless ichosen = 1 next repeat tell(false)
‖ when false do repeat tell(false)

Let us now define a process Bi(a, b, index , x, ok) for each i ∈ I that behaves
exactly like Ai(a, b, index , x), but in addition it outputs ok = 1 whenever it stops
writing vi and wi exactly in the same time interval3. This happens when both a and b
are set to zero in the same unit and it will imply that a solution of the form vi0 . . . . .vi =
wi0 . . . . .wi for the PCP (V,W ) has been found.

Bi(a, b, index , x, ok) def= (local a′ b′ ichosen) (
wait a = 1 do Vi

‖ wait b = 1 doWi

‖
∏

j∈I when index = j do (tell(ichosen = 1)
‖ nextBj(a′, b′, index , x, ok ))

‖ Abort
‖ whenever a = 0 ∧ b = 0 do tell(ok = 1))

Since we require the first index in a solution for PCP (V,W ) to be 0, we define two
processes A(index , x) and B(index , x, ok) which trigger A0 and B0 as follows.

A(index , x) def= (local a b) (
tell(a = 1) ‖ tell(b = 1) ‖ A0(a, b, index , x))

B(index , x, ok) def= (local a b) (
tell(a = 1) ‖ tell(b = 1) ‖ B0(a, b, index , x, ok ))

One can verify that the only difference between the processes A(index , x) and
B(index , x, ok ) is that the latter eventually tells ok = 1 iff there is a solution to the
PCP (V,W ).

Since the PCP problem is undecidable, from the lemma above it follows that given
P,Q ∈ Procrecp in a finite-domain constraint system, the question of whether P ∼recp

io

Q or not is undecidable. This proves Theorem 4. ��
3 The reader may wonder why the Ai’s do not have the formal parameter ok as well. This causes

no problem here, but you can think of A as having a dummy ok formal parameter if you wish
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Undecidability over Fixed Finite-Domains

Actually [29] gives a stronger version of the above theorem; input-output equivalence
in undecidable in recp even if we fix the underlying constraint system to be FD[1],
which is the finite-domain constraint system whose only constant is 0.

Theorem 5 ( [29]). Fix FD[1] to be the underlying constraint system. The question of
whether P ∼recp

io Q or not is undecidable.

From Theorems 5 and 3, we also have that the input-output and default output con-
gruences are undecidable for recp over a fixed finite-domain constraint system.

Theorem 6. The input-output and output congruences ≈recp
io and ≈recp

o are undecid-
able for processes in the finite-domain constraint system FD[1].

Notice that FD[1] is a very simple constraint system (i.e., only equality and one
single constant). So, the undecidability results for other constraint systems providing
theories with equality and an at least one constant symbol follow from Theorem 5.
This includes almost all constraint system of interest (e.g. the Herbrand constraint sys-
tem [39], the Kahn constraint system [45], Enumerated Types [39] and modular arith-
metic [32]).

5.6 Decidability Results

In sharp contrast to the undecidability result for recp, the equivalence of rep processes
is decidable even for arbitrary constraint systems [29].

Theorem 7. The following equivalences for processes in rep over arbitrary constraint
system are decidable:

1. The input-output equivalence ∼rep
io , default output equivalence ∼rep

o and strongest-
postcondition equivalence ∼rep

sp .
2. The output congruences ≈rep

io and ≈rep
o .

In section 5.7 we shall show via constructive encodings that rep, reci, recs have
the same expressive power. We then conclude that the corresponding equivalences for
reci and recs are also decidable. These decidability results in rep with arbitrary
constraint system are to be contrasted to the undecidability results in recp with the
simple finite-domain constraint system FD[1].

5.7 Classification of the Timed CCP Languages

In this section we discuss the relation between the various tcc languages, and we classify
them on the basis of their expressive power.

Figure 2 shows the sub-language inclusions and the encodings preserving the input-
output behaviour between the various tcc versions. To complete the picture, we have
included the class rec0 denoting the language with neither parameters nor free vari-
ables in the bodies of definitions. Classes I, II, III represent a partition based on the
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Fig. 2. Classification of the various tcc languages: The tcc hierarchy.

expressive power: two languages are in the same class if and only if they have the same
expressive power. We will first discuss the separation results, and then the equivalences.

Given the input-output preserving encodings in [29], which we will recall in the next
section, the separation between Classes II and III is already suggested by the results in
Sections 5.6 and 5.5. From the proof of Theorem 4 it follows that recp is capable of
expressing the "behavior" of Post’s correspondence problems, and hence clearly capable
of expressing output behavior not accepted by Büchi automata. It turns out that the
output (and input-ouput) behavior of every process in rep can be represented as a
language accepted by a Büchi automata [29].

The separation between Classes I and II, on the other hand, follows from the fact that
without parameters or free variables the recursive calls cannot communicate with the
external environment, hence in rec0 a process can produce information on variables
for a finite number of time intervals only.

The Encodings

Let us recall briefly the input-output preserving encodings among the various tcc lan-
guages in [29]. Henceforth, [[·]] : 
 → 
′ will represent the encoding function from
class 
 to class 
′ We shall say that [[·]] is homomorphic wrt to the parallel operator if
[[P ‖ Q]] = [[P ]] ‖ [[Q]], and similarly for the other operators.

Notation 3 We shall use the following notation:

– We use call (x) as abbreviation of x = 1 and declare, for each identifier A, a fresh
variable zA uniquely associated to it.

– We denote by I(P ) the set of identifiers on which P depends, i.e. the transitive
closure of � of the identifiers occurring in P (see Section 5.2).

– We often use D� to denote the set of recursive definitions under consideration for
processes in 
. As usual we omit 
 when it is clear from the context.
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Encoding recs → rep. Here the idea is to simulate a procedure definition by a
replicated process that activates (the encoding of) its body P each time it is called. The
activation can be done by using a construct of the form when c do P . The call, of
course, will be simulated by tell(c).

The key case is the local operator, since we do not want to capture the free variables
in the bodies of procedures. Thus, we need to α-convert by renaming the local variables
with fresh variables.

First we need two auxiliary encodings [[·]]D and [[·]]0 : given by :

[[A def= P ]]D = !when call (zA) do [[P ]]0

[[A]]0 = tell(call(zA))

[[(local x)P ]]0 = (local y) ([[P [y/x]]]0)
where y is fresh

with [[·]]0 being homomorphic on all the other operators of recs.
We are now ready to give our encoding of recs into rep.

Definition 18. The encoding [[·]] : recs → rep is given by:

[[A]] = (local z) ([[P ]]0 ‖
n∏

i=1

[[Ai(xi)
def= Pi]]D)

with I(P ) = {A1, . . . , An} and z = zA1 . . . zAn .

Encoding reci → rep. This encoding is similar to the encoding in the previous
section, except that now we need to encode the passing of parameters as well. Let us
give some intuition first.

A call A(y), where A(x) def= P , can occur in a process or in the definition of iden-
tifier B (possibly A itself). Consider the case in which there is no mutual dependency
between A and B or A is a call in a process. Then, the actual parameters of A may be
different from the formal ones (i.e., y �= x). If so, we need to model the call by provid-
ing a copy of the replicated process that encodes the definition of A and by making the
appropriate parameter replacements.

Now, consider the case in which there is a mutual dependency between A and B
(i.e. if also A depends on B). From the restriction imposed on (the mutual) recursion
of reci (see Section 5.2), we know that the actual parameters must coincide with
the formal ones (i.e., y = x) and therefore we do not need to make any parameter
replacement. Neither do we need to provide a copy of the replicated processes as it will
be available at the top level.

As for the previous encoding, we first define the auxiliary encodings [[·]]D and [[·]]0:

[[A(x) def= P ]]D = !when call (zA) do [[P ]]0
[[A(y)]]0 = tell(call(zA))

if y = x and A(x) def= P ∈ D
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[[A(y)]]0 = (local zA) (
tell(call (zA)) ‖ [[A(x) def= (P [y/x])]]D)
if y �= x and A(x) def= P ∈ D

with [[·]]0 homomorphic on all the other operators of reci.
It worth noticing that if we did not have the restriction on the recursion in reci

mentioned above, the encoding [[.]]D would not be well-defined. E.g., consider the defi-

nition A(x) def= next (local y)A(y) which violates the restriction, and try to compute

[[A(x) def= (local y)A(y)]]D .
We are now ready to give our encoding of reci into rep.

Definition 19. The encoding [[·]] : reci → rep is given by:

[[A(y)]] = (localz) ([[P ]]0 ‖
n∏

i=1

[[Ai(xi)
def= Pi]]D)

with I(P ) = {A1, . . . , An} and z = zA1 . . . zAn .

Encoding rep → reci. This encoding is rather simple. The idea is to replace !P by
a call to a new process identifierRP , defined as a process that expands P and then calls
itself recursively in the next time interval. The free variables of !P , x, are passed as
(identical) parameters.

Definition 20. The encoding [[·]] : rep → reci is given by:

[[!P ]] = RP (x)
where RP (x) def= [[P ]] ‖ nextRP ∈ Dreci ,x = fv (P ).

with [[·]] homomorphic on all the other operators of rep.

Encoding recd → recp. Intuitively, if the free variables are treated dynamically, then
they could equivalently be passed as parameters.

Definition 21. The encoding [[·]] : recd → recp is given by

[[A]] = A(x)
where A

def= P ∈ Drecd

and A(x) def= [[P ]] ∈ Drecp ,x = fv(P )

with [[·]] homomorphic on all the other operators of recd

Encoding recp → recd. The idea is to establish the link between the formal pa-
rameters x and the actual parameters y by telling the constraint x = y. However, this
operation has to be encapsulated within a (localx) in order to avoid confusion with
other potential occurrences of x in the same context of the call.
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Definition 22. The encoding [[·]] : recp → recd is given by

[[A(y)]] = (localx) (A ‖ Ey/x)
where A(x) def= P ∈ Drecp , A

def= [[P ]] ∈ Drecd ,

and Ey/x
def= tell(y = x) ‖ nextEy/x ∈ Drecd

with [[·]] homomorphic on all the other operators of recd.

Encoding rep → recs. Here we take advantage of the automata representation of
the input-output behavior of rep processes given in [29]. Basically, the idea is to use
the recursive definitions as equations describing these input-output automata.

Let P be an arbitrary process in rep. Let us recall the automatonMP = Aio
P in [29]

representing the input-output behavior of P on the inputs of relevance for P . The start
state of MP is P . Let TP be the set of transitions of MP . Each transition from Q to
R with label (c, d), written 〈Q, (c, d), R〉 ∈ TP , represents an observable transition

Q
(c,d)

====⇒ R.
So, for each state Q ofMP we define an identifier AQ as follows:

AQ
def=

∏
〈Q,(c,d),R〉∈TP

when c do (tell(d) ‖ O(�c, R))

with � c =
∨

e∈{c′ | c′ �=c, c′|=c, 〈Q,(c′,d′),R′〉∈TP }
e

whereO(�c, R) takes the form unless � c nextAR if c �= false, otherwise it takes
the form nextAR.

Intuitively, AQ expresses that if we are in state Q and c is the strongest constra-
int entailed by the input, then the next state will be R and the output will be d, with
〈Q, (c, d), R〉 ∈ TP .

Definition 23. The encoding [[·]] : rep → recs is defined as [[P ]] = AP .

6 Related Work and Concluding Remarks

Saraswat el al proposed a proof system for tcc [40], based on an intuitionistic logic en-
riched with a next operator. The system is complete for hiding-free and finite processes.
Also Gabrielli et al [4] introduced a proof system for the tccp model (see Section 3).
The underlying second-order linear temporal logic in [4] can be used for describing
input-output behavior. In contrast, the ntcc logic can only be used for the strongest-
postcondition, but also it is semantically simpler and defined as the standard first-order
linear-temporal logic of [22].

The decidability results for the ntcc equivalences here presented are based on
reductions from ntcc processes into finite-state automata [29,31,52]. The work in [43]
also shows how to compile tcc into finite-state machines thus providing an execution
model of tcc.

In [49] Tini explores the expressiveness of tcc languages, focusing on the capability
of tcc to encode synchronous languages. In particular, Tini shows that Argos [23] and a
version of Lustre restricted to finite domains [16] can be encoded in tcc.
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In the context of tcc, Tini [50] introduced a notion of bisimilarity with a complete
and elegant axiomatization for the hiding-free fragment of tcc. The notion of bisimilar-
ity has also been introduced for ntcc by Valencia in his PhD thesis [51].

On the practical side, Saraswat el al introduced Timed Gentzen [41], a particular
tcc-based programming language for reactive-systems implemented in PROLOG. More
recently, Saraswat el al released jcc [44], an integration of timed (default) ccp into the
JAVA programming language. Rueda et al [38] demonstrated that essential ideas of
computer generated music composition can be elegantly represented in ntcc. Hurtado
and Muñoz [20] in joint work with Fernández and Quintero [10] gave a design and
efficient implementation of an ntcc-based reactive programming language for LEGO
RCX robots [21]—the robotic devices chosen in Section 4 as motivating examples.

Future Work. Timed ccp is still under development and certainly much remain to be
explored. In order to contribute to the development of timed ccp as a well-established
model of concurrency, a good research strategy could be to address those issues that are
central to other mature models of concurrency. In particular, the analysis and formaliza-
tion of the ntcc behavioral equivalences, which at present time are still very immature
(e.g., axiomatizations of process equivalences and automatic tools for behavioral anal-
ysis).

Furthermore, the decision algorithms for ntcc verification and satisfiability, are
very inefficient, and of theoretical interest only. For practical purposes, it is important
to conduct studies on the design and implementation of efficient algorithms for verifi-
cation.
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Universidad de Zaragoza, Maŕıa de Luna 1, E-50018 Zaragoza, Spain

{lrecalde,silva,ezpeleta,eteruel}@unizar.es

Abstract. There exists ample literature on Petri nets and its poten-
tial in the modelling, analysis, synthesis and implementation of systems
in the manufacturing applications domain (see for example [54, 15, 18];
besides, in [66] an important bibliography is presented). This paper pro-
vides an examples-driven perspective. Nevertheless, not only complete
examples from the application domain are considered. Manufacturing
systems are frequently large systems, and conceptual complexity often
appears because of some particular “local” constructions.

The examples considered in this selected tour try to introduce in a pro-
gressive way some applied concepts and techniques. The starting point
is an assembly cell, for which models concerning several phases of the
design life-cycle are presented. Afterwards, some pull control and kan-
ban management strategies are modelled. Then, two coloured models of
production lines are presented. After that, a manufacturing system with
two cells is modelled, and the difficulty of the practical analysis is shown.
For very populated manufacturing systems or systems with high cadence,
relaxation of discrete event models leads to hybrid and continuous ap-
proximations, an example of which will be shortly introduced.

1 Motivation and Objectives

Petri Nets (PNs) constitute a well known paradigm for the design and operation
of many systems allowing a discrete event view [53]. The purpose of this work is
to present, in a tutorial style, some examples in which manufacturing systems are
modelled and analysed. Several books about PNs and the design and operation
of manufacturing systems have been published at the end of the last century [17,
15, 65, 56, 44, 66]. In the sequel, the reader is assumed to be introduced to the
main concepts in Petri Nets [50, 42].

Basically a case study driven perspective is provided in this work. Neverthe-
less, not only full examples from the application domain are considered. Man-
ufacturing systems are frequently large systems, and conceptual complexity ap-
pears because of some particular constructions that appear in part of the system.
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The examples considered in this selected tour try to progressively present some
applied concepts and techniques.

The starting point (Sect. 2) is a manufacturing cell in which some convey-
ors move parts that, processed into two different machines (M1 and M2 ), are
assembled and evacuated. The internal movements of the parts in the cell are
executed by an industrial robot. Moreover, due to a relatively high rate of fail-
ures of a machine (M1 ), a buffer allows a partial decoupling with respect to
the assembly machine (hence, also with respect to M2 ). This store (or buffer)
acts like condensers in RC circuits: filtering high frequency perturbations (i.e.,
attenuating the effect of frequent short failures that usually lead to many small
unavailability periods). From an abstract perspective, this introductory exam-
ple shows some interesting interleaving among cooperation (here, the assembly of
two different kinds of parts) and competition (for the shared resource: the robot)
relationships. In general terms, the intricate interleaving of these two kinds of
relationships leads to the kernel of the conceptual complexity to master the be-
haviour of discrete event systems (DES). The presentation of this introductory
example is focused on the advantages of using different models of the same PN
modelling paradigm in order to deal with the different phases of the design and
operation that appear during the life cycle of the process.

In general terms, the control of manufacturing systems often uses some pre-
established strategies. Among them the push strategy (from the input to the
output: from the raw parts to the finished products), pull (from the output
backwards to the input: from the demand to the input of raw parts) and kan-
ban, that may represent many different kinds of tradeoffs between the above
mentioned basic strategies, are specially relevant. The purpose of Sect. 3 is to
show that this kind of control mechanisms (or management strategies) can be
appropriately modelled by means of PNs (see, for example, [11]). Analysis and
optimisation of the obtained models can be done, but this topic is not considered
in detail in this section, since the main purpose is to show the practical modelling
power of the PN formalisms. This paper is mainly devoted to aspects related to
modelling, analysis and control design, and not on other topics, like simulation
or implementation issues, that although interesting and useful are not developed
here. However, simulation will be used in this particular section to illustrate the
comparison of different control techniques.

In many manufacturing systems a significant part of the apparent complexity
may derive from the existence of several subsystems having identical (similar)
behaviours, or from many parts having similar processing plans. Under these
conditions (i.e., having significant symmetries among components), the use of
high level PNs may be of interest. For this purpose two different examples are
presented. The first one (Sect. 4) concerns a French manufacturing line for car
assembly. The basic model is constructed in a very systematic way, by merging
a coloured PN model of the stations where manufacturing operations are per-
formed and a coloured PN model for the transportation system. The problem
with this basic model is that deadlocks may appear. A quite simple solution is
presented, being directly implementable in PN terms, just by adding a place
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(i.e., a constraint) appropriately marked. A step further is done through the
presentation of a closed line corresponding to an ovens production factory sited
in Zaragoza (Sect. 5).

In order to approach the limits of the actual knowledge in the theory and ap-
plication of PNs to manufacturing examples, two additional cases are introduced
in Sect. 6. In the first one (Sect. 6.1), a model of a Flexible Manufacturing System
(FMS) (held in the Department of Computer Science and Systems Engineering
of the University of Zaragoza) is established [25]. Even if modelling can be done
in this case in a “straightforward” way, analysis “requires”, in the actual state
of the art, some manipulations allowing the computation of sequentialised views
for the different process plans. In other words, it is not a direct application of
theory that brings some solutions, but an indirect-pragmatically oriented engi-
neering approach. Going in the same direction, in Sect. 6.2 modelling with object
nets is done: this leads to a powerful modelling approach [62]. Unfortunately, it
usually happens that the higher the abstraction level the formalism allows, the
more complicated its analysis becomes. However, it is always possible to apply
simulation techniques, which can give insight of some system behaviours.

Discrete event “views” may be very convenient in many cases for manufactur-
ing systems. Nevertheless, in some other cases, either because of computational
complexity problems (due to state explosion) or because the system presents a
“regular” high cadence behaviour or is highly populated, fluidification or con-
tinuisation may be of interest [3, 51, 52]. A hybrid (partially continuised) model
of this category is presented in Sect. 7. For systems in which some parts are
“naturally perceived as continuous”, a different PN interpretation leads to hy-
brid modelling (PrTr-DAE). In the present state of knowledge, this last approach
uses simulation as the main analysis technique (besides the application of stan-
dard analysis techniques for the study of the underlying discrete model). Hybrid
models analysis techniques should much improve in the future. Finally, some
concluding remarks close this work.

2 Life Cycle and an Introductory Example:
An Assembly Manufacturing Cell

This introductory example deals with a system in which the process plan is
quite easy: Parts “A” and “B” should be produced (at machines M1 and M2 ,
respectively) and later assembled (a rendez-vous) in machine M3 to obtain a
final product that leaves the manufacturing cell. In this trivial cooperative sys-
tem, two additional elements are introduced. First, relatively important failures
and repairs are taken into account for M1 . With the idea in mind of partially
decoupling these accidents with respect to the operation of downstream ma-
chines (here M3 ), a buffer (inventory place, deposit) is introduced. If M1 fails,
the downstream machine, M3 , may continue working for a while consuming the
parts already in the buffer. If the upstream machine M1 is repaired before the
buffer is emptied, the failure will not affect the downstream line (here M3 , only).
Since M3 is an assembly machine, its stopping condition will propagate to the
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upstream line (here M2 ). The buffer is a passive element. At this point, the full
system only exhibits cooperative activities. A typical competition relationship is
introduced by means of the movement of parts inside the system. In this case a
robot feeds M1 and M2 (from the conveyor belt), feeds the buffer (from M1 ),
and moves parts A (from the buffer) and B (from M2 ) to M3 . Therefore, all
these activities are in mutual exclusion (mutex ). Thus this introductory example
(Fig. 1, that will be explained more in detail in Sect. 2.1) has cooperation and
competition relationships. If the competition for the use of the robot is ignored,
the cooperative parts can be described by a free-choice net system [57]. The
addition of the robot-idle place transforms the net into a simple or asymmetric
choice.

2.1 Basic Autonomous Model:
Dealing with Basic Relationships at the Net Level

The net in Fig. 1 models both the plant and the work plan, from a coordination
viewpoint. In the initial state, all the machines and the robot are idle, and the
buffer is empty. The only enabled transitions are those that represent the start of
the loading operation of either M1 or M2 , but only one of them can occur (i.e.,
there is a conflict situation). The autonomous model leaves undetermined which
one will occur, it only states that these are the possibilities. Assume M1 is to be
loaded, what is represented by the occurrence of transition t1 . Then the marking
changes: one token is removed from each input place of the transition (R idle and
M1 idle) and one token is put into the output place (M1 loading). Notice that
tokens were required from two input places, meaning that the loading operation
requires that both the machine and the robot are ready: it is a synchronisation
of both. Now the only enabled transition is the one representing the end of the
loading operation, but the autonomous model leaves undetermined when will
this happen, it only states that it can only happen whenever loading is in course
(which allows to represent sequencing). At the firing, the token is removed from
M1 loading and tokens are put in M1 working and R idle . In this new marking,
both output transitions of M1 working are enabled in conflict (it may either
complete the work or fail), and also the start of the loading of M2 is enabled.
This latter transition and a transition from M1 can occur simultaneously, or
in any order (their enabling is independent), what allows to faithfully model
concurrency. Notice the correspondence of subnets and subsystems (M1 , M2 ,
M3 , B1 , and R), and the natural representation of their mutual interactions. (It
goes without saying that operation places could be refined to show the detailed
sequence of operations in each machine, etc.)

We have depicted as bars those transitions that represent control events,
while transitions depicted as boxes represent the end of an operation, or the
occurrence of a failure. At the present stage of autonomous systems, these draw-
ing conventions, and also the various labels, are literature: the dynamics of the
model is not affected by these details, which are intended to make clearer the
“physical” meaning of the model.
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Fig. 1. An autonomous place/transition system that formally describes the logic be-
haviour of a manufacturing cell.

This autonomous model can be used for documentation/understanding pur-
poses, and also to formally analyse the non-deterministic possible behaviours.
Classical PN analysis techniques allow to efficiently decide that this system
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model is bounded (i.e., finite state space), live (i.e., no action can become
unattainable), and reversible (i.e., from any state the system can evolve to its
initial state).

Classical (and basic) reduction rules [49] allow to transform the model into
a marked graph:

1. Every path start loading −→ loading −→ end loading is a macrotransition.
Therefore it can be reduced to a single load transition, preserving the (pro-
jected) language, hence liveness, boundedness, reversibility, etc.

2. After the previous step, place R idle self-loops around the four load transi-
tions, and can be removed preserving the language (i.e., it was an implicit
place).

3. The places working and down in M1 and their connecting transitions form
a macroplace.

The resulting marked graph is strongly connected. Therefore, it is structurally
bounded (i.e., it is bounded for any initial marking, not just for the one that
is shown here), and it does not contain unmarked circuits, so it is live and
reversible.

2.2 The Performance Evaluation Model:
Stochastic T-Timed Interpretation and Analysis

If the purpose of the model is to evaluate the performance of the manufacturing
cell, or to investigate different scheduling policies, then timing information (e.g.,
duration of operations, mean time between failures, etc.) can be incorporated to
the model, for instance specifying the delay in the firing of transitions. Diverse
timing specifications are possible (e.g., stochastic, deterministic, time intervals,
etc.), each one best suited for a particular purpose or degree of detail required.
In Fig. 2 the firing delays are specified by their mean times.

In a preliminary design stage, where the issue is machine selection and dimen-
sioning of the system, a stochastic timing specification, such as that of generalised
stochastic PNs [1], is best suited. In the example we assume that the distribu-
tion of time delays corresponding to operations and movements is phase-type,
namely Erlang-3, while failures and repairs follow exponential distributions. All
other transitions are immediate, they fire as soon as they are enabled (so they
are prioritary w.r.t. timed transitions). Conflicts between timed transitions are
solved by race policy, while conflicts between immediate ones are solved in a
probabilistic fashion).

It was seen in Sect. 2.1 that this system is reversible. Therefore, the reach-
ability graph is strongly connected, and this allows to deduce ergodicity of the
stochastic process and irreducibility of the underlying Markov chain.

Markovian performance analysis can be used to assist in the dimensioning
of B1 , or to analyse its impact. With given failure and repair rates for M1 ,
throughput is plotted versus buffer size in Fig. 3.

Economic considerations (in terms of throughput, required investment, and
work in progress) would allow to optimise the buffer size. The plots in Fig. 4
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N

Timing:

Operation: 6 t.u.

Robot movement: 1.6 t.u.

M1→B1 transfer: 0.6 t.u.

Synchronization: 0 t.u.

Failure: exp, mean 1/λfail

Repair: exp, mean 0.15/λfail

Fig. 2. A timed place/transition system that allows performance evaluation and opti-
misation of a manufacturing cell.

show how the effect of the buffer varies depending on the nature of the failures.
Keeping the failure/repair ratio constant (i.e., the % of unavailability of the
machine due to a failure is constant), different situations can be observed:
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– Very unfrequent failures with very long repair times (left side of the plot).
The throughput is reduced, and is insensible to the buffer size, because the
repair time exceeds largely the time to empty the buffer.

– On the other extreme, in the case of very frequent slight failures, a relatively
small buffer is able to filter out the high frequency perturbations represented
by the failures, and the throughput is equal to the throughput in the case of
no failures.

– When the order of magnitude of repair times are similar to the time re-
quired to empty the buffer, its size is most critical in order to increase the
throughput.

Buffer capacity (N)

T
hr

ou
gh

pu
t

Fig. 3. Performance evaluation of the cell in Fig. 1 with respect to buffer capacity.

T
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gh
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t

Failure rate ( )	fail

Fig. 4. Performance evaluation of the cell in Fig. 1 with respect to failure rate.

Notice that for the case N = 0 the model in Fig. 1 should be changed,
removing B1 . That is, the “unloading” operation should be merged with the
“loadingA” and place slots removed since it becomes implicit. Then, M1 becomes
essentially identical to M2 , except for the presence of failures. It results in a more
tight coupling of the machines that leads to a significantly lower throughput.



750 Laura Recalde et al.

2.3 On the Optimal Scheduling: Performance Control

Assume that, after the optimisation of the design that involved performance
evaluation, the capacity of the buffer is fixed to two. Although the plant param-
eters are fixed, the actual performance of the system may vary depending on
how it is controlled. The scheduler is in charge of controlling the evolution by
enabling/disabling the transitions that initiate robot load operations (i.e., these
are the controllable transitions here).
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Fig. 5. Effect of different scheduling policies in the manufacturing cell of Fig. 1.

Fig. 5 shows the Gantt charts of two possible scheduling policies assum-
ing deterministic timing and disregarding failures. In Fig. 5(a) operations are
scheduled as soon as possible, solving eventual conflicts in the allocation of the
robot by fixed priorities (M2 is prioritary over M1 ). A periodic regime is quickly
reached, in which:

– The cycle time is 10.8 (i.e., throughput without failures is 0.0926 ).
– The buffer contains at most one part, so parts are not accumulated to be

used in the event of a failure.

The Gantt chart in Fig. 5(b) shows an evolution in which the scheduler
prevents interrupting M1 until it gets blocked, and prevents interrupting M2
and M3 from then on. This policy fills up the buffer to be prepared for eventual
failures and achieves a cycle time of 9.2 (i.e., throughput 0.1087) in normal
operation, thus the buffer allows to increase productivity in more than 11%. Let
us check that this policy can be proved to be optimal.

As already mentioned, let us consider the system without failures (i.e., remov-
ing the failure-repair loop). One way of reasoning to obtain an optimal schedule
for this system is as follows: the skeleton of the system is clearly a strongly con-
nected marked graph provided with a monitor place (idle state for the robot).
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Thus the unique T-semiflow is x = 1 (i.e., a vector of 1s). This means that all
the transitions, in particular the four immediate in which the robot starts to
work, should be fired in the same proportion in any “long enough” sequence.
Even more, the steady state should be defined by repeating sequences in which
t1 , tb, t21 and t22 (i.e., all the transitions before the “loading” places) appear
once. Since those transitions are the only ones that may be in conflict, the
scheduling problem reduces to choosing the relative order in which they should
be fired. Given the repetitive behaviour of the steady state, in principle any
transition can be taken as the first, thus there exist at most 3! = 6 possibilities
to explore. Assume t22 is fired first. In this case nothing opposes to take t21
as the second one to fire, because there is a marked place (M2idle) connecting
the end of the first loading operation with the start of the second one (in other
words, by choosing t21 as the second one no constraint is added). Therefore, the
question now is to choose between t1 and tb. Before going to that question, let
us observe that firing an appropriate transient sequence the buffer can be filled,
at least partially. In doing that, the firing of t1 and tb are “decoupled” by a
finite sequence, i.e., both can be fired in any order, while keeping the goal of
computing an optimal schedule. If, after t21 , transition t1 is fired, the cycle of
use of the shared resource (the robot) is finished by firing tb (and later t22 for
a new cycle).

A general upper bound of the throughput (lower for the cycle time) of the
original system can be computed by means of a linear programming problem [9].
For this particular case, the lower bound for the cycle time is 9.2 time units.
Looking at Fig. 5(b) it is clear that this lower bound can be reached with the
previous ordering. However, an alternative procedure can be used to prove it.

Introducing places {p2 , p3 , p4} to put an order in the use of the robot: t21 -
p2 -t1 , t1 -p3 -tb, tb-p4 -t22 (observe that p1 , for t22 -p1 -t21 , is equal to M2idle ,
and so it is already present and marked), the place representing the idle state of
the robot becomes concurrently implicit [55], thus it can be removed for any time
interpretation, and a marked graph is found (see Fig. 6). Under deterministic
timing the exact cycle time for any marked graph can be computed by means
of the same linear programming problem mentioned above [8]. The obtained
value for this case is once again 9.2, thus under deterministic timing and no
failures, the set of added constraints, places {p2 , p3 , p4 }, constitute an optimal
scheduler. The reason is that adding that constraints (places p2 , p3 and p4 ) the
lower bound for the cycle time is now known to be reachable.

2.4 The Controller: The Marking Diagram Interpretation
and Fault-Tolerant Implementation

Controlling an existing manufacturing system (MS) means constraining its evo-
lution in order to guarantee the desired logic behaviour or/and to optimise its
performances at operation. If the plant to be controlled is modelled as a PN, the
control decides the firing or not of enabled transitions. Usually, not every tran-
sition can be disabled (e.g., a failure, the completion of an operation, etc.), so
transitions can be classified as controllable or uncontrollable. Controllable points
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Fig. 6. Implementation of a scheduler that leads to the minimum cycle time.

are those at which the decision maker (e.g., a scheduler) influences the behaviour
of the system.

Typically, concerning the logic behaviour, it is important to avoid undesirable
or forbidden states, such as deadlocks, or to guarantee certain mutual exclusions,
while performance control aims to maximise throughput or a more general cost
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function (e.g., involving also work in progress, machine utilisations, etc.), by de-
termining the firing epoch for transitions (scheduling). PNs with an appropriate
timed interpretation are very well suited to the modelling of scheduling problems
in parallel and distributed systems. PNs allow to model within a single formalism
the functional, temporal, and resource constraints. These determine the enabled
transitions, and then the scheduling problem is reducing the indeterminism by
deciding when to fire which transitions among the enabled ones. In scheduling
theory [12] it is conventionally assumed that tasks are to be executed only once.
Periodic or cyclic schedules [34] are seldom treated by the theory despite they
abound in practice. PN scheduling techniques allow to face these problems. The
same as for the analysis, enumerative, net-driven, and net-based approaches can
be found in the literature. The computational complexity of scheduling problems
leads in practice to sub-optimal solutions obtained using heuristics, artificial in-
telligence techniques, etc.

Usually, the control receives inputs from the plant, besides of emitting signals
to it, so it operates in closed loop (the plant and the control are composed in
parallel, in discrete event systems terminology). The same as PN can be used to
model and analyse an MS, its control can often be represented within the PN
formalism, perhaps incorporating an appropriate interpretation.

Coming back to the manufacturing example, if the model is meant as a spec-
ification for a logic controller, the firing of transitions must be related to the
corresponding external events or inputs, and the outputs that must be emitted
have to be specified. The inputs, which condition the evolution of the controller,
may come from plant sensors (e.g., when R finishes loading M2 it emits a signal
loaded M2) or from other levels in the control hierarchy (e.g., when the scheduler
decides — in view of the state of the system and the production requirements —
that M1 should be loaded, it sends sched M1). The outputs may command the
actuators (e.g., START M3 initiates the assembly sequence in M3 ) or send infor-
mation to other levels in the control hierarchy (e.g., REPAIR! raises an alarm to
call the attention of maintenance staff, or an interrupt that activates automatic
recovery; B1 CONT(m) updates the number of ready “A” parts in the production
database, etc.). The PN model in Fig. 7 captures this information. Following ap-
propriate conventions in the specification (e.g., those imposed in the definition
of Grafcet [15]), a model similar to this one could be used directly as a logic
controller program.

Once a suitable PN model for a controller has been obtained it has to be
implemented. Basically an implementation is a physical device which emulates
the behaviour expressed by the model. One advantage of using PNs as a specifi-
cation formalism is their independence w.r.t. the precise technology (pneumatic,
electronic, etc.) and techniques (hardwired, microprogrammed, etc.) of the final
implementation. Presently, in MS control, programmed implementations are the
most usual, running on a wide range of computer systems (e.g., industrial PC’s,
programmable logic controllers, etc.).

The (programmed) implementation is affected by the selected PN formalism
(low or high level, different interpretations of the firing rule), the algorithmic ap-
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Fig. 7. A marking diagram that specifies the behaviour of the logic controller of a
manufacturing cell.

proach (interpreted, where the PN model is a data structure, or compiled, where
a program is obtained from the given PN; centralised or parallel/distributed
schemas), and the computer architecture (high or low level programming lan-
guage; single or multi processor).
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For the case of local controllers specified by low level PNs with input and
output signals (like that shown in Fig. 7), a usual choice are interpreted im-
plementations (“token players”) [61, 48]. The basic schema is a cyclic program
that reads the inputs, computes the evolution of the marking, and generates the
outputs once and again. A major issue is the efficient computation of enabled
transitions. An example of an efficient technique for this purpose are representing
places (see, for instance, [13]). The idea is to appropriately select one input place
per transition (its representing place). It is always possible (perhaps after some
net transformations) to classify places as either representing or synchronisation
places, where each of the former is the representing place of all its output transi-
tions. The marked representing places are kept in a list (we assume safeness for
simplicity), that is updated at each transition firing. In each cycle, only the out-
put transitions of marked representing places are tested for enabledness, eventu-
ally checking the marking of some synchronisation places. A possible selection of
representing places for the net in Fig. 7 are all but R idle , slots , ready “A”parts ,
waiting “A”, and free “B” (thus, these would be the synchronisation places).

The inherent parallelism captured by a PN model is somehow dismissed in
centralised implementations. Diverse parallel and distributed implementations
have been proposed (see, for instance, [13]). The structure theory of PNs allows
to identify certain components in a given net that are useful for distributing or
parallelising the implementation. Particularly, live and safe state machine com-
ponents lead to cyclic sequential processes that can be directly implemented, for
instance, as Ada tasks. In such case, other places can be represented as global
variables, semaphores, etc. Coming back to the example, we easily identify M1
and M2 as sequential tasks, M3 can be decomposed into two synchronised se-
quential tasks, slots and ready “A” parts are semaphores, and R idle is a mutual
exclusion semaphore.

In the implementation of higher control levels, some convergence has ap-
peared between the fields of PNs and artificial intelligence (see, for instance,
[40], [60]). In this sense, transitions play the role of rules while the working
memory can be split into several nodes corresponding to the respective input
places. With respect to classical PNs implementations, the search for enabled
transitions is carried out by the matching phase in the rule system, which can
take advantage from the partition into local working memories. For the selec-
tion phase transitions can be grouped into conflict sets by inspecting the net
structure, and each one can be provided with a particular resolution strategy.

An important issue when designing a control system is that of safety. Formal
modelling and analysis tools are needed to engineer safe computer-controlled
systems. For this task it is necessary to consider both the control system and
its environment, for which PNs are a suitable formalism [37]. When faults can
happen the controller should be able to detect them and even react appropriately
degrading system’s performance as little as possible.

Let us briefly concentrate here on the detection and recovery of faults in the
controller itself. Several techniques have been proposed to produce safe and/or
fault-tolerant PNs based controllers. We illustrate next one of these techniques
which are supported by PNs theory: the spy/observer schema.
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Fig. 8. Duplication versus observation.

In general, N-version programming techniques, that is, the controller is repli-
cated and a voting mechanism is introduced [4], can be used. A less expensive
schema is based on the idea of an observer [5] or spy [63], which accepts “normal”
behaviours seen through some observable, or check, points. In Fig. 8 duplication
and observation schemas are compared. The observable points are transitions
whose firing is reported to the spy/observer (transitions are classified as observ-
able or non-observable, dually to the classification into controllable and uncon-
trollable). The spy/observer can be modelled as a PN equivalent to the original
one w.r.t. observable transitions (non observable transitions are considered silent
and can be reduced). In the final implementation, the code corresponding to the
spy is merged with the code of the proper controller. An observer is also employed
in [19] for formal validation.

Coming back to the example, considering as observable all the synchronisa-
tion transitions in the net (i.e., those corresponding to the initiation of robot
operations, initiation of a transfer from M1 to M2 , and initiation of an assembly
in M3 ) the corresponding spy is shown in Fig. 9. (Notice that this spy is obtained
applying the same reduction rules that were applied for the analysis.)

3 Modelling Some Classical Management Strategies
in Manufacturing: Pull Control and Kanban

The primary goal of many manufacturing systems can be expressed in terms of
the maximisation of the production rate, the minimisation of the work-in-process
(WIP) inventory, and minimisation of the delivering delay (difference between
the date of a demand and the date of serving it). The above criteria usually
leads to some contradictory situations. For example, minimising WIP usually
lead to higher delivering delays, what may even represent losing some selling
opportunities (impatient clients).

Among the many imaginable strategies for the management of production
systems, push control is based on the idea of “advancing” tasks relative to pro-
duction as much as possible. Thus the behaviour of the production plant is
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Fig. 9. A spy for the net in Fig. 1.

“externally” constrained by the raw materials available, and by the capacity of
buffers for storing finished products. Under this strategy, raw materials “push
the production”, and delivering delays are minimised at the expense of, even-
tually, important WIP costs. In many cases push-type behaviours use demand
forecasts to generate the production plans. On the contrary, under the basic
pull control strategy, the customers demands trigger the production, i.e., “pull
the production”. Thus the WIP cost is reduced to a minimum, at the expense
of more important delays for delivering, i.e., at the expense of decreasing the
quality of customer service.

In the manufacturing arena, it is well known that just in time (JIT) ap-
proaches lead to low WIP costs. In order to conciliate the above mentioned con-
tradictory performances, many hybrid push/pull control algorithms have been
proposed in the literature. Kanban systems allow to deal with different kinds of
those strategies, trying to smooth and balance material flows by using several ap-
propriately controlled intermediate inventories. In essence kanbans are cards that
circulate between a machine (or sequence of machines) and a downstream buffer.
When a withdrawal operation liberates a position of an intermediate buffer, a
card is recirculated in order to allow the production of a new part to compen-
sate “the previous loss” in the inventory site. The number of kanbans around a
machine(s)-buffer subsystem determines the buffer size. In a kanban controlled
system, production of parts is triggered in response to “intermediate demands”.
As already mentioned in the cell manufacturing example of Sect. 2, the parts in
any intermediate buffer try to “protect” the operation of downstream machines
from possible interruptions of upstream machines. If the repairing time of the
machine under failure is “not too big”, the buffer will not empty and the failure
will not affect the downstream machine. Therefore intermediate buffers “can be
perceived” as condensers in electrical circuits or resorts in mechanical systems,
allowing relatively uncoupled behaviours on production lines subsystems. A cer-
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tain number of questions arise in order to optimise the production: Where to
put the intermediate buffers?, How large?, Which strategies should be used for
control?, etc.

The point here is that at a general level, Petri nets –with some timed in-
terpretation, for example, Generalised Stochastic Petri Nets [1]– can be used
to model different designs and control strategies. By using appropriate perfor-
mance evaluation models, the optimisation of the strategy used to control the
material flow (i.e., making the more appropriate decisions), even the tuning of
its parameters, can be formally studied.

Single-output assembly manufacturing systems have usually, from the output
point of view, a tree-like topology. In the manufacturing domain, it is usual to
represent machines as circles and buffers as triangles (Fig. 10). The (output) root
of the tree represents the finished goods buffer. In order to simplify the presenta-
tion, let us assume a single level assembly stage and two previous manufacturing
stages (Fig. 11).

Fig. 10. Topology of an assembly manufacturing system: machines are shown as circles
and buffers as triangles.

stage 1

stage 2

assembly
stage

Fig. 11. Two manufacturing stages (with their buffers) followed by an assembly stage
(with the finished products buffer).

The basic schema of a production stage can be easily described in PNs terms
by means of the connected marked graph in Fig. 12(a). According to that, pro-
duction stages are composed of a raw parts container (raw ) synchronised with
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Fig. 12. Basic schema of a production stage.

a demand for production (demand), followed by the waiting queue and machine
working place (dr ), and the place representing the single machine (machine);
and finally its output buffer of finished parts (f ). The transition in the self-loop
of the machine is timed (processing time of a part). Thus the utilisation rate of
the machine is given by the probability of non null marking in place dr (at least
one part needs to be processed).

It is common in certain cases to assume that there are always enough raw
parts. This means that place raw can be removed because it is not a constraint
any more (it is implicit: i.e., it is never the unique that forbids the firing of its
output transition). In doing so, because the transition between places demand
and dr is immediate, both places can be merged into a single one (we keep the
name dr ). In Fig. 12(b), the simplified model is presented. It will be a basic
building block for the models of this section. In order to simplify the drawing of
nets, in the sequel place machine will be removed, while it is assumed that the
firing semantics of the corresponding transitions is single server [8]. Transitions
with single servers semantics will be graphically denoted here as dashed timed
transitions. Observe that at this level it is assumed that the machines do not
fail.

A basic pull control system (base stock control system, BSCS [11]) is presented
in Fig. 13. It consists of two production stages (with k1 and k2 parts finished in
stage 1 and stage 2, respectively), feeding an assembly stage (initially with k3
finished parts). When a customer’s demand appears, places dr1 and dr2 receive a
(new) token, in order to produce another part for each stage. Customers demand
allows to serve finished parts, represented by tokens in place f3 , initially marked
with k3 tokens. A main problem in this basic schema is that the limitation of
the WIP is not assured in any of the three stages (two for production and one
for assembly, in the present case). It is not difficult to see that under saturation
of customers demands (i.e., under the hypothesis that there exists an infinite
number of customers demands), the production cycle time (the inverse of the
throughput) is bounded by the slower of the three machines:

θ = max{θ1, θ2, θ3}

Simultaneous kanban control system (SKCS) and independent kanban control
system (IKCS) are modelled in Fig. 14 and Fig. 15. As happened before, in
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Fig. 13. Production of parts A and B (stages 1 and 2) and final assembly (stage 3),
with a basic stock (pull) control system (BSCS) and assuming single server semantics.

dr1 f1θ1

k1

dr2 f2θ2

k2

dr3 f3

θ3

k3

delivering

customers
demands

simultaneous
kanban

demand

Fig. 14. Simultaneous kanban control system (SKCS).

both cases two production stages are followed by an assembly stage. Even under
saturation of customers demands, the capacity of the stages are k1, k2 and k3,
respectively, while the production cycle time under deterministic timing is once
again θ, i.e., defined by the slower machine (because all ki are greater than zero).
Under stochastic timing, θ is a lower bound for the cycle time (i.e., 1/θ is an
upper bound for the throughput).

The difference among SKCS and IKCS is that the first one feeds simultane-
ously the assembly stage and the new production order for the (two) previous
stages. In the second case, separate kanbans feed stages 1 and 2, while feeding
the assembly stage is automatic, when appropriate parts exists (in b1 and b2 ).
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Fig. 15. Independent kanban control system (IKCS): Kanbans are independently gen-
erated for machine 1 and machine 2.
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demand

Fig. 16. Independent extended kanban control system (IEKCS).

Obviously, in transient behaviours, the independent case can be better than the
simultaneous one.

A more elaborated kanban system is presented in Fig. 16. It is the so called
independent extended kanban control system (IEKCS) [11]. Under saturation of
customers demands it behaves exactly like the above schemes (SKCS and IKCS).
Nevertheless, in this case different kanbans send simultaneously requests for the
production of primary parts (in stage 1 and stage 2), for an assembly to be
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done, and for the delivery of a finished part. This may lead to some interesting
behaviours, potentially reducing the WIP, while keeping a good reactivity to
demands.

These control policies have been simulated assuming in all cases that θ1 =
0.5, θ2 = 1, θ3 = 0.4, k1 = 1, k2 = 1, k3 = 2 and, for IEKCS, s1 = s2 = 0 and
s3 = 1. A burst of 5 simultaneous demands is simulated at 15 t.u. The results
for the different control systems in Figs. 13-16 are represented in Fig. 17, where
(a) shows the marking of place demand (unsatisfied demand), (b) shows the
marking of place f3 (complete products in stock), and (c) shows the throughput
of the assembly station. Because the “delivering” transition is immediate, the
unsatisfied demand at 15 t.u. is equal to 5 minus the products in stock: 2 for
BSCS, 3 for SKCS and IKCS, and 4 for IEKCS. In this case, BSCS, SKCS and
IKCS need more or less the same time to “satisfy the demand” (the marking of
the place demand returns to zero), while IEKCS is the last one. However, the
stock of complete products in absence of demand is much larger under BSCS
(3), than under IEKCS (1). With respect to the throughput, SCKS, IKCS and
IEKCS work on demand, so the throughput is zero before the demand. Under

0 10 20 30
0

1

2

3

4
BSCS
SKCS
IKCS
IEKCS

(a) Demand
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(c) Throughput of the assembling station
(labelled with θ3)

Fig. 17. Simulation of the different control policies in Figs. 13-16.
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BSCS, a first outburst of the production appears, since the intermediate stocks
f1 and f2 are used to produce the final assembly. In other words, the system tries
to complete as much products as it can, instead of keeping stocks of intermediate
elements. That is the reason why although the stock under BSCS is 3 and under
IEKCS is only 1, it does not take three more times to satisfy the demand in the
latter case.

Many other schemes of this type can be imagined. The important point at this
level is that modelling with PNs is frequently quite straightforward (if control
strategies do not depend too much on particular data), and analysis can provide
useful information about the behaviour of the intended control strategy.

4 A Coloured Model for a Car Manufacturing Line

A relatively frequent characteristic of production systems is the existence of
symmetries due to the presence of subsystems that behave “in a similar way”.
Coloured PNs allow to exploit these symmetries and generate a more compact
model. Coloured Petri nets can also be extended, as in [30, 31], or abstraction
on the formalism (i.e., the underlying PN model) can be done in application
oriented interfaces, as in [64]. Here just basic coloured Petri nets will be used to
model some examples.

4.1 A Car Manufacturing System

The following example shows a coloured PN model of a realistic MS (part of a
flexible workshop of a car factory), taken from a case study [39].

The FMS shown in Fig. 18 consists of:

– Several workstations (S1 to Sn). All the workstations behave in a similar
way: car bodies to be processed are loaded in table L (input buffer of capacity
one), then transferred to table P (actual processing), and then transferred
to table U for unloading (output buffer of capacity one). For simplicity, we
disregard the nature of the precise operations performed in the station, and
therefore, we represent a model of a generic workstation. A station behaves as
a pipeline with three stages: L, P , and U , represented by the corresponding
places, which can be active simultaneously. The complementary places FL,
FP , and FU represent, when marked, that the respective stage is free. The
colour domain of all these places is {1, . . . , n} for the stations. A token of
colour i in place P represents that workstation Si is processing. Transferring
a processed part from table P to table U in workstation Si requires one
i-token in P and FU , and puts one i-token in U and FP .

– An unidirectional transport system, consisting of several roller tables (T1
to Tn). Car bodies enter the system in table T1 and leave it from Tn,
after being processed in one station (the one decided by the scheduler). The
model for this transport system consists of two places, T and FT , for the
occupied and free tables, and transitions to represent the input or output
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Fig. 18. A flexible workshop that processes car bodies in several stations, and its
coloured PN model.

of a car body, a movement to the next table, and the load or unload of
a station. The colour domain of FT is {1, . . . , n} for the tables, and the
colour domain of T is ({1, . . . , n}, {1, . . . , n}, {in, out}), where the first field
identifies the table, the second one the destination station of the car body,
and the third one the status of the car body (in when not yet processed
and out when ready to leave the cell). Notice that, at the firing of transition
input , a destination station is assigned to the incoming car body. In net
terms, this means solving a conflict among the different firing modes of the
input transition. The destination is determined by the scheduler, possibly
taking into account the state of the system and the production requirements.
That is, the scheduler (placed at a higher level) controls the behaviour of
the coordination model represented by the coloured PN.

The complete net model is obtained merging the load and unload transitions
of the submodels for the workstations and the transport system. The loading of
Si from Ti is represented by the firing of transition load in mode i: it consumes
a token (i, i, in) from T and an i-token from FL and puts i-tokens in L and FT .
Similarly for the unloading, where the “status” colour of the token deposited
in T is out indicating that the car body in the corresponding table has been
processed.

4.2 On the Control of the Production Line

Besides avoiding deadlocks, let us consider a control policy to improve the per-
formance.
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Fig. 19. (a) Complete deadlock (b) Temporary deadlock.

Analysis of this system proves the existence of deadlocks: when all the tables
in a given station are occupied and a car body is waiting in the corresponding
table of the transport system to enter this station, a deadlock is reached, see
Fig. 19(a). The deadlock can be avoided by making sure that no more than
three car bodies scheduled for the same station are present in the system at any
time. This can be enforced by limiting the number of firings of input in a given
mode w.r.t. the number of firings of output in that mode. This is implemented
by place O (for orders) in Fig. 20(a), whose colour domain is {1, . . . , n} for the
destination stations, marked with three tokens of each colour.
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Fig. 20. Adding place O to the net model in Fig. 18, with a suitable marking, avoids
deadlocks and stoppages.

Notice that, if O is marked with two tokens of each colour instead of three,
unnecessary stoppages in the transport system, that could reduce the through-
put, are avoided. These stoppages appear when a car body waits in front of
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Table 1. Throughput comparison for the system in Fig. 20(a), if place O is marked
with two or three tokens of each colour.

Mean Observe the output Observe the unload
processing Throughput Throughput

time Three orders Two orders Increase Three orders Two orders Increase

1 0.2971 0.2984 0.45 % 0.2969 0.3002 1.11 %
5 0.2434 0.2763 13.54 % 0.2378 0.2809 18.14%
10 0.1669 0.2173 30.24 % 0.1617 0.2210 36.66%
15 0.1227 0.1671 36.17 % 0.1189 0.1690 42.12%
20 0.0964 0.1331 38.07 % 0.0935 0.1341 43.45%
50 0.0418 0.0578 38.51 % 0.0406 0.0579 42.70%

its destination station because this station is processing and the load table is
occupied, see Fig. 19(b). We cannot proceed to load the third car body until
processing is completed, the processed car body is transferred to the table U ,
and the car body in table L is transferred to table P . In the meanwhile, other
car bodies may be prevented from advancing to their destination beyond that
station.

The first columns in Table 1 (observe the output) compare the steady state
throughput of these two control policies for different processing times in a three
cells workshop. All the cells are assumed to be equal, and the car bodies are
sent to all of them with the same probability. The transitions are assumed to
follow exponential distributions, of mean one for all the transport operations
(both inside and outside the cells). It can be seen that, if the processing is
fast with respect to the transport, the two policies are more or less equivalent.
However, if the processing takes “much time”, the throughput is better under
the most restrictive policy. Intuitively, since the processing needs more time
than the transportation, it is better to be sure that the parts can advance till
the processing station.

Finally, in the above control it was assumed that the scheduler controls tran-
sition input and observes just transition output . If also the occurrences of tran-
sition unload were observed, it might be possible to improve the performance
of the control policy by allowing a limited number of unprocessed orders in the
system (see Fig. 20(b)).

Table 1 compares the results of both control policies for the previous example.
It shows that if the number of orders allowed in the system for each machine
is 2, the throughput increases slightly when the unload transition is observed.
However, if three orders are allowed, the throughput decreases. Intuitively, with
at most three orders for each machine the system was already saturated, and
allowing a greater number of car bodies only makes it worse.

5 On a Production Line for Ovens

This section describes a new manufacturing system where the set of production
orders compete for a set of physical resources. The system is quite similar to
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the one in the previous section. Here, the attention is focused on how to obtain
the coloured Petri net model, by first modelling the plant layout taking into
account the possible ways parts can flow through the system and then imposing
to each flowing part the execution of its associated process plan, which needs of
model refinement. Finally, it will be shown how to prevent deadlocks and how
the deadlock related control approach can be improved taking a more abstract
point of view.

5.1 System Description

Fig. 21(a) depicts the structure of a flexible manufacturing cell for the production
of microwave ovens (a more detailed description can be found in [24]). The
cell has an entry station, EntryStation, an exit station, ExitStation and n
workstations, w0, w1, . . . , wn−1. These workstations are loaded and unloaded by
a circular conveyor belt with a continuous movement in a unique direction.
The manufacturing of each oven is made according to its process plan. There
are several scales and models of ovens with their respective process plans. The
components of an oven arrive at EntryStation after having been previously
pre-assembled; once an oven reaches that point, it is fixed to a pallet that will
be inserted into the transport system when possible. One of such loaded pallets
must visit a set of workstations, according to the process plan of the part it
contains, and then leave the system through the ExitStation. The pallet goes
then to the pallet store, to be reused. The system has a total of K pallets.

Input
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Output
Buffer

Section Ai Section BiSection Bi-1

wsi

Sensor Ri Sensor Li

Input
Buffer

Output
Buffer

Section Ai Section BiSection Bi-1

wsi

Sensor Ri Sensor Li
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(a)
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pallet store

Bn-1

wsn-i-1

wsi

BkEx

pallet store

Bn-1

wsn-i-1

wsi

BkEx

Fig. 21. a) General plant representation of a cell for the manufacturing of microwave
ovens. b) Detailed view of the structure of a workstation and its related sections.

As detailed in Fig. 21(b), each workstation wi has an input buffer Ii and an
output buffer Oi. Both consist of two roller tables, each with capacity for one
pallet. The pallets in each buffer follow a FIFO policy. A workstation can operate
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with one pallet at a time. In order to control the system, the conveyor belt has a
set of sensors distributed as shown in Fig. 21(b):R0, L0, . . . , Rn−1, Ln−1 and Ex.
Associated to these detection points there are mechanisms that, under the control
of the workshop coordination system, allow to carry out the following transfer
operations, schematised by means of arrows in Fig. 21: introduction of a pallet
from EntryStation, exit of a pallet from the Ex point towards ExitStation,
loading of a pallet in workstation wi by transferring it from position Ri to the
input buffer of wi, Ii, unloading of a pallet from the output buffer of wi, Oi, to
point Li of the conveyor belt. Each Ai or Bi section will have its own capacity,
which corresponds to the number of pallets the section can hold.

5.2 A Coloured Petri Net Model of the Coordination System

A first approach to the modelling of material flow is shown in Fig. 22. Let us
explain the main elements in the model.

The transport system: The set of states a pallet can be in the transport
system is modelled by means of places B,R,A,L. Place B models the set
of B sections. Place A models the set of A sections, while places R and
L model sensor points between sections Bi−1 and section Ai and between
sections Ai and Bi, respectively. The colour domain of all these places is
WS = {w0, . . . , wn−1}, the set of workstations. The initial marking of each
one of these places is the multi-set 0, which means that, at the initial state,
no pallet is inside the system. Transitions tin and tout model the actions
by which a pallet with a new oven enters the system and a pallet with a
terminated oven leaves the system, respectively. Ordinary (non-coloured)
place AP models the set of free pallets, whose initial marking is K, the
number of available pallets. In the system, it is assumed that EntryStation
loads pallets into section Bn−1 and that ExitStation unloads pallets from
section Bk.
Places BC and AC, whose colour domain is also WS, model the capacities
of Bi and Ai sections, respectively. The initial marking of BC is the multi-
set

∑n−1
i=0 bi ·wi, being bi the capacity of section Bi. Analogously, the initial

marking of AC is the multi-set
∑n−1

i=0 ai ·wi, being ai the capacity of section
Ai. Places CR and CL represent that only one pallet can be in sensor points
Ri and Li, respectively. The initial marking of both places is

∑n−1
i=0 1 · wi.

Transition tbr models a pallet reaching an Ri sensor (the function labelling
the arc (tbr, R), w@1, represents the addition of 1, modulo the number of
sections, n). Transition tra models a pallet entering an Ai section, transition
tal models a pallet reaching an Li sensor. Finally, transition tlb models that
a pallet reaches a Bi section.
Transition tls (tus) models a pallet being loaded into (unloaded from) a
workstation.
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Fig. 22. A coloured Petri net model of flow of pallets in the system in Fig. 21.

The set of workstations: A pallet loaded into a workstation, by means of the
firing of transition tls, must, successively, visit the two input buffer positions
(places IP1 and IP2), to be processed in the workstation (place W ), and
visit the two output buffer positions (places OP1 and OP2). The initial
marking of any of these places is the multi-set 0: there is no pallet in any
workstation.
Places IC1, IC2,WC,OC1 and OC2 impose the capacity constraints of be-
ing able to have at most one pallet in each one of the components of a
workstation. The initial marking of any of these places is AW =

∑n−1
i=0 1 ·wi.

It is important to notice that, even if all the transitions in the model represent
system actions that change the system state, from the control point of view two
kinds of transitions are considered:

– Transitions whose firing is observable but not controllable. This is the case
of {tbr, tra, tal, tlb, ti12, to12}. Since the conveyor has a continuous movement
the firing of one of such transitions will be realised when a pallet reaches
or leaves the corresponding sensor. The events can be noticed and thus the
system state can be updated in the model.

– Transitions whose firing is decided and executed by the control system (con-
trollable transitions). These are the transitions that can be controlled in or-
der to ensure that every incoming part will be processed according to its asso-
ciated process plan, and also to impose some control policy in order to ensure
some desired properties, as deadlock freeness or to impose some scheduling
policies. This set of transitions is composed of {tls, tus, tin, tout, tiw, tow}.

5.3 Inclusion of the Process Plans

Each oven that enters the system must execute its associated process plan, which
consist of a sequence of operations to be executed in the system workstations.



770 Laura Recalde et al.

This sequence is described by means of a sequence of pairs (o, w), where o de-
fines the operation to be executed, and w the workstation where such operation
must be done. The sequence of operations for an oven has been pre-established
by the system controller before loading the oven into the system. In the specifi-
cation level considered here, which concentrates on the material flow control, it
is possible to make abstraction of the operations to be executed, describing the
process plan as the ordered sequence of workstations to be visited by the oven.
Therefore, a process plan will have the following form: p = (w1

p;w2
p; . . . ;w

np
p ),

where each wi
p, i ∈ {1 . . . np}, belongs to WS.

There exists a set of predefined process plans PP ⊂ WS+. Each part that
enters the system has an associated process plan belonging to PP . The first ele-
ment in the ordered sequence of workstations in the process plan corresponds to
the first workstation to be visited. In order to identify the state in the processing
of a part in the system, tuples of the form (p, i) ∈ PP×N will be used: p identifies
the process plan, while i identifies the position in the process plan sequence of
the next workstation to be visited. For instance, when an oven whose associated
process plan is p = (w1

p;w2
p; . . . ;wnp

p ) enters the system, it will be identified by
means of the token (p, 1), meaning that w1

p is the next workstation to be visited.
When the oven is processed in w1

p, the tuple identifying the oven will be (p, 2);
when terminated, it will be identified by means of (p, np + 1).

According to this codification of the processing state of an oven in the system,
the model in Fig. 22 must be transformed. Since the system layout is still the
same, only colour domains and functions in the arcs have to be changed. If in the
initial model a token in place A, for instance, was of the form w, just indicating
the concrete A-section where the pallet was, now a token in such place will be of
the form (p, i, w) indicating that there is a pallet in w A-section, containing an
oven whose associated process plan is p and that has to next visit workstation
wi

p. Accordingly, the colour domain of places modelling physical locations that
can contain pallets with ovens is PP × N ×WS.

Notice that, in order to forbid a pallet to enter a workstation that is not
its next destination, predicate [wp

i = w] has been associated to transition tls.
Also, predicate [i = np + 1] has been associated to transition tout so that only
pallets containing ovens whose process plan has been completely executed can be
unloaded from the system. Notice also that the firing of transition tow transforms
a token of the form (p, i, w) into (p, i+ 1, w), which corresponds to changing the
next destination workstation for the considered oven.

The resulting model is shown in Fig. 23, where places modelling resource
capacity constraints have not been represented, for the sake of clarity. In any
case, they are exactly the same as in Fig. 22.

5.4 Preventing Deadlocks. A First Solution

If the control model in Fig. 23 is directly implemented, the system can reach
deadlock situations. Let us consider, for instance, a reachable state in which a
workstation wi is full (input and output buffers are full and the workstation is
also processing an oven) and also the transport system is full of pallets that must
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Fig. 23. A coloured Petri net model of the system in Fig. 21 once the process plans
are considered (capacity constraints have not been represented, for the sake of clarity).

enter workstation wi. In this situation, no new pallet can enter the system, no
pallet in the conveyor can be loaded into workstation wi and no pallet can leave
it since the conveyor is full. All the deadlock situations are related to states in
which full stations require to unload pallets to the transport system, which is
full of pallets that must enter a full workstation.

An easy way of preventing such situations consists in ensuring that no more
than five pallets inside the system need to visit a given workstation. This is the
deadlock control implemented in the following. The implementation is based on
the following function, called workstation requirements, and defined as follows.
Let p = (w1

p;w2
p; . . . ;wnp

p ) be a process plan, and let i ∈ {1, . . . , np + 1} be an
index associated to p. For the tuple (p, i) the following multi-set of workstations
is defined: wr(p, i) =

∑n−1
j=0 λ

j
pi

· wj , where λj
pi

is 1 if wj ∈ {wi
p, w

i+1
p , . . . , w

np
p }

(in the case of i = np +1 the addition is made over an empty set of workstations,
and it is assumed to be the empty multi-set). Notice that, in fact, wr(p, i) is the
characteristic function of the workstations to be visited by the oven from the
index i until the associated production plan is terminated. Notice also that if
i1 < i2, then wr(p, i1) ≥ wr(p, i2).

In order to implement such control policy in the Petri net model place DPS
(Deadlock Prevention Solution) is added, whose colour domain isWS and whose
initial marking is the multi-set

∑n−1
i=0 5 ·wi (Fig. 24 shows the Petri net elements

to be added to the model in Fig. 23). For a pallet that enters the system (firing
transition tin) with an oven whose associated process plan is p, the set of possible
workstations the pallet must visit is “reserved”. This is implemented by means of
the function wr(p, 1) labelling the arc (DPS, tin). Moreover, each time a pallet
leaves a workstation, if this oven does not need to visit that workstation again
in the future, the reservation must be released. This is implemented by means
of the arc (tus, DPS). As noticed previously, the label wr(p, i − 1) − wr(p, i)
is properly defined since i − 1 < i. Notice also that the control is related to
transitions tin and tus, which are both controllable.
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DPS

t_in

t_us

wr(p,1)

wr(p,i-1)-wr(p,i)

Fig. 24. The implementation of a deadlock prevention solution for the considered sys-
tem.

5.5 Preventing Deadlocks. A More Accurate Solution

The solution for deadlock prevention just proposed is of the same type as in
Sect. 4. However, taking a detailed look at an abstract view of the underlying
non-coloured model a more accurate solution can be adapted. Let us, for in-
stance, consider a process plan p = (w1;w2). Taking into account that with an
adequate control every pallet in the transport system can reach any workstation
and also that every free position in the transport system can be used for the
downloading of any workstation, the ordinary Petri net in Fig. 25 is an abstract
view of the processing of a part whose process plan is p.

t_ls,p,1 t_us,p,2 t_ls,p,2 t_us,p,3 t_out,pt_in,p

AP

TS

BRAL,p,2 BRAL,p,3BRAL,p,1

K

M

w_2,p,2

IWO_1 IWO_2

5 5

w_1,p,1

Fig. 25. An abstract point of the processing of a part whose associated process plan
is p = (w1, w2).

The meanings of the different elements in the model are the following. Place
TS in an abstraction of the whole transport system; its initial marking is M =∑n−1

i=0 ai + bi, the total number of available locations for parts in the conveyor.
Place IWO1, whose initial marking is 5, models the total capacity of workstation
w1, considering in it the input buffer, the output buffer and the workstation itself.
Places “BRAL, p, ∗” model the different states of a part of type p in the transport
system. Transitions “tls, p, ∗” model the different firings of transition tls when the
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processing of a part of type p advances. Analogously for transitions “tus, p, ∗”.
Transition tin, p (tout, p) models the loading (unloading) of part of type p into
(from) the system. Considering the models of all the involved process plans, a
final model will be obtained by means of the fusion of the places in the models
of the process plans corresponding to the capacities of the resources they share.

The resulting Petri net belongs to a class of resource allocation systems
(RAS) which have been intensively studied in the literature, and for which a
wide set of different approaches for deadlock prevention and avoidance have been
developed. [23, 58] use an structure-based approach to synthesise the deadlock-
freeness related control. In both cases, the Petri net structure (siphons) is used to
characterise deadlock problems and also to obtain generalised mutual exclusion
solutions that forbid deadlock related stated. These mutual exclusion constraints
are implemented by means of the addition to the former uncontrolled model of
new places and arcs. Any of the solutions can be used to control the system here
considered. The implementation can be done as in [22], in an analogous way as
in the previous subsection, by means of the addition of a control place (as is the
case of place DPS previously used) and some related labelled arcs.

The use of any of these last approaches will yield, in general, more permissive
solutions than using the approach in section 5.4 (the less states of the uncon-
trolled system a control policy allows, the less permissive it is). However, they
have the drawback that since the control is based on a deep use of the abstract
unfolded model and the competition relations among the involved process plan
models, the addition of new process plans will require the re-computation of
the necessary control, making the approach less adaptable to changes in the
production than using the approach in section 5.4.

6 Additional Examples: On Modelling and Analysis

Among the advantages of formal modelling are primarily the rational, non-
ambiguous, “complete” description of behaviour and the capability of analy-
sis. In the actual state of the art, analysis is not always straightforward, even
“efficient” techniques may not be known.

In some cases, analysing the “natural” model an engineer produces is not an
easy task. This is due to the fact that the resulting model can be complex. Anal-
ysis techniques (mainly those techniques that do not use the reachability graph
or simulation, such as structure-based techniques or transformation techniques,
for instance) have some limitations for general Petri net models, becoming more
difficult when using high level Petri nets. In this section two new practical cases
are described. The first one uses ordinary Petri net models, but there are not
techniques able to control the natural model (deadlock-freeness related control
is once again the objective). This problem is then solved by the transformation
of the initial model into one with an equivalent behaviour, and for which control
techniques exist. The second case uses a different modelling approach, based
on the Nets-within-Nets paradigm as used in [62]. This paradigm falls into the
object-oriented modelling approach.
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6.1 Modelling and Deadlock Avoidance
for a Two Cells Manufacturing System

The objective is to model and control, avoiding deadlock states, the manufac-
turing system in the Department of Computer Science and Systems Engineering
of the University of Zaragoza. To do that, ordinary Petri nets have been selected
as the modelling tool. It could have been modelled also using coloured PNs, as
the previous examples. However, since the technique that is being used for the
control needs a non-coloured model, it has been decided to use ordinary nets
instead of building a coloured model and unfolding it afterwards.

The system and the modelling approach. Figure 26 depicts the plant of
the manufacturing cell, consisting of six machines (M1 to M6) that process the
components, one buffer with place to store up to 16 intermediate products, and
two robots (R1 and R2). The process is organised in two rings, with the buffer
connecting them. A final product (Fig. 27) is composed of a base on which
three cylinders are set. The base may be black or white, and there are three
types of cylinders: cylinders that are composed of a case, a piston, a spring,
and a cover (called “complete” cylinders), cylinders with just a case and a cover
(called “hollow” cylinders), and cylinders in one piece (called “solid” cylinders).
The cases and the solid cylinders may be red, black or metallic. Bases, pistons,
springs, covers, cases, and solid cylinders are considered as the raw materials.
An unbounded amount of raw material is assumed to feed the system. A set of
330 different products can be composed using these materials.

Fig. 26. A plan of the physical system.

The processing goes as follows: machine M1 takes a case from a feeder, and
verifies that it corresponds to the order, that is, if the colour is correct and
whether it is a case or a solid cylinder. If it is not correct, then it is discarded,
otherwise, it is put on a pallet, and the kind of processing that the part needs
is written on the pallet. If it is a solid cylinder, a switch is activated to carry it
directly to M4. Otherwise it goes to M2. Machine M2 puts the piston and the
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spring, if the cylinder needs them, and then the part goes to M3, which adds
the cover. In M4 the parts are verified, the pallets are released and the parts
are put on a conveyor that moves them to the entrance of the buffer. Machine
M5 can temporarily store the cylinders in the buffer. When needed to assemble
the final product, M5 puts them in a conveyor that takes them to robot R1.
Machine M6 puts a base of the right colour on a pallet, and it is carried to robot
R1. The robot takes the three cylinders one by one and puts them on the base.
The product is then complete, and goes to robot R2, which takes it out of the
system.

Fig. 27. The kind of products that the system in Fig. 26 produces.

The adopted modelling approach is as follows. Each possible production order
(corresponding to a type of product) has been modelled by means of a Petri net.
Then, a set of places, modelling the capacity constraints of the physical resources
involved in the production process (robots, intermediate store, pallets, etc.), have
been modelled.

Figure 28 shows the Petri net model of one of the products in the system
here considered: a product made of three complete cylinders is shown. Place
IDLE represents the state in which the production order has not been started,
the rest of “tagged” places model the system resources (resource places), while
the “non-tagged” places model the different states of the component elements
inside the system (state places). In the example the resources are of two kinds.
On the one hand there are machines, robots, and space in the intermediate
buffer (i.e, physical constraints). On the other, there are constraints that are not
strictly necessary but are advisable for the correct evolution of the system, for
example not to allow more than one pallet on each conveyor segment, that make
the conveyor segment to be considered as a resource with capacity one. The final
model will be obtained by means of the composition, by fusion of the common
places modelling system resources, of the models corresponding to the whole set
of products.

Deadlock avoidance control. In order to have a completely automated sys-
tem, the objective now is to synthesise the control necessary to ensure that no
deadlocks can appear. As in Sect. 5.4, the system falls into the class of Resource
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Fig. 28. A non-sequential RAS modelling the assembly of a product made of three
complete cylinders and a base.

Allocation Systems: it is composed of a set processes which in their execution
must compete for the set of system resources. The complexity of dealing with
deadlocks strongly depends on the system structure. Different classes of RAS
systems have been defined in the literature. The features that distinguish these
classes refer to the process structure (wether the process is sequential or con-
current and whether routing flexibility is allowed or not, mainly) and the way
in which resources are allowed to be used and allocated/released (one-by-one
or as multi-sets). These characteristics define the class of Petri nets the model
belongs to. In the case of a process with a sequential nature (sequential RAS),
a state machine can be used to model it (places modelling constraints capacities
imposed by the physical or logical resources have then to be added); in the case
of non sequential processes, more sophisticated Petri net models are needed, in-
cluding fork/joint transitions (non-sequential RAS). In systems where resources
are allowed to be allocated/released as multi-sets, weights will appear in the arcs
related to places modelling resources, which means that the model will belong
to the class of generalised Petri nets. These elements will directly influence the
analysis and synthesis capabilities of the Petri net model.

An “easy” way of applying deadlock related control is based on the com-
putation of the reachability graph of the system model, to detect the deadlock
states and then to forbid them somehow. However, computing the reachability
graph of the whole system was not possible, because of its enormous size (for
instance, the reachability graph of just one production order as the one in Fig. 28
has 2442 states, while the reachability graph with two production orders being
concurrently executed had 241951 states; computing the reachability graph in
the case of three production orders was not possible). Therefore, some dead-
lock prevention/avoidance strategy based on the model structure instead of the
reachability graph is needed.



Petri Nets and Manufacturing Systems 777

In the case of sequential RAS many different solutions can be found in the
literature, adopting different points of view. See, for instance, [23, 35, 43, 26] as a
very short list of solutions. However, in our concrete case, there exist transitions
with more than one input state place (see Fig. 28), which make our system to
belong to the non-sequential RAS class. Adopting a Petri net perspective [47,
28] propose deadlock avoidance solutions for sub-classes of assembly systems.
However, the present system falls out of these classes.

In the sequel, a different engineering strategy is adopted: to transform the
problem into one with known and applicable solutions. If a deadlock avoidance
strategy is adopted, any resource-related state change in the system must be
controlled in such a way that only if the reached state is proved to be safe (safe
means that it can be ensured that all the active processes can be terminated) the
change is allowed, otherwise it is forbidden. This means that the application of a
deadlock avoidance method imposes a kind of “sequentialisation” in the system
behaviour. Therefore, and concentrating on the execution of a production order,
substituting its model by the state machine corresponding to the reachability
graph of the production model itself is just a change in the model, but not in
the behaviour. Notice that doing so a sequential RAS model for the system is
obtained. Resource places of the initial model are added to this state machine
(they are implicit places and can be added without changing the behaviour)
and the final system model is obtained by means of the composition by fusion
of the places modelling system resources of the sequential models of the set
of products. The considered model belongs to the class of systems for which a
deadlock avoidance method is proposed in [26], which can be, then, applied to
control the considered system.

The control is based on an adaptation of the Banker’s algorithm [20, 33].
In order to consider a given state as safe, the Banker’s algorithm looks for an
ordering in the set of active processes such that the first process can terminate
using the resources granted to it plus the free ones, the second process can
terminate using the resources it holds plus the ones free upon the hypothetical
termination of the first process, and so on. The basic step is to know if a given
process is able to terminate using a given set of available resources. The solution
in [26] is a two steps algorithm. First, mark those state places of the state machine
modelling the considered process and that require no more resources than the
free ones plus the ones in use by the process itself. Second, look for a path of
marked state places joining the place corresponding to the state the process is
in and the final state.

One important issue when applying deadlock avoidance approaches is the
time used to decide whether a given state is safe, since the procedure must
be called every time a state change engages new resources. Implementing the
control method the following results have been obtained. In the case of the non-
sequential RAS in Fig. 28, the corresponding sequential model (the reachability
graph of the net in that figure) has 2442 state places, 7814 transitions, using
each state up to 22 types of resources. Checking if an active process was able
to terminate using the free resources has been implemented. Its takes about
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0.003 CPU seconds using a Pentium(4) processor at 1.7 GHz under Microsoft
Windows 2000 operating system (this computation uses a Depth First Search
algorithm, which is linear in the size of the unfolded system). If the whole system
is considered, and given that no more than 26 components can stay at the same
time in the system (considering the 10 pallets plus the 16 storage places in
Fig. 27) and that a direct implementation of the algorithm in [26] grows in a
quadratic way with respect to the number of active production orders, the time
to know if a system state is safe takes about 2 CPU–seconds in the worst case.

In order to obtain more efficient solutions some approaches are currently
being studied trying to solve the problem for non-sequential RAS using directly
the initial model structure. A solution for a class non-sequential RAS, where
processes must have a tree-like structure can be found in [27].

6.2 Beyond the State of the Art for the Analysis:
Modelling with Object Nets

The aim of this section is to show a different approach for the modelling of
production systems. It is based on the clear and intuitive characteristic that in a
production system, among other elements, there are two main components. On
the one hand, the system architecture, which corresponds to the distribution of
the physical elements in the plant. Usually, this structure is rather static, and
not easily changeable. On the other hand, the set of process plans corresponding
to the different types of products to be produced in the system. These plans
can be seen as logical constraints to be imposed to the free flow of parts in the
system. In many cases the set of process plans can change (new process plans are
required to face demands of new products, while others disappear, corresponding
to products with very low demand). Therefore, doing a separated consideration
of that elements when designing the system control software makes easier to
adapt it to changes in the set of products the system is able to deal with.

A way of doing that was proposed in [22], where the final model was a
coloured Petri net in which the system architecture provided the net skeleton
(the set of places, transition and arcs) while the set of part flow restrictions
imposed by the process plans were modelled by means of the colour domains of
places and transitions and the functions labelling the arcs. This has also been the
approach followed in the previous sections. In this section a different approach is
going to be adopted. It is based on the Nets-within-Nets paradigm, as used, for
instance in [62], which support a modelling of systems by Petri nets following
the paradigm of Object Oriented Modelling. Applications of the paradigm to the
case of manufacturing systems can be seen in [29, 41, 38].

Roughly speaking, one of such models is composed of a System Net and one
or more Object Nets which can be seen as token objects of the system net. Both,
the system net and the object nets are Petri nets. A token in the system net
can be either a reference to an object net or a black token. Each object net
state represents the state of the element it models. Changes in such state can
be produced by its own internal dynamics (autonomous occurrences), but can
also be due to some interactions with the system net. On the other hand, some
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transitions in the system net can influence the internal state of object nets,
but others just move object nets between different locations of the system nets
(transport occurrences).

Therefore, in the definition of an elementary object system, besides the sys-
tem net, the set of object nets and the initial marking, a set of interactions must
be considered. The interactions define how the system net and the object nets
must synchronise their activities. These concepts directly apply for the modelling
of manufacturing systems. The model of the physical system will correspond to
the system net, while each part will be modelled by means of an object net.

M1 R1

R3

I2

I3 O1

O2

O3

M2

M3

M4

R2

I1

Fig. 29. A manufacturing cell composed of four machines and three robots. Black dots
represent the possibility of part flow between two resources.

The objective of this section is not the introduction of the Nets-within-Nets
paradigm, but just to show that it is very well adapted to model production
systems. To do that, let us apply it to the same example used in [23, 62]. Figure 29
depicts a manufacturing cell composed of four machines, M1,M2,M3 and M4
(each one can process two products at a time) and three robots R1, R2 and R3
(each one can hold a product at a time). There are three loading points (named
I1, I2, I3) and three unloading points (named O1, O2, O3). The action area for
robot R1 is I1, O3,M1,M3, for robot R2 is I2, O2,M1,M2,M3,M4 and for
robot R3 is M2,M4, I3, O1.

Every raw product arriving to the cell belongs to one of the three following
types: W1, W2 and W3. The type of product characterises the process to be
made in the cell as follows: 1) a raw product of type W1 is taken from I1 and,
once it has been manufactured, is moved to O1. The sequences of operations
for this type are either (M1, op1); (M2, op2) (execute op1 in M1 and then op2
in M2) or (M3, op1); (M4, op2) (execute op1 in M3 and then op2 in M4). 2)
a raw product of type W2 is taken from I2, manufactured in M2 (operation
op5) and then routed towards O2. 3) a raw product of type W3 is taken from
I3, manufactured in M4 (operation op4) and then in M3 (operation op3) and,
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Fig. 30. Three directed acyclic graphs specifying three different types of parts to be
processed in the cell depicted in Fig. 29.

finally, routed towards O3. Figure 30 represents, by means of directed acyclic
graphs, the possible operation sequences for such set of types of parts.

Analogously as in the example in 5.3, the (uncontrolled) Petri net in Fig. 31
represents the possible flow of parts in the considered system. In order to be
able to ensure that each part in the system will be produced according to its
corresponding process plan, some control has to be added to this skeleton model,
which will correspond to the system net in the Nets-within-Nets model (the
meaning of places named W1r,W2r,W3r and W1t,W2t,W3t will be explained
later).

Figure 32 shows three object nets corresponding to the three types of parts
to be produced in the considered system (since in this example all the transitions
in the object nets must interact with the system, transition names in Fig. 32
are not represented, just the interactions, for the sake of clarity). Let us explain
one of these models. The Petri net labelled W2 in Fig. 32 corresponds to a
part type W2 (in fact, each W2-type part will be modelled by one instance
of such net). The token in place p21 models the raw material for one of such
products before being loaded into the system. This state is changed when that
raw material enters the system. According to the system net in Fig. 31, this
is done by the firing of transition I2. Therefore, firing such (system) transition
must also make the token in p21 to move to place p22, which is imposed by the
interaction 〈i11〉. Place p22 models a part of type W2 inside the system and
that must be processed in M2. The transition joining p22 and p23 is used to
model the fact that such part enters M2, which in the system net corresponds
to transition R2M2. Interaction 〈i13〉 takes that into account. Interaction 〈i15〉
is used to move the part from M2 to the robot R2. Finally, interaction 〈i12〉 is
needed to model the unloading of such part from the system.

In the system net in Fig. 31 tokens in place W1r are instances of object net
W2 in Fig. 32, and correspond to raw parts of type W2 (there are K2 of such
net instances). Once terminated, these object nets will be in place W1t, which
“collects” terminated products of type W2.

Any further refinement in the model is easy to be done. Let us suppose also
the different operations each machine is able to do need to be considered. For
instance, machine M3 is able to carry out operations op1 and op3. Figure 33(a)
shows how place pi M3 in the net in Fig. 31 could be refined in order to consider
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Fig. 31. Petri net model of the part flow in the cell depicted in Fig. 29.

<i10>

<i15><i11> <i13>

<i16><i21> <i18>

p1_2

p1_3 p1_5

p1_1

p1_6

p2_4p2_3p2_2

p3_2 p3_3 p3_4 p3_5

p2_1

p3_1 <i8>
W3)

W2)

W1)

p1_4 <i13>

<i4> p1_8

p1_9 p1_10

p1_7 <i14> 20t1_9

<i22>

<i19><i9><i3>

<i12> p2_5

p3_6<i6> <i2> p3_7

<i1>

Fig. 32. Three object nets modelling the three types of parts to be processed in the
system in Fig. 29. Transition names are not presented, only the interactions with the
system net.

the operations it is able to do (capacity of M3 is not represented for the sake
of clarity). On the other hand, Fig. 33(b) shows how the place p35 of the object
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net corresponding to the processing of parts of type W3 in Fig. 32 could be
refined so that the process plan it models takes into account that the operation
op3 has to be done in M3 for such parts (notice that transitions M31 and M32

correspond to transport occurrences).

R1M3

M3R1

R2M3

M3R2

M3op1 M3op3x

x

x
x

x

x

x

x

x

x x

x
M3_1

<i6><i24> p3_5p3_5’<i8>

(a) (b)

<i24>

M3_2

<i23>

<i4>

<i6>

<i8>

<i10>

Fig. 33. A refined model for machine M3 and how it affects the object net modelling
W3 parts.

High level Petri net-based formalisms provide very useful tools for the mod-
elling, analysis and control of complex concurrent systems. However, the higher
the abstraction level the formalism allows, the more complicated its analysis
becomes. This is the case of coloured Petri nets, for instance (structure-based
techniques are not as general as in the case of ordinary Petri nets) and also the
case for Nets-within-Nets models. It is always possible to apply simulation tech-
niques, which can give insight of some system behaviours allowing the system
designer to easily test different system configurations in order to have arguments
to choose one or another. In the case of Nets-within-Nets, the tool Renew [36]
is a good environment for modelling and simulation.

7 From Discrete Event Models towards Hybrid Models

In the last years a new kind of models based on Petri nets has appeared. They
differ from the previous ones in that they are not discrete event models, but
hybrid models. That is, the state is not only represented by discrete variables,
but it is partly relaxed into continuous variables (in the extreme case, even all
the variables may be continuous in piecewise continuous systems).

These hybrid models have been defined in many different ways. For example,
(discrete) Petri nets may be combined with differential algebraic equations asso-
ciating them either to places (Pr/Tr Petri nets) [10] or to markings (DAE Petri
nets) [59]. Another possibility is to partially relax the integrality condition in the
firing of the transitions, i.e., continuise or fluidify the firing, as in Hybrid Petri
nets [3, 52]. This means that the marking of the places around these transitions
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Table 2. The four cases for possible continuisation of a transition [52].

Clients Servers Semantics of the transition

few (D) few (D) Discrete transition
few (D) many (C) Discrete transition (servers become implicit places)
many (C) few (D) Continuous finite server semantics (bounds to firing speed)
many (C) many (C) Continuous infinite servers semantics (speed is enabling-driven)

is no longer guaranteed to be integer (with the possible exception of self-loop
arcs). When a total fluidification is done the result is a Continuous Petri net [14,
51]. This kind of hybrid models can be used both to represent systems whose
“more reasonable view” is hybrid, or as an approximation of discrete systems
under high traffic conditions. The idea of continuisation of discrete models is
not new and has been employed in many different fields, for example, popula-
tion dynamics [46], manufacturing systems [16, 32], communication systems [21],
etc. In the following we will concentrate on Hybrid Petri nets. This is not the
place to present the state of the art of the analysis of continuous and hybrid PNs
(see for example [45, 51]), but just to point out that (partial) fluidification of the
untimed model does not preserve in general liveness properties of the discrete
model.

In timed models, in order to associate a time semantics to the fluidification
of a transition, it should be taken into account that a transition is like an station
in Queuing Networks, thus “the meeting point” of clients and servers. Assum-
ing that there may be many or few of each one of them, fluidification can be
considered for clients, for servers or for both. Table 2 represents the four theoret-
ically possible cases. If there were few clients, the transition should be considered
discrete.

Basically, the idea is to use a first order (or deterministic) approximation of
the discrete case [45], assuming that the delays associated to the firing of transi-
tions can be approximated by their mean values. A similar approach is used, for
example, in [6]. This means that in continuous transitions the firing is approxi-
mated by a continuous flow, whose exact value depends on the semantics being
used. The two basic semantics defined for continuous transitions (see Table 2)
are infinite servers (or variable speed) and finite servers (or constant speed) [3,
45]. Under finite servers semantics, the flow of ti has just an upper bound, λ[ti]
(the number of servers times the speed of a server). Then f(τ)[ti] ≤ λ[ti] (know-
ing that at least one transition will be in saturation, that is, its utilisation will
be equal to 1). Under infinite servers semantics, the flow through a timed tran-
sition t is the product of the speed, λ[t], and the enabling of the transition, i.e.,
f [t] = λ[t] · enab(t,m) = λ[t] · minp∈•t{m[p]/Pre[p, t]}.

It should be pointed out that finite server semantics, equationally modelled by
bounding the firing speed of continuised transitions, corresponds at conceptual
level to a hybrid behaviour: fluidification is applied only to clients, while servers
are kept as discrete, i.e., counted as a finite number (the firing speed is bounded
by the product of the speed of a server and the number of servers in the station).
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On the other hand, infinite servers semantics really relax clients and servers,
being the firing speed driven by the enabling degree of the transition. In this
case, even if the fluidification is total, the model is hybrid in the sense that it is a
piecewise linear system, in which switching among the embedded linear systems
is not externally driven as in [7], but internally through the minimum operators.

The following example is taken from [2, 3]. It models a station in a Motorola
production system. This station can produce two kinds of parts, c1 and c2 ,
whose processing corresponds to the left and right part of the figure, respectively.
The parts arrive in batches of 30000 and 20000 parts at times 0 and 1000. After
the arrival of a bach, parts are downloaded into a buffer at a speed of 1 part per
time unit. The processing does not start immediately, but waits until at least
500 parts of type c1 or 600 parts of type c2 ) have been downloaded. At that
point some set up is done on the machine, which takes 300 time units for parts
c1 and 360 for c2 , before the processing starts. When all the parts in the batch
have been processed, the machine is liberated. Pieces are removed in batches of
the input size.

p11

p1

t1

p2

p3

t2

t3

p4

p5

d1=0

V2=1

d4=300

d5=0

t4

t5

30 000
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V3=0.5

30 000

p6

t6

p7

p8

t7

t8

p9

p10

d6=1 000

V7=1

d9=360

d10=0

t9

t10

20 000

600

600

V8=0.33

20 000

Fig. 34. Hybrid Petri net modelling the behaviour of a production system.

A model of this system can be seen in Fig. 34. Although it is a discrete system,
the model is not discrete, but hybrid. The transitions represented as bars in the
figure are discrete (the usual transitions in Petri nets), while those represented
as boxes are continuous. Analogously, the circles drawn with a simple line are
discrete, while those with the double line are continuous.
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In this example, since the size of the batches is quite large, the firing of
transitions t2, t3, t7 and t8 can be approximated by a continuous flow. This kind
of approximation (when applicable) may simplify the study of the system. For
example, in [2] it is reported that for this system the simulation time reduces
from 454 sec. to 0.15, that is, it is divided by 3000!

Basic understanding of hybrid systems, and analysis and synthesis techniques
need much improvement before they can be effectively used [51, 52]. Moreover,
it should be pointed out that there exist some “natural” limits to the properties
that can be studied. For example, mutual exclusion (in the marking of places or in
the firing of transitions), and the difference between home space and reversibility
cannot be studied in general [51]. Additionally, basic properties like deadlock-
freeness of the autonomous continuised model is neither necessary, nor sufficient
for the discrete case [51]. However, the use of hybrid models as partial relaxations
of discrete models is a quite new and promising approach.
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Abstract. Message Sequence Charts (MSC) have been traditionally
used to depict execution scenarios in the early stages of design cycle.
MSCs portray inter-object interactions. Synthesizing intra-object exe-
cutable specifications from an MSC-based description is a non-trivial
task. Here we present a model of computation called Communicating
Transaction Processes (CTP) based on MSCs from which an executable
specification can be extracted in a straightforward manner. Our model
describes a network of communicating processes in which the processes
interact via common action labels. Each action is a non-atomic interac-
tion described as a guarded choice of MSCs. Thus our model achieves
a separation of concerns: the high-level network of processes depicting
intra-process computations and control flow, while the common non-
atomic communication actions capture inter-process interaction via
MSCs. We show how to extract an ordinary Petri net from a CTP model
thereby leading to a standard operational semantics. We also discuss the
connection of our formalism to Live Sequence Charts, an extension of
MSCs which also has an executable semantics.

1 Introduction

Message Sequence Charts (MSCs) are an attractive visual formalism which are
used in the early design stages of reactive systems. They portray scenarios that
arise from component interactions and hence can be used to capture require-
ments and test cases. MSCs and a related mechanism called HMSCs (High-level
Message Sequence Charts) have been standardized [26] for specifying telecom-
munication software. A version of MSC called Sequence Diagram is a behavioral
diagram type used in the Unified Modeling Language (UML) [10].

In all these settings, MSCs are used to capture system requirements. To move
towards an implementation, one must obtain an executable specification which
is related in some fashion to the MSC-based requirements. The key difficulty
here, as identified in [14], is that the inter-object interactions described in form
of MSCs must be related to -or synthesized as- executable specifications given
in terms of intra-object behaviors, say, one state-chart for each object. This is
a difficult problem and it has been studied in various limited contexts [1, 14, 17,
20].

J. Desel, W. Reisig, and G. Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 789–818, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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In this paper, we propose using MSCs to construct executable specifications
in a more direct fashion. The main idea is to use traditional methods to capture
the control flow of the system components while using MSCs to describe the
non-atomic component interactions. Among the various possibilities for describ-
ing the control flow in a multi-component system, we choose here the well-known
model of synchronized product of transition systems; a network of labeled tran-
sition systems that synchronize on common actions. With suitable modifications
one could easily use other related models as well.

We impose two restrictions on the control flow; a minor technical one that
we will come to later but also a major one which requires that branchings in
the control flow is effected by the components in a local fashion. In Petri net
terms, this is the so called free choice property [9]. In particular, this restriction
ensures that choices regarding which interactions to take part in are made by
the components in a local fashion.

Starting with a network of labeled transition systems that synchronize on
common actions, we refine each common abstract action γ involving a set of
agents into a transaction scheme Tγ . Each such scheme is a guarded choice of
MSCs. The life lines of the MSCs in Tγ will be from the set of agents participating
in the common action γ. Each guarded MSC in Tγ , called a transaction will
represent one possible interaction and will involve a complex flow of data and
control signals. When a transaction scheme is to be executed is determined by the
control flow in the high level product transition system. As to which transaction
in Tγ will be chosen to be executed is determined by the guards which are
propositional formulas built out of atomic propositions. The truth values of
these atomic propositions, and hence those of the guards, will capture abstracted
properties of the values of the variables associated with the agents. A central
feature of the model is that both the control flow and the evaluation of the guards
(which then leads to the execution of a specific transaction within a transaction
scheme) are done in a distributed and asynchronous manner. In broad terms,
this is our Communicating Transaction Processes (CTP) model.

Our model is in line with the emerging consensus that system-level design
methods for embedded systems should be based on models of computation in
which there is a clean separation of computational and communication features
[11, 3, 12]. The CTP formalism basically uses finite state machines with data
paths to model computational -and the attendant control flow- aspects while
deploying guarded choices of MSCs to capture complex interactions between the
different computational threads.

Our strategy of striking a balance between control flow and component inter-
actions yields a model which is flexible, powerful and at the same time amenable
to formal analysis and synthesis. Indeed, the problem of extracting an executable
specification from the CTP model becomes very manageable and amenable to
automation as we show in section 3. Our main point of reference for this work
is the formalism of Live Sequence Charts [8] and more specifically the Play-
in/Play-out approach [16] in which the component interactions are elaborated
in a powerful way using the LSC language while the control flow information
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is completely suppressed. On the other hand, in models such as Petri nets and
distributed transitions systems, the focus is on a detailed presentation of control
flow while the only mechanisms for capturing component interactions are the
atomic notions of synchronizing transitions and shared buffers.

An alternative way to use MSCs to capture system behavior is via HMSCs.
However, an HMSC is just a presentation of a collection of MSCs. The problem of
extracting an executable specification from an HMSC is a non-trivial one. There
are a variety of choices available for the executable specification mechanism such
as state charts [20], Petri nets [5] and networks of automata communicating
through FIFOs [17, 1]. Many versions of this synthesis problem -i.e. deriving an
intra-object executable specification from an HMSC- are not even decidable [17,
1, 5]. In contrast, as we shall show, we can extract an executable specification
in the form of a finite Petri net from a CTP model effectively and in a manner
that can be automated quite easily.

In the next section we introduce the CTP model while illustrating its main
features with simple examples. In Section 3, we provide the operational semantics
of the CTP model in terms of ordinary Petri nets. The key step in this process is
converting the transaction schemes into an executable mechanism called event
structures. In Section 4, we present a more detailed example based on the AMBA
bus protocol in order to highlight the communicational aspects of the CTP model
supported by the use of transaction schemes based on MSCs. In Section 5, we
discuss behavioral properties and the means for determining these properties. In
particular we present the notion of well-formed transaction schemes and illustrate
its importance. In the subsequent section, we provide a more detailed comparison
with the closely related formalism of LSCs. Section 7 reports our current efforts
for building an experimental framework to enable the use of the CTP model to
support the specification, verification and implementation of reactive embedded
systems. The concluding section provides additional pointers to future research.

2 The CTP Model

Being based on MSCs, the CTP model captures non-atomic inter-process com-
munications. However, in order to be amenable to efficient distributed implemen-
tation, this is combined with notations for describing intra-process control flow.
As a starting example, consider the specification shown in Figure 11. Each pro-
cess repeatedly interacts with the other process and then performs some internal
computational action. Note that the inter-process interaction and the internal
actions have been separated into distinct units. A number of processes P will
be involved in the execution of a chart. A process p which takes part in such an
execution might next participate in a chart involving a different set of processes,
say Q.
1 We adopt the usual MSC convention that horizontal and downward sloping arrows

denote message send-receives between two processes. Further, a � symbol on a single
vertical line denotes an internal action (such as actions a and b in Figure 1). We
denote a control state of a process as a circle.
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Fig. 1. Inter-process communication and intra-process control flow
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Fig. 2. Choice of Inter-process communication

The organization of interactions into the various units is up to the conve-
nience of the designer. For example, in Figure 1 we could have made the actions
a and b also to be part of the chart involving processes p and c. Note also that
the example shown in Figure 1 is essentially a Petri net where the local control
states in each process are the places of the net denoted by circles. Each top-level
transition of this net is, in general, a collection of Message Sequence Charts at
the refined level. A particular execution of the high-level transition, is an ab-
straction of the activity in which one of the charts associated with the high-level
transition is chosen and executed. In the example of Figure 1 each net transition
has a single chart associated with it. (An internal action is a degenerate chart
involving just one process executing just one action). The choice as to which
chart is executed -in case more than one chart is associated with a transition-
is based on the value of the local variables of the processes. This is illustrated
in Figure 2 where the choice is determined by the value of the variable free be-
longing to process b). If b.free holds once control reaches s1 and t1 respectively,
we must execute the right-hand chart of Figure 2.

In general, the choice of which chart is executed at a particular net transition
is a distributed one. Let the charts contained in a particular net transition be
as shown in Figure 3. If p1.data holds then chart 1 is ruled out. However, still
we do not know whether chart 2 or chart 3 will be executed. This will depend
on the value of variable free in process b. As shown in Figure 3, each MSC
associated with a net transition has a guard (which we will also refer to as a
pre-condition). This guard is a distributed one in that it will in general involve
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Fig. 3. Distributed nature of choice in a net transition

propositions belonging to different processes participating in the MSC. At the
end of the execution of a chart, the truth values of the various propositions will
be set to new values in general.

2.1 The Definition of the CTP Model

A product transition system is a network of sequential transition systems that
synchronize on common actions. The CTP model is obtained by taking a re-
stricted class of product transition systems and refining the common actions
into collections of guarded MSCs called transaction schemes.

Fix a finite set of process names P with p, q ranging over P . Fix also a
finite set of labels Γ and a family {Γp}p∈P with each Γp a subset of Γ and⋃
Γp = Γ . This induces the function loc which assigns to each label in Γ the set

of agents that participate in the execution of that action. This function is given
by: loc(γ) = {p | γ ∈ Γp}. If loc(γ) = {p} then γ will be called p-local action.
The members of Γ will be treated as abstract action labels in the first step where
we define the control flow model. In the second step they will be interpreted as
transaction schemes and further elaborated. Γp is the set of (abstract) actions
that the process p will participate in.

Anticipating the need to build guards in the second step, we also fix APp

a finite set of atomic propositions, one for each p and set AP =
⋃

p∈P APp. If
P ⊆ P then we let APP =

⋃
p∈P APp. By convention, we shall write APP as

AP . Each subset of APP will be called P -valuation. If P = {p} is a singleton we
will write p-valuation.

For each p let TSp = 〈Sp, Γp,−→p, initp, Vp,in〉 be a finite-state transition
system over Γp with an initial p-valuation. In other words, Sp is a finite set of
states, initp ∈ Sp is the initial state, −→p⊆ Sp × Γp × Sp denotes the transition
relation and Vp,in ⊆ APp is the initial valuation of atomic propositions in APp.
In this paper we will be only interested in control flows in which the choices as
to which transaction scheme that p will take part in is decided locally by p (free
choice). Further, to avoid notational clutter, we will require that each member
of Γp is the label of at most one transition in TSp. These two restrictions on
TSp can be formalized as follows.
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(1) if s
γ−→p s1, s

γ′
−→p s2 and s1 �= s2, then γ and γ′ are p-local actions. Thus,

loc(γ) = loc(γ′) = {p}.
(2) If s1

γ−→p s2 and s3
γ−→p s4 then s1 = s3 and s2 = s4.

Definition 1 Product Transition System A product transition system over
({Γp, APp})p∈P is denoted as {TSp}p∈P where each

TSp = 〈Sp, Γp,−→p, initp, Vp,in〉

is as specified above. As usual, the behavior of this product transition system is
defined to be the global transition system 〈S,=⇒, init, Vin〉 where:

– S =
∏

p∈P Sp

– init =
∏

p∈P initp
– s

γ
=⇒ s′ iff s(p)

γ−→p s
′(p) if p ∈ loc(γ) and s(p) = s′(p) otherwise. The

notation s(p) denotes local state of process p in global control state s.
– Vin =

⋃
p∈P Vp,in

Next, we need to define transaction schemes. We begin with the standard
notion of MSCs which we shall view, in the present context, as certain kinds
of labeled partial orders. Their visual representation will be as shown in the
various examples already. We shall use Σp to denote the set of actions executed
by the process p. It consists of actions of the form 〈p!q,m〉, 〈p?q,m〉 and 〈p, a〉
where M is an alphabet of messages and Act is an alphabet of internal actions.
The communication action 〈p!q,m〉 stands for p sending the message m to q and
〈p?q,m〉 stands for p receiving the message m from q. On the other hand, 〈p, a〉
is an internal action of p with a being the member of Act being executed. We
set Σ =

⋃
p∈P Σp. We also denote the set of channels Chan given by Chan =

{(p, q) | p �= q}.
Turning now to the definition of MSCs, we define Σ-labeled poset to be

a structure Ch = (E,≤, λ) where (E,≤) is a poset and λ : E → Σ is a
labeling function. For X ⊆ E we define ↓(X) = {e′ | e′ ≤ e for some e ∈
X}. When X = {e} is a singleton we shall write ↓(e) instead of ↓({e}). We
say that X is downclosed in case X = ↓(X). For p ∈ P , we set Ep = {e |
λ(e) ∈ Σp}. These are the events that p takes part in. Further, Ep!q = {e |
e ∈ Ep and λ(e) = 〈p!q,m〉 for some m ∈ M}. Similarly, Ep?q = {e | e ∈
Ep and λ(e) = 〈p?q,m〉for some m ∈ M}. We define for any channel c = (p, q),
the communication relation Rc as: (e, e′) ∈ Rc iff | ↓(e) ∩ Ep!q |=| ↓(e′) ∩ Eq?p |
and λ(e) = 〈p!q,m〉 and λ(e′) = 〈q?p,m〉 for some message m.

An MSC (over (P ,M,Act)) is a Σ-labeled poset Ch = (E,≤, λ) which sat-
isfies:

(1) ≤p is a linear order for each p where ≤p is ≤ restricted to Ep × Ep.
(2) Suppose λ(e) = 〈p?q,m〉. Then | ↓(e) ∩ Ep?q |=| ↓(e) ∩ Eq!p |.
(3) For every p, q with p �= q, | Ep?q |=| Eq!p |.
(4) ≤= (≤P ∪RChan)� where ≤P=

⋃
p∈P ≤p and RChan =

⋃
c∈ChanRc.
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This definition assumes a FIFO discipline for each channel. Other variations
can also be dealt with easily. In what follows, we let agents(Ch) denote the set of
agents participating in the MSC Ch = (E,≤, λ) and define it as agents(Ch) =
{p | Ep �= ∅}.

Definition 2 Transaction Scheme A Transaction Scheme γ is a finite col-
lection of guarded Message Sequence Charts {[Ii : Chi]}k

i=1. Each Chi is an
MSC over (P ,M,Act). Each Ii is of the form

∧
p∈agents(Chi) I

i
p where Ii

p is a
propositional logic formula built from the propositions in APp.

For each chart Chi in a transaction scheme, we have only mentioned a pre-
condition. We have not specified the valuations of atomic propositions upon exit-
ing from a chart. However, send and receive actions have a well-defined meaning.
We can also assume that the internal actions are expressed in a standard impera-
tive language. The operational semantics of this imperative language then lends
a meaning to the internal actions. Consequently each event in a chart will have
a well-defined effect on the truth-values of the local atomic propositions and as
a sum total of these effects, we can associate with each chart an output valua-
tion Oi. If more than one output valuation is possible, we can consider them as
different transactions. Hence in what follows, we will assume that a transaction
scheme is of the form {[Ii : Chi : Oi]}k

i=1 over (P ,M,Act).
Finally, we can now define a Communicating Transaction Processes (CTP)

system model as follows.

Definition 3 CTP System Model A CTP model is a product transition sys-
tem {TSp}p∈P over (Γ,P) where Γ is a finite set of transaction schemes over
(P ,M,Act). Further, for each γ ∈ Γ , agents(γ) = loc(γ).

Here loc(γ) is as before where γ is viewed as an abstract action label in
high level product transition system; agents(γ) is the set of agents participating
in some transaction associated with the transaction scheme γ. Let γ = {[Ii :
Chi : Oi]}k

i=1. Then agents(γ) =
⋃

i=1,2,...n agents(Ch
i). Thus the restriction in

the above says that the processes taking part in a high level transition in the
control flow model are the same as the processes taking part in the transaction
scheme associated with this high level transition. This restriction still allows
the designer to reorganize the distribution of transactions across the various
transaction schemes. Indeed, in the extreme case can one collapse the whole
model into a single messy transaction scheme with just one control state for each
process! A subclass of CTPs can be obtained by requiring loc(γ) = agents(Chi)
for each i above. In such CTPs one cannot arbitrarily rearrange the transactions.

2.2 A Simple Example

Consider two processors communicating with a shared memory via a bus. The
bus controller serves as an arbiter for bus access and serializes the bus access
requests by the two processors. The memory controller provides data to the
processors for read requests and commits data for write requests. Two of the
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PMB2

PMB1
PMB2PE1 Pl1

Pl2 PMB2PE2
PMB1

PMB1

p1 b mc p2

Fig. 4. CTP system model of Multiprocessor example (common actions are shown in
bold)
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env−request

Fig. 5. Local Choices and Environment Interaction in Transaction Schemes of Fig. 4

simple schemes of this system are shown in Figure 5 whereas the high-level
control flow is as shown in Figure 4. The two processors are denoted by processes
p1 and p2; b is the bus controller and mc is the memory controller.

The schemes Pl1 and PE1 are local schemes in which only p1 participates
(refer Figure 5). They represent local choices. Scheme Pl1 is executed when
processor p1 has data to transfer (p1.data is true). Thus, this scheme consists of
a single degenerate MSC. The MSC consists of a single internal action which is
a no-op. If processor p1 has no data to transfer, then scheme PE1 is executed.
This scheme consists of two MSCs. The choice of which chart is executed is
made by the environment. If the environment (i.e. the application running on
the processor) has data to transfer then p1.data is set; otherwise it remains
reset. In this simple example, whether Pl1 or PE1 is executed, the process p1
next participates in the same transaction scheme, namely, PMB1. In general
however, this branching in the control flow could lead to different transaction
schemes being chosen.

Since the processors have similar behavior, the scheme PMB1 is identical to
PMB2 except that process p1 is replaced by p2. (Similar remarks hold for PE1
and PE2 as well as Pl1 and Pl2) The scheme PMB1 is the one shown earlier in
Figure 3. This scheme involves a decision by the bus controller b about granting
bus access to p1. In Figure 3, p1.data holds when p1 has data to transfer; b.free
holds when the bus is free for transfer. After the transfer the bus is set free.
In this simple example, we have assumed that the bus is released after every
access, and only write transfers are shown. We have also used our formalism to
model more complex interactions such as burst transfers and split transfers, as
discussed in Section 4.
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3 The Petri Net Semantics

Our goal here is to provide an operational semantics for the CTP model in
terms of Petri nets. A key step in our semantics is to combine the different
guarded transactions within a transaction scheme into a single entity. This entity
will consist of a parallel composition of computation trees; one computation
tree for each process that participates in the transaction scheme. Finite labeled
event structures [21] can be conveniently used for representing such a parallel
composition. We define:

Definition 4 Event Structure An event structure is a triple ES = (E,≤,#)
where E is a set of events, ≤ ⊆ E × E is a partial ordering causality relation
and # ⊆ E × E is a conflict relation which is required to satisfy the following
conditions: (a) # is irreflexive and symmetric, and (b) conflict is inherited via
causality, that is (e1#e2 ∧ e2 ≤ e3) ⇒ e1#e3.

The idea is that in any execution if an event e occurs and e′ ≤ e then e′

must have occurred earlier in the same execution. On the other hand two events
that are in conflict are mutually exclusive. They can never both occur in the
same execution. Consequently, if e and e′ are mutually exclusive and e′′ causally
depends on e′ then e and e′′ are mutually exclusive as well. This is captured by
the fact that conflict is inherited via causality.

As a related notion, we define a Σ-labeled event structure to be a structure
ES = (E,≤,#, Λ) where (E,≤,#) is an event structure and Λ : E → Σ is a
labeling function. In diagrams, as illustrated in Figure 6, it will be convenient to
represent the causality and conflict relation in a minimal fashion. To this end,
we define the immediate causality relation � and the immediate conflict relation
#μ via:

– e� e′ iff e < e′ and for every e′′, if e ≤ e′′ ≤ e′ then e = e′′ or e′′ = e′.
– e#μe

′ iff (↓ (e)× ↓ (e′)) ∩ # = {(e, e′)}.

Thus two events are in immediate conflict if they are in conflict and their
being in conflict can not be attributed to an earlier conflict that is inherited via
the causality relation.

The event structure corresponding to the transaction scheme in Figure 2 is
shown in Figure 6. The minimal causal relationship is captured by unidirectional
arrows. The minimal conflict relation #μ is captured by curved bidirectional
arrows. The way the minimal and maximal events of this event structure are
connected to the input and output control states of the transaction scheme are
also shown.

A (labeled) event structure is accompanied by a natural dynamics. A state is
a set of events that have occurred so far along an execution. States are usually
referred as configurations. Formally, a configuration c of the event structure
ES = (E,≤,#) is subset of E which is downclosed and conflict-free. In other
words ↓ (c) = c and (c × c) ∩ # = ∅. The empty set is a configuration; it is the
initial configuration.
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s1 t1

t2

p1!b,req b?p1,req

b!p1,yes b!p1,no

p1?b,nop1?b,yes

s2

Fig. 6. Event Structure for Transaction scheme in Figure 2 (shown in dashed box)

Let CES be the set of (finite) configurations of ES. The event e is enabled
at the configuration c if e is not in c and c ∪ {e} is also a configuration. This
leads to the transition relation −→ES⊆ CES × E × CES where c e−→ES c

′ iff e
is enabled at c and c′ = c ∪ {e}. Thus we can associate the transition system
TSES = (CES ,−→ES , ∅) with the event structure ES. These ideas extend in the
expected manner to labeled event structures.

3.1 Constructing Event Structures

In order to define our operational semantics, we first recall that AP =
⋃

p∈P APp

is the set of atomic propositions. Let γ be a transaction scheme (refer Definition
2) of the form γ = {Ii : Chi : Oi}n

i=1 where each Ii is a propositional formula
built out of AP , each Chi = (Ei,≤i, λi) is a chart over (P ,M,Act) and each Oi

is a subset of AP . We let γi = [Ii : Chi : Oi] for each i and call Ii, the input
guard, Chi the body and Oi the output valuation of the transaction T i. We will
assume without loss of generality that the sets {Ei}i=1,...,n are pairwise disjoint.

We construct the labeled event structure ESγ = (E,≤ #, λ) to be associated
with a transaction scheme γ as follows. The set of events E is obtained from the
event sets Ei (i = 1, . . . , n) but after identifying events that have isomorphic
pasts. Consequently we start with a set X whose elements will be of the form
(e, i, P, VP ) where e ∈ Ei, P = {p | ∃e′ ∈ Ei

p and e′ ≤i e} and VP is a P -
valuation such that VP |=

∧
p∈P I

i
p. Note that Ei

p is the set of events in Ei in
which p participates, that is, for any event e ∈ Ei

p, the label λi(e) is of the form
〈p!q,m〉 or 〈p?q,m〉 or 〈p, a〉.

Actually, the second and third components in (e, i, P, VP ) are redundant but
we will carry them for convenience. Next let x = (e, i, P, VP ) and y = (d, j,Q, VQ)
be in X . Then x ≡ y iff ↓(e) in Chi is isomorphic to ↓(d) in Chj in the obvious
sense. We shall denote the ≡-equivalence class containing x as [x].
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– Set of Events: We define E, the set of events of ESγ to be the ≡-equivalence
classes of X . Thus, E = {[x] | x ∈ X}. Thus for the scheme shown in figure
2, the two events of p1 that send a request message req are equivalent as also
the two corresponding receive events.

– Causality Relation: Let [x], [y] be in E. Then [x] ≤ [y] iff there exists
(e, i, P, VP ) in [x] and (d, j,Q, VQ) in [y] such that i = j, e ≤i d and
VQ ∩APP = VP ∩APP .

– Conflict Relation: First we define the relation #̂ to be the least subset of
E×E which satisfies the following. Suppose [x], [y] ∈ E are such that [x] � [y]
and [y] � [x]. Furthermore, there exist (e, i, P, VP ) in [x] and (d, j,Q, VQ) in
[y] such that e ∈ Ei

p and d ∈ Ej
p for some p but i �= j. Then [x]#̂[y]. We now

define the conflict relation # as the least subset of E×E which (a) contains
#̂, (b) is a symmetric relation, and (c) inherits through causality, that is,
[x]#[y] and [y] ≤ [z] implies [x]#[z].

– Labeling Function: Finally, the labeling function Λ is given by:

Λ([(e, i, P, VP )]) = λi(e)

Lemma 1 ESγ = (E,≤,#, Λ) is a labeled event structure.

Proof: Due to the isomorphism condition imposed in the definition of ≡, it
is easy to observe that ≤ is a partial ordering relation. From the definition of
the relation # it is symmetric and is inherited via ≤. We need to show that it
is irreflexive. Assume for contradiction that there exists [x] such that [x]#[x].
In this case it is not difficult to see there exist [y] and [z] such that [y]#̂[z]
and [y] ≤ [x] and [z] ≤ [x]. This implies there exist (e, i, P, VP ) in [y] and
(e1, i, P1, VP1) in [x] such that e ≤i e1. Further, there exist (d, j,Q, VQ) in [z]
and (d1, j, Q1, VQ1) in [x] such that d ≤j d1. Then by the definition of the ≡
relation, it follows that there exists (d′, i, Q′, VQ′) in [z] such that d′ ≤i e1. But
then from the definition of #̂ it follows that there exists p such that e ∈ Ei

p and
d′ ∈ Ei

p. This leads to e ≤i d′ or d′ ≤i e which in turn leads to [y] ≤ [z] or
[z] ≤ [y] contradicting [y]#̂[z]. The fact that the labeling function is well-defined
is obvious. �

3.2 The Petri Net Semantics

We construct the Petri net semantics for the CTP model in three steps. First
we convert each labeled event structure yielded by a transaction scheme into
an acyclic net (without an initial marking). We then merge these nets with
the high level control flow net. As a last step we refine local control states
and the transitions to expose information about the valuations of the atomic
propositions.

From Event Structure to Acyclic Net. First, let γ be a transaction scheme and
ESγ = (E,≤,#, λ) be its event structure representation. For e ∈ E we set
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proc(e) = p if there exists (x, i, P, VP ) in e such that x ∈ Ei
p. It is easy to see

that proc is a well-defined function, and it is also easy to check that if e#̂e′,
proc(e) = proc(e′).

Now, we define the net associated with our event structure. Before doing so,
note that the minimal causality relation of event structure ESγ is denoted as
�; the minimal conflict relation is denoted as #μ. From the construction of ESγ

it follows easily that that if e#μe
′ then proc(e) = proc(e′). Furthermore, #μ is

transitive (and symmetric). Hence in what follows, while writing # instead of
#μ for convenience, we will let [e]# denote the set of events given by [e]# =
{e} ∪ {e′ | e#μe

′}.
We define the net representation ESγ = (E,≤,#, λ) as the acyclic net Nγ =

(Bγ , Eγ , Fγ) where:

(1) The set of transitions Eγ = E.
(2) The set of places Bγ and the flow relation Fγ are the least sets which satisfy:

(i) Suppose e� e′ and proc(e) �= proc(e′). Then (e, e′) ∈ Bγ , (e, (e, e′)) ∈
Fγ , and ((e, e′), e′) ∈ Fγ .

(ii) Let e�e′ and proc(e) = proc(e′). Then (e, [e′]#) ∈ Bγ and (e, (e, [e′]#))
∈ Fγ and ((e, [e′]#), e′′) ∈ Fγ for every e′′ in [e′]#.

The net representation of the event structure of Figure 6 is shown in Figure 7.

Merging the Control Flow. Let TP = {TSp}p∈P be a CTP over (Γ,P) where Γ
is a finite set of transaction schemes over (P ,M,Act). Let TSp = (Sp, Γp,−→p

, initp, Vp,in) be the transition system associated with transaction process p (note
that Vp,in is the initial p-valuation). For each transaction scheme γ in Γ let ESγ

be its event structure representation and Nγ = (Bγ , Eγ , Fγ), the net associated
with ESγ .

For convenience we will denote the set of pre and post control states of the
transaction scheme γ as •γ and γ• respectively and define these sets as:
•γ = {s | γ ∈ Γp and s

γ−→p s
′ for some s, s′ ∈ Sp}.

γ• = {s′ | γ ∈ Γp and s
γ−→p s

′ for some s, s′ ∈ Sp}.
We can now carry out the second step in providing the operational semantics.
The control flow Petri net of TP is the Petri net

CFNTP = (STP, TTP, FTP,Min,TP)

where:

– STP =
⋃

{Sp | p ∈ P} ∪
⋃

{Bγ | γ ∈ Γ}.
– TTP =

⋃
{Eγ | γ ∈ Γ}

– FTP=
⋃

γ∈Γ ( Fγ) ∪
{(s, e) | e ∈ min(Eγ), s ∈ •γ ∩ Sp, proc(e) = p} ∪
{(e, s′) | e ∈ max(Eγ), s′ ∈ γ• ∩ Sp, proc(e) = p} )

– Min,TP(z) = 1 if there exists p s.t. z = initp (the initial state of some p).
Otherwise Min,TP(z) = 0.
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s1 t1

t2

b?p1,req

b!p1,yes b!p1,no

p1?b,nop1?b,yes

s2

p1!b,req

Fig. 7. Acyclic Net for Transaction scheme in Figure 2 (shown in dashed box)

By min(Eγ) (max(Eγ)) we mean the set of minimal (maximal) elements
under the causality relation of the event structure ESγ .

The control flow net of a CTP description captures the behaviors in the indi-
vidual processes with one major caveat. For events which are in minimal conflict,
it does not expose the valuations of the atomic propositions which resolve the
conflict. As an example, consider the event structure of Figure 6 and its net
representation shown in Figure 7. Now, consider the place marked in bold in
Figure 7; this place has two outgoing flow arcs leading to two events in minimal
conflict. Here, the control flow net contains infeasible behaviors not allowed by
the transaction scheme of Figure 2. This is because the control flow net of Figure
7 does not capture the condition which needs to be evaluated to decide which
of the two conflicting events is executed (in this case, the condition is b.free).
The simplest solution is to annotate the flow arcs with this condition (i.e., the
two arcs should be annotated with b.free and ¬b.free)2. However adding such
annotations does not give an executable model of the allowed behaviors for a
CTP. To construct such an executable model, we need to systematically expose
the data dependencies, that is, the valuation of atomic propositions in the places
and transitions of the control flow net. This is now done by constructing a Petri
net corresponding to any CTP specification.

Constructing the Petri Net. Let CFN = (STP, TTP, FTP,Min,TP) be the control
flow net of TP, a CTP. Then PNTP is the Petri net representation of TP and
it is the Petri net PNTP = (S, T, F,Min) where S, T and F are the least set of
elements satisfying the following conditions:

2 One could capture this easily using Colored Petri nets [19] but this would entail an
additional intermediate description.
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– Suppose s is in Sp. Then (s, Vp) is in S where Vp is a p-valuation. Next
let γ be in Γ and Nγ = (Bγ , Eγ , Fγ) be the net associated with ESγ and
(x, y) ∈ Bγ . Now suppose (e, i, P, VP ) ∈ x. Then ((x, y), VP ) is in S.

– Let γ be in Γ and Nγ = (Bγ , Eγ , Fγ) be the net associated with ESγ and
x ∈ Eγ . Suppose (e, i, P, VP ) ∈ x. Then (x, VP ) is in T .

– Suppose (s, x) ∈ FTP with s ∈ Sp for some p and (e, i, {p}, Vp) ∈ x. Then
((s, Vp), (x, Vp)) is in F . Also, suppose (x, s′) ∈ FTP with s′ ∈ Sp for some
p and (e, j,Q, VQ) ∈ x and Oj is the output valuation of the transaction
[Ij : Chj : Oj ]. Then ((x, VQ), (s′, Vp)) is in F where Vp = Oj ∩ APp.
Finally, let ((x, y), VP ) ∈ S. Then ((x, VP ), ((x, y), VP )) is in F . Furthermore,
(((x, y), VP ), (y, VQ)) ∈ F provided proc(x) �= proc(y) and (y, VQ) is in T and
VQ ∩ APP = VP . In case proc(x) = proc(y) then (((x, y), VP ), (z, VQ)) ∈ F
provided z ∈ y and VQ ∩APP = VP . In general, y denotes a set of events in
minimal conflict and belonging to the same process.

– Min(z) = 1 if z = (initp, Vp,in) for some p. Otherwise Min(z) = 0.

For example, the Petri net fragment for the transaction scheme of Figure 2,
together with the refined representation of its surrounding control places will be
as shown in Figure 8. Here for convenience we have assumed that the output
guard for both the transactions is b.free.

b.free ¬b.free

b.free

B!p1, no

Fig. 8. Petri net fragment for Transaction scheme in Figure 2

This concludes the construction of the Petri net to be associated with a CTP.
The execution semantics of a CTP is then just the usual execution semantics of
its associated Petri net.
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4 Specifying the AMBA Bus Protocol

In this section, we present a non-trivial example to show the use of the CTP as
a modeling language. In particular, we model the data communication between
two components via a bus. We call the originator of the data communication the
master and the receiver of the communication the slave. Our model consists of
five processes executing in parallel: the master component (called Pm), interface
of the master component (called Im), the bus controller (called BC), interface of
the slave component (called Is) and the slave component (called Ps). The master
and slave components (Pm and Ps) are often processors or co-processors. The
high level transition systems of the individual processes are shown in Figure 9.
In the diagram, the constituent guarded transactions of the various transaction
schemes have not been shown.

Request

Local_m
Transfer

Transfer
Local_BC

Dequeue_s
Local_s

Enqueue_m

I_m BC
I_sP_m

P_s

Fig. 9. CTP model of interfaces between two embedded co-processors. Common actions
are shown in bold. Wherever possible, labels of repeated occurrences of a common
action have been shared to reduce visual clutter.

To develop our example, we fix: (1) a specific bus protocol, (2) storage capa-
bilities of the interfaces, Im and Is (3) interaction between the components and
interfaces. We choose the popular AMBA bus protocol used in ARM system-
on-chip designs [2]. We assume that each interface contains a bounded queue to
hold data in transit. The interaction between a component and its interface then
involves enqueueing and dequeuing these queues. In particular, our choice of the
component-interface protocol is drawn from the interface modules developed in
the European COSY project [7]. These interfaces were originally designed for
data transfer between co-processors connected to a common bus running the
PI-Bus protocol. Here instead we shall be using the AMBA bus protocol.

The transaction schemes Localm, LocalBC and Locals have only one partic-
ipating process: namely Pm, BC and Ps respectively. They represent internal
computations of these processes and we do not describe them here. The other
three transaction schemes denote the following interactions. Enqueuem involves
enqueueing of data by the master process Pm into the queue of the master inter-
face Im. Similarly, Dequeues denotes the dequeuing of data from the queue of
the slave interface Is by slave processor Ps. The scheme Request denotes request
for bus access by the master to the bus controller, and subsequent granting of
bus access (if any). Finally, the scheme Transfer denotes the transfer of data
from master interface Im into slave interface Is over the bus.
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We now describe the transaction scheme Transfer where

agents(Transfer) = {Im, Is, BC}

In particular, this will show our formal specification of the AMBA bus protocol.
Conditions on the local variables of each of these processes are used to decide
which chart of Transfer is executed in a particular execution. We will freely use
values of these local variables in our charts. The events in the charts pass these
values between variables of different processes, thereby modeling data transfer.

Local Variables. We present the local variables of the processes Im, Is and BC
in Figure 10. We wish to note that maxwait denotes a predefined fixed positive
constant, and D denotes the data type of the data being transmitted from master
component Pm to slave component Ps. Furthermore, Addr denotes the range of
addresses manipulated by Im and Is.

Process Local Variables

Im mq : Queue of (Addr,D)
data sent, wait data : D
wait addr : Addr
grantm: boolean

Is sq : Queue of (Addr,D)
addr rcvd : Addr
waitcnt : 0 . . . maxwait

BC gntm, splitm : boolean

Fig. 10. Local Variables in the Interface Example

The master and slave interfaces Im and Is each contain a queue mq and sq.
The master queue mq receives data from Pm and passes it to the slave interface
Is. The slave queue sq receives data from master interface Im and passes it
to the slave component Ps. The transfer of data between the master and slave
interfaces is over a bus, and is thus dictated by the bus protocol. In this case,
we consider the AMBA bus protocol which has the following features. This will
clarify the need for the various local variables.

Bus Access Protocol. Each transfer is preceded by a grant of bus access by the
bus controller to a master. This information is stored by the bus controllerBC in
the boolean variable gntm. Its value is communicated to Im in the Request trans-
action scheme (not shown here) when Im requests for bus access. Im stores this
information in grantm. Thus there is clear relationship between Im.grantm and
BC.gntm. Similar relationships exist between other local variables of different
processes owing to the flow of values via messages.

Pipelined Transfer. Multiple transfers from Im to Is are pipelined. For example
suppose Im wants to transfer (a1, d1),(a2, d2), (a3, d3) to Is. This is a request to
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write d1 to address a1, d2 to address a2 and d3 to address a3. The transfer over
the address and data lines proceeds as follows:

Clock cycle: 1 2 3 4
Address : a1 a2 a3 -
Data : - d1 d2 d3

Since in every cycle, the data of the previous cycle’s address is transmitted,
this needs to be remembered. This information is stored in the local variable
data sent of Im. Similarly, on the slave interface side, the address received in
previous cycle is stored in the variable addr rcvd of process Is.

Transfer with Wait Cycles. The slave interface Is may not be ready to write
data in every cycle e.g. the slave queue sq may be full. This results in insertion
of “wait cycles”. The number of such wait cycles is stored in the local variable
waitcnt. In the presence of wait cycles, the transfer can be as follows:

Clock cycle: 1 2 3 4 5 6
Address : a1 a2 a2 a2 a3 -
Data : - d1 d1 d1 d2 d3

Here, d1 is transfered after two wait cycles. During these wait cycles, the
master interface needs to keep on transmitting a2 as address and d1 as data;
otherwise the correspondence between address and data is lost. Hence the need
for the local variables wait addr and wait data in process Im.

Split Transfer. If the number of wait cycles equals a threshold maxwait, the
slave interface Is informs the bus controller BC that it is currently unable to
service the master interface Im. The bus controller BC then records that Im is
suspended by setting splitm (which is reset later when Is is able to serve Im).

Message Sequence Charts. The transaction scheme Transfer is collection of
MSCs, one for each of the following mutually exclusive conditions3.

(1) ¬grantm ∨ (empty(mq) ∧waitcnt = 0) ∨ (splitm ∧ full(sq))
(2) grantm ∧ ¬splitm ∧ ¬empty(mq) ∧ ¬full(sq) ∧ waitcnt = 0
(3) grantm ∧ ¬splitm ∧ ¬empty(mq) ∧ full(sq) ∧ waitcnt = 0
(4) grantm ∧ ¬splitm ∧ ¬full(sq) ∧waitcnt > 0
(5) grantm ∧ ¬splitm ∧ full(sq) ∧ waitcnt > 0 ∧waitcnt < maxwait
(6) grantm ∧ ¬splitm ∧ full(sq) ∧ waitcnt = maxwait
(7) grantm ∧ splitm ∧ ¬full(sq) ∧ waitcnt = maxwait

In case 1, either the bus is busy (¬grantm holds) or the master queue mq is
empty and waitcnt = 0 (i.e. new data needs to be dequeued from mq which is
empty), or the data transfer from Im has been split, but Is is still not ready to

3 These guards are also total, when the relationships between the local variables of
various processes are taken into account.
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input data (sq is full). In these cases, no data is transmitted, no control signals
are exchanged and the chart is a no-op.

In case 2 (shown in Figure 11), the master is granted access to the bus,
data is dequeued from the master queue mq, and enqueued into the slave queue
sq. This corresponds to “normal” data transfer without wait cycles and split
transfer. Each message is of the form Signal name(Value), such as ADDR(a).
Access to mq and sq are through the Enqueue and Dequeue methods.

The chart for case 3 is shown in Figure 12. This corresponds to the scenario
where wait cycles are initiated (note that waitcnt = 0) for some transfer, since
the queue at Is is full. Note that the first three actions by Im in this chart are the
same as Figure 11. This illustrates the distributed decision-making performed
by agents of a transaction scheme in deciding which chart is to be executed. As
long as the slave interface Is does not execute its internal actions, we cannot
decide whether chart for case 2 or case 3 is being executed.

(a,d) := Dequeue(mq)

READY(true)

ADDR(a)

data_sent := d

addr_rcvd := a

WRITE_DATA(data_sent)

grant waitcnt = 0full(sq)empty(mq)split

Enqueue(sq, (addr_rcvd, data_sent))

Master Interface Slave Interface

m m

Fig. 11. Normal data transfer between master and slave interface

Case 4 corresponds to grantm ∧¬splitm ∧¬full(sq)∧waitcnt > 0. Thus, the
master has been granted bus access (since grantm holds) and is currently going
through a wait cycle (since waitcnt > 0). The slave is however ready to input
data (since ¬full(sq)), that is, the master need not wait any more. Thus, this
scenario corresponds to the last wait cycle. The chart is shown in Figure 13.

Case 5 corresponds to grantm ∧¬splitm ∧full(sq)∧waitcnt > 0∧waitcnt <
maxwait. Here again the master has been granted bus access (since grantm
holds) and is currently going through a wait cycle (since waitcnt > 0). The slave
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waitcnt := waitcnt + 1

wait_data := data_sent

wait_addr := a

READY(false)

data_sent := d

ADDR(a)

grant split

(a,d) := Dequeue(mq)

waitcnt = 0full(sq)

WRITE_DATA(data_sent)

empty(mq)

Master Interface Slave Interface

m m

Fig. 12. Initiation of wait cycles

READY(true)

Enqueue(sq, (addr_rcvd, wait_data))

addr_rcvd := wait_addr

WRITE_DATA(wait_data)

ADDR(wait_addr)

waitcnt := 0

grant m

Master Interface Slave Interface

full(sq) waitcnt > 0split m

Fig. 13. The last wait cycle

is still not ready to input data (since full(sq)). This scenario corresponds to a
wait cycle which is not the last. The chart appears in Figure 14.

Case 6 corresponds to grantm ∧ ¬splitm ∧ full(sq) ∧ waitcnt = maxwait.
Here the master is going through a wait cycle, but the number of wait cycles
has reached the pre-defined threshold maxwait. Thus, this requires the slave to
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waitcnt := waitcnt + 1

WRITE_DATA(wait_data)

READY(false)

ADDR(wait_addr)

grant m full(sq) waitcnt > 0 waitcnt < maxwait

Master Interface Slave Interface

split m

Fig. 14. A wait cycle which is not the last

ADDR(wait_addr)

SPLIT_ACK

WRITE_DATA(wait_data)

SPLIT(1)

READY(false)

Master Interface Slave Interface Bus Controller

split   := truem

waitcnt = maxwaitfull(sq)grant
m m

split

Fig. 15. Initiation of split transfer

initiate split transfer by interacting with the bus controller. The chart appears
in Figure 15.

Case 7 corresponds to grantm∧splitm∧waitcnt = maxwait∧¬full(sq). This
means that the transfer from Im to Is was previously split, thus splitm holds.
However, the slave is currently ready to input data (since ¬full(sq)), thereby
terminating the split transfer. Thus, this chart will involve exchange of SPLIT
and SPLIT ACK signals along the lines of Figure 15, and the resetting of waitcnt
to zero.

Remark. As a matter of fact, the AMBA bus protocol is intended for interaction
between multiple masters and multiple slaves. Here we have modeled only one
master and one slave. However, all the features for multi-component interaction
have been, in principle, captured. For example, the suspension of bus access to
a master (split transfers) is to allow another master to take over bus access. In
our case, even with one master we have modeled this feature via the variable
splitm.
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In future, we plan to explicitly model interaction among multiple masters
and slaves, that is, multiple instances of Pm and Ps. An elegant way of modeling
masters and slaves is to treat all masters as one process class, and all slaves
as another process class. The individual masters and slaves then correspond to
concrete objects of these classes. This requires extending our model to handle
objects, classes and subclasses. We are currently pursuing research in this direc-
tion.

5 Behavioral Properties of CTPs

In this section, we introduce some important behavioral properties of the CTP
model and the techniques currently available for determining these properties.

5.1 Well-Formed Transaction Schemes

For pragmatic reasons, our definition of the CTP model imposes almost no syn-
tactic restrictions. As a result, one can easily specify behaviors which are prob-
lematic from both specification and implementation standpoints. For instance,
consider the transaction scheme shown in Figure 16 and its associated event
structure. If the control flow enables this transaction scheme with the valuation
{¬A,B}, there will be a deadlock and no event in the associated event structure
will execute. On the other hand if the valuation is {A,¬B} then the send events
〈p!q,m1〉 and 〈q!p,m2〉 can execute with no order after which there will be a
deadlock. Thus local deadlocks can arise due to incomplete specification of the
transaction schemes. As a method for detecting and eliminating such undesirable
behaviors, we propose the notion of well-formed transaction schemes. Intuitively,
this notion says that in the locality of a transaction scheme, the maximal execu-
tions of the event structure associated with the transaction scheme are precisely
the executions of the transactions mentioned in the transaction scheme.

p!q,m1 q!p,m2

q?p,m1p?q,m2

Transaction Scheme Event Structure

A B A B

m1 m2

p q p q

Fig. 16. A Transaction Scheme which is not well-formed

Definition 5 Well-formed Transaction Scheme Let T = {T i = [Ii : Chi :
Oi]}i=1,2,...,n be a transaction scheme and EST = (E,≤,#, Λ) be its event struc-
ture representation. For a configuration (a downclosed conflict-free subset of
events) c of EST, we let ESc,T be the sub-event structure induced by c; it is the
event structure (c,≤c,#c) where ≤c(#c) is ≤(#) restricted to c. Let MAXCT



810 Abhik Roychoudhury and Pazhamaneri Subramaniam Thiagarajan

be the sub-event structures of EST induced by the set of maximal configurations
of T. Then, transaction scheme T is said to be well-formed iff there exists a
bijection f : {1, 2, . . . , n} → MAXCT such that Chi is isomorphic to f(i) for
each i in {1, 2, . . . , n}.

Each transaction scheme can be effectively analyzed to determine if it is
well formed. Clearly the transaction scheme shown in Figure 16 is not well-
formed. We are not advocating the notion of well-formedness as mandatory but
we believe it is a useful criterion using which certain types of incomplete and
inconsistent specifications at the level of transaction schemes can be caught.
It should also be clear that well-formedness alone will not suffice to guarantee
sound implementations. For instance if the behaviors of a transaction scheme
exhibit intra-process non-determinism then hardware implementation can be
problematic.

5.2 Behavioral Properties

Let TP be a CTP and NTP be its Petri net representation. We shall assume
the standard behavioral notions for Petri nets here [9]. We will say that that
TP is transaction-deterministic if for every reachable marking M of PNTP, if x
and y are events belonging to the event structure associated with a transaction
scheme in TP and both x and y are enabled at M then proc(x) �= proc(y).
Consequently x and y can occur causally independent of each other at M . Thus
transaction-determinism guarantees during the course of executing events taken
from a transaction scheme, there will be no conflict. We will also say that TP
is bounded in case its Petri net is bounded (has only a finite set of reachable
markings).

We say that a transaction scheme is anchored in case each of its transactions
is anchored. A transaction is anchored if its associated MSC, say, Ch = (E,≤, λ)
has a least element ein and greatest element efin and further more,there exists
p such that ein, efin ∈ Ep. Thus the transaction is initiated and terminated by a
single agent. An interesting observation here is that if each transaction scheme
in a CTP is anchored, then the CTP is bounded.

Via the Petri net semantics, the notions of TP being live and dead-lock free
can also be defined. Clearly, all these properties are decidable since the corre-
sponding problems for Petri nets are decidable. We are currently studying how
efficient decision procedures can be developed by exploiting the additional struc-
ture provided by the CTP model.

6 Connection to Live Sequence Charts (LSC)

Our CTP formalism serves as a high level executable specification language based
on Message Sequence Charts. Recently, Damm and Harel have developed the Live
Sequence Charts (LSC) formalism which is also a MSC based modeling language.
A powerful execution framework for LSCs based on the so called Play-in/Play-
out approach is also being developed by Harel and his collaborators [13, 15]. In
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this section, we explore the connections between the CTP and LSC formalisms,
namely (a) how to interpret LSCs over the CTP model and (b) how to translate
CTP models to the LSC language.

The basic feature of LSCs is that it has two types of charts, namely existential
and universal charts. The universal charts are used to specify requirements that
all the possible system runs must satisfy. A universal chart typically contains
a pre-chart followed by a main chart to capture the requirement that if along
any run, the scenario depicted in the pre-chart occurs then the system must also
execute the main chart. Existential charts specify sample interactions, typically
between the system components and the environment that at least one system
run must satisfy. Existential charts can be used to specify system tests and
illustrate typical unrestricted runs. The LSC formalism also uses cold and hot
conditions which are in some sense provisional and mandatory guards. If a cold
condition holds during an execution then control is intended to pass to the
location immediately after the cold condition. If it is false then the chart-context
in which this condition occurs is exited. A hot condition, on the other hand, must
always be true. If an execution reaches a hot condition which evaluates to false
then this signals the violation of requirement and the system is supposed to
abort. Thus we can attach the constant false condition at the end of chart Ch
to capture the requirement that Ch must never occur. In other words, Ch is a
forbidden scenario. On the other hand, cold conditions can be used to program
if-the-else constructs. Similarly we can also specify events to be hot or cold.

It will be convenient to break down the features of the LSC language into
simple units and present them individually. Assuming the notations and termi-
nology developed in the previous section, we define a basic universal LSC (over
(P ,M,Act)) with a pre-chart as a structure [PCh,BCh] where:

(1) PCh = (EPCh,≤PCh, λPCh) is a MSC called the pre-chart.
(2) BCh = (E,≤, λ) is a MSC called the body with EPCh ∩ E = ∅.
(3) [PCh,BCh] denotes PCh ◦ BCh, the asynchronous concatenation of PCh

with BCh. This is in keeping with the asynchronous nature of our CTP
model; [8] mentions a variant involving synchronous concatenation. Thus,
strictly speaking, we consider an asynchronous version of the LSC formal-
ism [8].

(4) agents(min(BCh)) ⊆ agents(PCh).

In order to explain the last condition given above, recall that min(BCh) is the
set of minimal events in BCh. The last condition is intended to ensure that
in the asynchronous concatenation of PCh followed by BCh, every event of
BCh will have a causal predecessor in PCh. As might be expected, we define
the asynchronous concatenation Ch1 ◦ Ch2 of two MSCs Ch1 = (E1,≤1, λ1)
and Ch2 = (E2,≤2, λ2) with E1 ∩ E2 = ∅ as the MSC Ch = (E,≤, λ) where
E = E1 ∪ E2 and λ(e) = λ1(e) (λ2(e)) if e is in E1 (E2). Finally ≤ is the least
partial ordering relation over E which contains ≤1 and ≤2 and satisfies: if e ∈ E1

p

and e′ ∈ E2
p for some p then e ≤ e′.

We define a basic universal chart with pre-condition as a structure [P, ϕ,BCh]
where ϕ is a propositional formula built out of APP called the pre-condition and
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BCh is a chart called the body such that agents(min(BCh)) ⊆ P . Basic exis-
tential charts denoted 〈PCh,BCh〉 with a pre-chart as well as basic existential
charts with pre-conditions denoted 〈P, ϕ,BCh〉 can be defined in a similar fash-
ion. Neither existential nor universal charts with post-charts are interesting. We
however define a basic universal (existential) chart with a post-condition as the
structure [BCh, P, ϕ] (〈BCh, P, ϕ〉) where, as before, ϕ is a propositional for-
mula built out of APP and agents(max(BCh)) ⊆ P . Intuitively such charts
denote the property that if BCh is executed, ϕ must (may) hold.

A cold condition is a basic existential chart with a pre-condition whose body
chart is empty. A hot condition is a basic universal chart with a post-condition
whose body chart is empty. LSCs can now be inductively obtained by starting
with the basic charts and allowing the body itself to be an LSC. Viewing the
resulting class of LSCs as atomic assertions, one can obtain LSC specifications
by forming boolean combinations of these atomic assertions.

6.1 When Does a CTP Model Satisfy a LSC Specification?

We now interpret the basic LSC specifications over CTPs. It is easy to extend
this interpretation to more complicated LSC specifications.

Let TP = {TSp}p∈P be a CTP over (Γ,P) where Γ is a finite set of trans-
action schemes over (P ,M,Act). Let PNTP be the Petri net representation of
TP, constructed from Σ-labeled event structures representing the transaction
schemes. Let =⇒ be the labeled transition relation defined over the reachable
markings of PNTP given by: M α=⇒ M ′ iff there exists a transition t of PNTP

such that t is enabled atM andM ′ is the resulting marking when t occurs atM .
Furthermore, Λ(t) = α where Λ is the obvious labeling function that assigns to
each transition of PNTP, a label in Σ (the set of labels of events appearing in the
transaction schemes). This transition relation =⇒ is extended to Σ-sequences
in the obvious way and this extension will be also be denoted as =⇒. Next let
Ch = (E,≤, λ) be an MSC. Then λ applied pointwise to a linearization of (E,≤)
yields a member of Σ∗. We let lin(Ch) be the subset of Σ∗ obtained this way,
and refer to it also, by abuse of terminology, as the linearizations of Ch. We
define ΣCh to be the subset of Σ given by ΣCh = {λ(e) | e ∈ E}. Finally, if
σ ∈ Σ∗ and Σ′ ⊆ Σ then 	Σ′ (σ) is the Σ′ projection of σ. For an MSC Ch we
will often write 	Ch instead of 	ΣCh

. We are now prepared to interpret the basic
LSC specifications over CTPs.

(1) Let [PCh,BCh] be a basic universal chart with a pre-chart. Then TP sat-
isfies [PCh,BCh] iff every reachable marking (s0, V0) of PNTP satisfies the
following condition. SupposeM0

σ0=⇒M1 such that 	PCh (σ0) is in lin(PCh).
Then for every M1

σ1=⇒ M2, there exists M2
σ2=⇒ M3 such that a pre-

fix of 	Σ′ (σ0σ1σ2) corresponds to a member of lin(PCh ◦ BCh) where
Σ′ = ΣPCh ∪ ΣBCh. Thus, this universal requirement demands that when-
ever (a linearization of) PCh has been executed then this must be followed
by an execution of (a linearization of) BCh.
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(2) Next suppose [P, ϕ,BCh] is a basic universal chart with a pre-condition.
Then TP satisfies [P, ϕ,BCh] iff every reachable marking M0 = (s0, V0) of
PNTP satisfies the following condition. Suppose V0 |= ϕ. Then for every
M0

σ0=⇒ M1 there exists M1
σ1=⇒ M2 such that a prefix of 	BCh (σ0σ1)

is a member of lin(BCh). Hence this universal requirement demands that
whenever ϕ holds then this must be followed by an execution of BCh.

(3) Next suppose 〈PCh,BCh〉 is a basic existential chart with pre-chart. Then
TP satisfies 〈PCh,BCh〉 iff there exists a reachable markingM0 andM0

σ0=⇒
M1 such that a prefix of 	Σ′ (σ0) contains a member of lin(PCh◦BCh). As
before Σ′ = ΣPCh ∪ ΣBCh. Thus this existential requirement is satisfied if
there exists a reachable marking starting from which there is an execution
of linearization of PCh followed by an execution of BCh.

(4) Now suppose 〈P, ϕ,BCh〉 is a basic existential chart with a pre-condition.
Then TP satisfies 〈P, ϕ,BCh〉 iff there exists a reachable marking M0 and
M0

σ0=⇒ M1 such that V0 |= ϕ and a prefix of σ0 corresponds to a member
of lin(BCh).

(5) Basic charts with post-conditions are dealt with similarly. For instance, sup-
pose [BCh, P, ϕ] is basic universal chart with a post-condition. Then TP
satisfies this requirement iff every reachable markingM0 satisfies the follow-
ing condition. Suppose M0

σ0=⇒ M1 such that 	BCh (σ0) has a prefix which
is a member of lin(BCh) and σ is the least prefix of σ0 with this property.
Then V |= ϕ whereM0

σ=⇒M andM = (s, V ). Thus whenever an execution
of BCh takes place then at the resulting marking, the condition ϕ holds.
The semantics of the basic existential chart with a post-condition is defined
in a similar way.

One can effectively decide whether or not a bounded CTP TP satisfies an
LSC requirement lsc. This is so because from PNTP (the Petri Net corresponding
to TP), we can extract a finite Kripke structure. Moreover, it is known that lsc
can be effectively transformed into a CTL∗ formula [14]. As a result we can apply
the known model checking procedure for CTL∗ to solve this problem [6]. This
however will involve high computational complexity and more efficient decision
procedures are needed to solve this problem.

6.2 Translating CTP Models to LSC

We can also translate a CTP model into an LSC specification. Consequently the
play engine mechanism developed in the LSC framework [15] becomes readily
accessible for simulating CTP models. Furthermore, this translation also makes
it clear that the CTP model is a restricted version of the LSC formalism in
which only universal charts are used but the intra-object control flow is explicitly
specified using traditional mechanisms.

Let TP = {TSp}p∈P be a CTP over (Γ,P) where Γ is a finite set of trans-
action schemes over (P ,M,Act). Assume as before that each process p ∈ P
is associated with TSp = (Sp, Γp,−→p, initp, Vp,in). Recall also that the set of
pre and post control states of the transaction scheme T denoted as •T and
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T•. To construct the LSC specification of TP, we will deploy
⋃

{Sp | p ∈ P}
also as atomic propositions. Now let T be a transaction scheme of TP with
T = {[Ii : Chi : Oi] | i = 1, 2, . . . , n}. We recall that each Ii is a propositional
formula built out of AP , each Chi = (Ei,≤i, λi) is a chart over (P ,M,Act) and
each Oi is a subset of AP . With T, we associate the LSC specification lscT given
by lscT = lsc1 ∧ lsc2 . . .∧ lscn where for each i we have lsci = [BChi, posti] with
BChi = [prei, Chi]. Also, prei and posti are given by prei =

∧
s∈•T s ∧ Ii and

posti =
∧

s∈T• s ∧
∧

A∈Oi A.
Intuitively, T translates to the universal requirement: whenever the pre-

control states of T hold and the guard for the i-th transaction holds, then the i-th
transaction must execute followed by the holding of the post-valuation Oi and
the post-control states of T. The actual semantics is given in an asynchronous
execution framework.

7 Using the CTP Language

Based on the abstract formal model presented so far, we have designed a simple
language, called CTPL, in order to explore the feasibility of using our approach
for system-level design of reactive embedded systems. In order to develop CTPL
into a full-fledged modeling language, we have had to elaborate several features of
the formalism such as (a) syntax/semantics of the internal actions, (b) data types
of messages sent and received, (c) local variable declarations in individual pro-
cesses etc. Here we shall touch upon the major issues. The full syntax of the cur-
rent version of the language can be obtained from www.comp.nus.edu.sg/∼ctp.

Language Features. We use a simple imperative language without iterations to
describe the internal actions. Thus an internal action is an imperative program
with arithmetic and boolean expressions, whose control flow is acyclic. Note that
this is not a restriction in the expressive power of the language, since the overall
control flow of a process allows (potentially) unbounded iterations. A related
issue is that our current modeling language does not allow iterative executions
within a transaction scheme. Such an extension would allow one execution of a
transaction scheme γ to be specified as a number of iterations of the constituent
transactions (where in each iteration, one of the constituent transactions is ex-
ecuted). Exit from the execution of γ happens when the guards of none of the
constituent transactions of γ are enabled. In future, we plan to extend CTP (and
CTPL) along these lines to support the specification of iterations within a trans-
action scheme. This will of course naturally define iterations for internal actions
as well, since an internal action is simply a degenerate transaction scheme. For
the data types of messages as well as local variables of processes, the language
implementation currently supports scalar types (such as boolean, integers, user-
defined subrange types) as well as vectors (registers) of these scalar types. The
guards of transactions are boolean expressions, where the propositions in the
boolean expression are allowed to use arithmetic expressions.
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Language Implementation. Currently the implementation of CTPL is supported
with the following tools and applications.

– a Graphical User Interface for constructing diagrammatic specifications and
visualizing them

– a translator for converting visual CTP specifications to a textual format
(based on XML)

– a scanner and parser for the textual format generated by translating the
visual specifications

– A translator that produces Verilog code from the Intermediate Representa-
tion produced by the parser.

– Modeling and deriving of an FPGA-based implementation of an embed-
ded controller for a 16-chamber micro-Polymerase Chain Reaction (μ-PCR)
biochip. This real-life embedded controller co-ordinates a complex thermal
cycling process requiring highly accurate temperature control and real-time
temperature monitoring.

All of these tools are under active development and again, more details can be
found at www.comp.nus.edu.sg/∼ctp.

Integration into Co-design Environments. One of our goals is also to integrate
CTPL as a front-end into a hardware-software co-design toolkit. Towards this
goal, we are working on translating CTPL into the Metropolis Meta Model
(MMM) language [3]. MMM is a common intermediate language for specifying
heterogeneous embedded systems, and allows for simulation of system descrip-
tions specified via different models of computation. The Metropolis project pro-
vides a SystemC based simulator for generating traces of a system described
MMM; this is useful for functionality checking and performance evaluation.
Based on experience gained through hand-translations of simple bus protocol
examples from CTPL to MMM, we have developed a strategy for designing the
translator. In the current version, we are implementing transaction schemes in
CTPL via more centralized channels in MMM. The results concerning this effort
will be reported elsewhere.

Formal Verification. We are also working on automated verification of CTPL
programs via model checking. Towards this end, we have developed a translator
from CTP to the input language of the SMV[4] model checker. However, the
state machine like input language of SMV has a very different specification style
as compared to CTPL and hence the SMV-based verification method does not
appear to be the ideal one for CTPL specifications. Consequently, we are also
building a translator from CTP to Promela (the input language of the SPIN
[18] model checker). Unlike the SMV model checker, Spin allows modeling of
explicit control-flow within processes. This is similar in flavor to the process
specification style of the CTP modeling language. Asynchronous message passing
communication (as used in our MSCs) is also directly supported in Promela via
channels.
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Synthesis. As for automatic synthesis, we have developed a translator to generate
Verilog descriptions from CTPL programs, thereby creating a path to hardware
implementation. So far, we have not studied the means for generating software
code from CTPL specifications. One possibility would be to convert CTPL spec-
ifications to multi-threaded programs (where the processes in a CTPL specifica-
tion map to threads in the generated program). This may require translating the
message passing style of communication espoused in CTPL (via the use of MSCs)
into shared variable communication among threads in the target programming
language (such as Java). Developing an automated translation scheme for gen-
erating multi-threaded Java code from CTPL specifications is a topic of current
and future work in our project [25].

8 Discussion

In this paper we have presented CTP, a high level specification language for mod-
eling reactive systems. Our model is based on Message Sequence Charts (which
emphasize inter-process communication) and explicit description of intra-process
computations and control flow. The main questions to be pursued in this con-
text involves well-formedness checking, formal verification as well synthesizing
implementations from such models.

We have constructed a translator that transforms a CTP program into an
internal representation of the Petri net representing the behavior of the CTP
model. A crucial step in this translation consists of obtaining the event struc-
ture representation of each transaction scheme. Using this translator we are
currently automating the analysis of transaction schemes for well-formedness.
Work is also underway to devise a more efficient and direct procedure for deter-
mining the boundedness property. An interesting related problem is the issue of
schedulability analysis as formulated in [24], which focuses on ensuring bounded
message queues during system execution.

As for formal verification, the Petri net representation of bounded CTP mod-
els can be represented as a finite transition system. Indeed, due to the presence
of the atomic propositions, this transition system can be viewed as a Kripke
structure. Hence dynamic properties of the system being modeled as a CTP can
be specified in a temporal logic such as LTL and formal verification of these
specifications can be carried out using model checking tool such as Spin [18].

We are also currently exploring the means for extending our model along a
number of dimensions, namely: parameterizing each component as an instance
of a class together with the parameterization of the transaction schemes; further
relaxing the control flow restrictions; and, adding timing constraints. Introduc-
tion of classes and objects into our model is particularly interesting since it can
allow to symbolically simulate a CTP specification with unboundedly many ob-
jects (which form finite number of classes in terms of behaviors). Formalizing
these ideas and observations is a topic of future work.
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Abstract. The nets-within-nets paradigm provides an innovative mod-
elling technique by giving tokens themselves the structure of a Petri net.
These nets, called token nets or object nets, also support the object ori-
ented modelling technique as they may represent real world objects with
a proper dynamical behaviour. Between object nets and the surrounding
net, called system net, various interaction mechanisms exist as well as
between different object nets. This introduction into the field of object
Petri nets starts with small examples and proceeds by giving formal se-
mantics. Some of the examples are modelled within the formalism of the
Renew tool. Finally the differences between reference and two kinds of
value semantics are discussed.

1 Nets within Nets

Tokens in a Petri net place can be interpreted as objects. In place/transition nets
(P/T nets), in most cases these objects represent resources or indicate the state
of control. More complex objects are modelled by typed tokens in coloured Petri
nets. Object-oriented modelling, however, means that software is designed as the
interaction of discrete objects, incorporating both data structure and behaviour
[1]. From a Petri net point of view it is quite natural to represent such objects
by tokens, that are nets again. We denote this approach as the “nets-within-nets
paradigm”.

In many applications objects not only belong to a specific environment but
are also able to switch to a different one. Examples of such objects are agents,
including the classical meaning of persons belonging to a secrete service, as well
as software modules in the context of agent-oriented programming. In Fig. 1a)
the current environment of agent X is denoted as “location A”, which may be
a logical state or a physical site. The arrow represents a possible transition to
location B. A structurally similar situation is given with a mobile computer
switching between “security environments” A and B (Fig. 1b). In Fig. 2a) the
object is a task to be executed on a machine A together with a plan for the exe-
cution procedure. As before, they can move to machine B. Finally, in Fig. 2b) a
workflow is with an employee A, moving to employee B afterwards. Note, that
in all of these examples, also the internal state of the object is changed when

J. Desel, W. Reisig, and G. Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 819–848, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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agent X
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a) b)

mobile computer X
in security

environment A

?

agent X
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!
pw 

?

mobile computer X
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environment B

Fig. 1. Moving objects I

task X
to be executed on 

machine A

task X
to be executed on 

machine B

a) b)

workflow X
with employee A

workflow X
with employee B

Fig. 2. Moving objects II

location A location Bt
^

object X

p

q

Fig. 3. Object system transition with token net

moving to a different location. Abstracting from these examples, we model the
movement or switch of an object X by a transition, which is enabled by the
token “object X”, as shown in Fig. 3. In addition, as the object has a dynamical
behaviour, say alternating states p and q, the token is again a marked net. It is
therefore called a “token net”. A token net is also called object net in distinc-
tion to the system net, to which it belongs. The whole system is then called an
object net system or shortly object system. In Fig. 4 the movement of the net-
token is shown as the firing of transition t̂. Obviously, also the token net can fire
autonomously without being moved (Fig. 5). Both, transport and autonomous
firing can interleave, but are to be considered as concurrent actions. This should
be distinguished from a situation, where these transition occurrences are syn-
chronised, i.e. the object moves if and only if some object net transition occurs.
Such an action may be triggered by the object net, by the system net, or by
both of them. Therefore such a situation is denoted by the neutral term “inter-
action”. Interacting transitions are labelled by a corresponding symbol, such as
〈i〉 in Fig. 6. Finally in this introduction we discuss two different semantics of
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Fig. 4. Transport
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Fig. 5. Autonomous transition
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< i >

<i> <i>

< i >

Fig. 6. Interaction

object systems, namely value semantics and reference semantics. The difference
between these semantics becomes obvious when objects (in particular agents)
perform concurrent actions at different locations. A single (human) agent can
execute independent actions using his two hands. To improve conceivability we
prefer to speak of a group of agents, an agency. In Fig. 7 such an agency moves
from location A to locations B and C. This means that one or more members of
the agency are doing so. The abstract net form is given in Fig. 8. The concurrent
behaviour of the agency is represented by transitions, labelled 〈i〉 and 〈j〉. The
question now is, what will be the marking after firing the leftmost transition in
the system net? The proposal in Fig. 9 shows references to the object net from
both of the output places of the transition. This can be interpreted in such a
way, that the members of the agency refer to the same action plan as before, but
from different locations. In the graphical representation dashed arrows are used
to distinguish references from the lines used before for linking the object nets. As
the action plan matches the system net, the concurrent actions labelled 〈i〉 and
〈j〉 can be concurrently executed. Later in this paper we discuss how to define
semantics for the corresponding join of these action sequences. Distributed sys-
tems are characterised by the impossibility of direct access to common data. To
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Fig. 7. Creating distributed agencies
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Fig. 8. Creating distributed object nets
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Fig. 9. Reference semantics

meet this paradigm, value semantics have been introduced. Instead of references
identical copies of the object net are assigned to the output places of the system
net transition. This is similar to call by value in procedure parameter passing.
In the running example, with value semantics, from the marking in Fig. 8 we get
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Fig. 10. Value semantics

a successor marking as shown in Fig. 10. Note that normal lines are used again
(instead of dashed arrows).

The nets-within-nets concept was first introduced in the nineteen-eighties as
task/flow-nets, [2–4]. Further results have been published in [5], [6] and [7]. The
relation between reference and value semantics is discussed in [8–10]. Reference
semantics are carefully studied in the theses of O. Kummer [11] and F. Wienberg
[12], in particular in the context of the Renew tool [13]. In the thesis of B. Farwer
[14] value semantics is studied within the framework of linear logic (see also
[15–19]). Recent work with applications to distributed agents, mobile systems,
security problems and socionics can be found in [20–24].

Many references connect Petri net models with object orientation [25–52].
These approaches introduce features of object oriented languages into Petri
nets, like classes and inheritance, and partially also refer to the nets-within-nets
paradigm.

2 Elementary Object Systems

We now formally introduce elementary object systems which form a restricted
class of general object systems. We only allow two types (colours) for places,
namely objects from a given set of object nets (which do not contain token-
nets again) and ordinary black tokens. For general object systems more types
are allowed. By this restriction the model remains simple, yet most important
features can be introduced. To alleviate the distinction between system and
object nets the components of the system net will bear a hat: t̂, p̂, P̂ , T̂ , . . . etc.

Definition 1. An elementary object system is a tuple OS=(SN,ON m0 , &,R0)
where SN is the system net, ON m0 is a finite set {(ON1,m

0
1) . . . , (ONk,m

0
k)}

of marked object nets, & is the interaction relation and R0 is the initial marking,
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which are defined as follows. (The sets of places and transitions of all involved
nets are assumed to be finite and disjoint.)

a) A system net is a Petri net SN = (P̂ , T̂ , Ŵ ) where
1. the set P̂ = Pob ∪Pbt of places is divided into disjoint sets of object places
Pob and black-token places Pbt, T̂ is the set of transitions,

2. the set of arrows is given as a mapping Ŵ : (P̂ × T̂ ) ∪ (T̂ × P̂ ) → IN. For
Ŵ (x, y) > 0 the arrow (x, y) is called an object arrow if {x, y} ∩ Pob �= ∅
and a black-token arrow if {x, y} ∩ Pbt �= ∅.

b) An object net is a P/T net ON i = (Pi, Ti,Wi) (cf. the Appendix)1.

c) & ⊆ T̂ × T is the interaction relation where T :=
k⋃

i=1

Ti.

d) R0 specifies the initial token distribution, where R0 : P̂ → IN ∪ Bag(ON )
with ON := {ON1, . . . , ONk}. It has to satisfy the condition R0(p̂) ∈ IN ⇔
p̂ ∈ Pbt.

 agent FM.1
at location A

 agent FM.3
at location C

 agent FM.2
at location B

 
location D

water

fire

Fig. 11. Parallel fire extinction by agents

In the example of Fig. 12 an object system OS = (SN,ON , &,R0) is shown,
where ON = {FM.1, FM.2, FM.3}. Black-token arrows of SN can be iden-
tified by their labelling from IN. Hence water is a black-token place, whereas
{A,B,C,D} are object-places. In the initial marking places A, B and C con-
tain the object net FM.1, FM.2 and FM.3, respectively. They have the same
structure and could be generated from a type pattern FM . To keep the formal
definition simple, we start with all instances of such patterns already generated.
The interaction relation is given by corresponding labels in angle brackets:

& = {(refill,a.1), (AtoB,b.1), . . . , (refill,a.2), (AtoB,b.2), . . .}

(the labels are <refill> and <approachFire> in the given cases).
The formal behaviour of this example object system will be defined in the

next section. It is a modification of the well-known fire extinction example of
C. A. Petri [53]: tree agents (or firemen) FM.1, FM.2 and FM.3 are in locations
A, B and C (Fig. 11). The location D is empty. They can change their position

1 It is not very important, which class of Petri nets is chosen for object nets. To keep
definitions simple, we define them as P/T nets (see Appendix).
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Fig. 12. Elementary object net for parallel fire extinction

to location A, fill their bucket2 at a water source, go to location D and help
to extinguish the fire. They do this quite independently. In a modification, that
will be shown later, they will coordinate their actions to form a chain, like
in Petri’s setting. To show progress up to termination the amount of water is
quantified by 5 black tokens, whereas the fire can be extinguished in 3 steps by
removing 3 tokens from the place fire. The final marking includes the place
fireExtinguished and the reader is invited to specify the terminal markings,
i.e. where the agents terminate.

3 Reference Semantics of Object Systems

We start by introducing the notion of a marking for object systems under ref-
erence semantics. Recall that by Definition 1 an object system contains a set
ON m0 = {(ON1,m

0
1) . . . , (ONk,m

0
k)} of marked object nets. By omitting the

markings we obtain the set of (unmarked) object nets ON = {ON1, . . . , ONk}.
Hence, in general a marking is given by

2 The bucket is not modelled here, but in a version given later.
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a) a distribution of object nets or black tokens R : P̂ → IN ∪ Bag(ON ) and
b) the vector M = (m1, . . . ,mk) with the current marking of each ONi (1 ≤
i ≤ k).

R specifies for each system net place p̂ a number of black tokens (if p̂ is a
black token place) or a multi-set of unmarked object nets (if p̂ is an object place).
Since the elements of ON are unmarked, R can be thought of as a reference to
the object nets. If we abbreviate (m1, . . . ,mk) by M and the set of all such
vectors by M we obtain the following Definition 2. By pri(M) we denote the
i-th component mi of M and by Mi→m the tuple, where the i-th component is
substituted by m.

Definition 2. Given an object system OS = (SN,ON m0 , &,R0) we define M
:= {M | M = (m1, . . . ,mk)∧mi ∈ Bag(Pi)}. Then a marking of an elementary
object system is a pair (R,M) where M ∈ M and R : P̂ → IN ∪ Bag(ON )
satisfying R(p̂) ∈ IN ⇔ p̂ ∈ Pbt. Specifying M0 by the initial markings of the
marked object nets M0 := (m0

1, . . . ,m
0
k) we obtain the initial marking (R0,M0)

of OS.

The occurrence rule for object systems will be introduced in three parts. First
we consider the case when an interaction occurs. In this case we assume that a
system net transition t̂ ∈ T̂ and an object net transition t ∈ Ti of some object
net ONi is activated and both transitions are related by the interaction relation
&. i.e. (t̂, t) ∈ &. This case of the occurrence rule is called an interaction.

Definition 3. (interaction / reference-semantics) Let (R,M) be marking of an
object system OS = (SN,ON m0 , &,R0), t̂ ∈ T̂ a transition of SN , t ∈ Ti a
transition of an object net ON i = (Pi, Ti,Wi) ∈ ON such that (t̂, t) ∈ &. Then
(t̂, t) is activated in (R,M) if:

a) R(p̂) ≥ Ŵ (p̂, t̂)′ONi for all p̂ ∈ •t̂ ∩ Pob
3,

b) R(p̂) ≥ W (p̂, t̂) for all p̂ ∈ • t̂ ∩ Pbt
4 and

c) t is activated in m = pri(M) (see Appendix).

This is denoted by (R,M)[t̂, t〉. Let be m[t〉m′ (w.r.t. ONi, see Appendix). In
this case the successor marking (R′,M′) of OS is defined by

a) R′(p̂) = R(p̂) − Ŵ (p̂, t̂)′ONi + Ŵ (t̂, p̂)′ONi for all p̂ ∈ Pob.
b) R′(p̂) = R(p̂) −W (p̂, t̂) +W (t̂, p̂) for all p̂ ∈ Pbt.
c) M′ = Mi→m′ .

This is denoted by (R,M)[t̂, t〉(R′,M′).

3 Ŵ (p, t)′ONi denotes the multi-set containing one element ONi with multiplicity

Ŵ (p, t). Hence ≥ denotes the superset relation of multi-sets.
4 ≥ denotes the ordering relation of IN.
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In our running example of OS from Fig. 12 with (R,M) = (R0,M0), t̂ =
refill, ON = FM.1 and t = a.1 we obtain (R,M)[refill, a.1〉(R′,M′) where
R′ = R and M′ = M1→m1 and m1 = {q.1}, i.e. fireman FM.1 fills his bucket.
In a further step (R′,M′)[AtoB, b.1〉(R′′,M′′) a marking (R′′,M′′) is reached
where place B contains two token nets, namely R′′(B) = 1′FM.1+1′FM.2 and
M′′ = ({q.1}, {p.2}, {p.3}). In this step fireman FM.1 approaches the fire by
moving to location B.

If a system net transition is activated without being included in the inter-
action relation, a chosen object net does not change its current marking. As it
changes its location in the system net such an occurrence is called a transport.
The following definition can be seen as the special case of Definition 3 where the
involved object net is not changed, i.e. M′ = M 5.

Definition 4. (transport / reference-semantics) Let (R,M) be a marking of an
object system OS = (SN,ON m0 , &,R0), t̂ ∈ T̂ a transition of SN , such that
t̂ /∈ dom(&) := {t̂1 | ∃t : (t̂1, t) ∈ &}. Then t̂ is activated in (R,M) if there is an
object net ONi such that

a) R(p̂) ≥ Ŵ (p̂, t̂)′ONi for all p̂ ∈ •t̂ ∩ Pob,
b) R(p̂) ≥ W (p̂, t̂) for all p̂ ∈ • t̂ ∩ Pbt

Since we use τ for the empty action, this is denoted by (R,M)[t̂, τ〉. In this case
the successor marking (R′,M′) is defined by

a) R′(p̂) = R(p̂) − Ŵ (p̂, t̂)′ONi + Ŵ (t̂, p̂)′ONi for all p̂ ∈ Pob.
b) R′(p̂) = R(p̂) −W (p̂, t̂) +W (t̂, p̂) for all p̂ ∈ Pbt.
c) M′ = M

This is denoted by (R,M)[t̂, τ〉(R′,M′).

In the example of OS from Fig. 12 there is no transport as all system net
transitions are labelled for interaction. But we can easily modify the example
by deleting all the labels <retreat> in both the system net and all the object
nets. Then we obtain the same behaviour as before since there is no different
possibility to move for the firemen in the corresponding cases (and their marking
did not change anyway). As mentioned in Section 1 object nets may change their
state without moving:
Definition 5. (autonomous action / reference-semantics) Let (R,M) be a
marking of an object system OS = (SN,ON m0 , &,R0) and t ∈ Ti a transi-
tion of an object net ON i = (Pi, Ti,Wi) ∈ R(p̂) for some p̂ ∈ P̂ , such that
t /∈ range(&) := {t1 | ∃t̂ : (t̂, t1) ∈ &} and t is activated in ONi. Then we say
that (τ, t) is activated in (R,M) (denoted (R,M)[τ, t〉). The successor marking
(R′,M′) of OS is defined by

a) R′ = R.
b) M′ = Mi→m′ if m[t〉m′ for pri(M) = m.
5 Definitions 3 and 4 could be easily merged. This is not done to emphasise the dif-

ferences.
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This is denoted by (R,M)[τ, t〉(R′,M′).

Definition 6. For the new alphabet Γ := (T̂ ∪ {τ}) × (T ∪ {τ})\(τ, τ), where
(τ, τ) denotes the neutral element of the free monoid Γ ∗, we define:

a) (R,M)[τ, τ〉(R′,M′) if (R,M) = (R′,M′) and
b) (R,M)[w̃(t̂, α)〉(R′,M′) if ∃(R′′,M′′) : (R,M)[w̃〉(R′′,M′′) and

(R′′,M′′)[t̂, α〉(R′,M′) for some w̃ ∈ Γ ∗, t̂ ∈ T̂ ∪ {τ} and α ∈ T ∪ {τ}.

The examples of transition occurrences given before lead to the following
occurrence sequence: (R0,M0)[(refill, a.1), (AtoB, b.1)〉(R′′,M′′).

4 Object Interaction, Object Creation and Renew

In this section we extent the definition of elementary object systems to include
interaction between objects (with respect to reference semantics). Furthermore
we show how these concepts are represented in the Renew tool which includes
the creation of object nets.

4.1 Object Interaction

Interaction between object nets is very similar to interaction of system and
object nets. But there are good reasons to define them separately. Interacting
transitions of different object nets are represented by the interaction relation σ.

Definition 7. The object-object-interaction-relation σ is defined as a set of
pairs (ti, tj) of transitions ti and tj of different object nets ONi and ONj . The
relation is supposed to be symmetric ( i.e. also contains (tj , ti)) but irreflexive.
Furthermore, to have a simpler formalism it is supposed to be disjoint with the
interaction relation & in the following sense: (&, σ) are separated if (t1, t2) ∈
σ ⇒ &t1 = &t2 = ∅ 6.

As for autonomous occurrences object nets may interact without moving.
This is restricted, however, to the case where the object nets are locally “near”,
which is formalised as to be in the same place.

Definition 8. (object-object-interaction / reference-semantics) Let (R,M) be
a marking of an object system OS = (SN,ON m0 , &,R0) and p̂ ∈ P̂ a place
containing two different object nets ON i = (Pi, Ti,Wi) and ON j = (Pj , Tj,Wj),
i.e. ONi +ONj ≤ R(p̂). Then ONi and ONj can interact in (R,M) if there are
transitions ti ∈ Ti and tj ∈ Tj such that

a) tu is activated in mu = pru(M) for both u ∈ {i, j}.
b) (ti, tj) ∈ σ.
6 t = {t̂ | (t̂, t) ∈ }
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<approachFire>

<refill>
<extinguish>

[exchange] [exchange]

<retreat>FM.i

:approachFire()

:retreat()

[]

:exchange() :exchange()

:extinguish()
:refill()

a) b)
Fireman

Fig. 13. Fireman with bucket exchange for the net a) of Fig. 12 and b) of Fig. 14

This is denoted (R,M)[τ, ti|tj〉. The corresponding successor marking (R′,M′)
of OS is defined by

a) R′ = R.
b) M′ = (Mi→m′)j→m′′ if mi[ti〉m′ and mj [tj〉m′′.

This is denoted by (R,M)[τ, ti|tj〉(R′,M′).

To give an example we substitute the object nets FM.1, FM.2 and FM.3 from
Fig. 12 by three copies of the net from Fig. 13a) for i = 1, 2, 3. The modification
is the following. Each fireman can proceed only one step by a transition labelled
<retreat> or <approachFire>. Between these steps there has to be a step with
<refill>, <extinguish> or [exchange]. Transitions of different object nets
labelled by [exchange] are in the object nets interaction relation σ which is
indicated by brackets [ and ]. Such an interaction can occur only in the “rendez-
vous”places B and C, where they exchange their full and empty buckets. The
resulting behaviour is a firemen chain as in Petri’s original example: each fireman
moves only between two neighbouring places, whereas the buckets move from
the water to the fire and back. The place in the middle of FM.i is redundant: if
marked the fireman has a full bucket.

4.2 Object Creation and the Renew Tool

The Renew tool allows to design and simulate the example nets in a closely re-
lated manner. The system net from Fig. 12 is shown as a Renew model in Fig. 14.
There are only little differences. For instance, black tokens are represented by
[] and integer weights n by n such token symbols separated by semi-colons.

The three object nets of the example of Fig. 12 are similar in structure and
differ only in the identifiers of places and transitions. The Renew tool supports to
define object nets as patterns and to generate instances at simulation runtime.
Such a creation is executed by the transition which is placed in the leftmost,
upper part of Fig. 14. By the inscription f1:new Fireman an instance of the net
Fireman (see Fig. 13b)) is created with a new identifier Fireman[n], where n is
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[];[];[]
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f2:exchange()

f1:exchange()

f2: new Fireman

Water

Fig. 14. Fire extinction net modelled with the Renew tool (system net)

an identifier chosen by the tool. Then a reference to this instance is introduced
from the place A (by the arc labelled f1)7. In total, the transition creates refer-
ences to three different object nets in the places A, B and C, 5 black tokens in
Water and 3 black tokens in Fire.

An inscription like f:approachFire() is called a downlink and is related to
a corresponding uplink :approachFire() in the net which is referenced by f (see
Fig. 13). The semantics of this pair is the same as for the interaction relation
pair (AtoB,b1) ∈ & of Fig. 12. Object-object-interaction is implemented quite
different, namely also by down- and uplinks. For such an interaction an extra
transition is introduced, like the transition ExchangeB in the Renew example
net. The downlinks f1:exchange() and f2:exchange() contain references to
nets in the place B (say Fireman[1] and Fireman[2]) to synchronise two of
their transitions labelled by an uplink: exchange(). Hence, the behaviour is like
the object-object-interaction in the formal definition.

The nets-within-nets paradigm in Renew is not restricted to a 2-level hier-
archy: in fact, there is no hierarchy necessary at all. We add a 3-level version of
the fire extinction example, where the buckets form an additional level: Fig. 15
and 16. The bucket has two states: empty and full. The initial state is intro-
duced by the transition with uplink :new(), which is executed when the net
instance is created (by firing the transition with downlink b:new Bucket in the
net Fireman). It is also interesting to observe how the exchange of a full and
an empty bucket is implemented by the transition ExchangeB or ExchangeC. In
the first case the fireman in place B, which is referenced by f1, executes the
transition with uplink :exchange(be,bf) whereas a second one, referenced by

7 For details see the documentation of the tool at http://www.renew.de.
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Fig. 15. Three-level fire extinction net modelled with the Renew tool (fireman and
bucket net)
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Fig. 16. Three-level fire extinction net modelled with the Renew tool (system net)

f2, does the same for :exchange(bf,be). Hence the empty bucket (referenced
by be) and the full bucket (referenced by bf) are exchanged.

Note that the system nets of the 2-level model (Fig. 14) and the 3-level model
(Fig. 16) are very similar, showing the abstraction power of the nets-within-nets
modelling paradigm.
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5 Value Semantics of Object Nets

In this section value semantics, as introduced in the introduction, will be defined
formally. We start with a general definition which will be refined in two following
subsections to distributed tokens semantics and history process semantics. To
keep definitions simpler, weights of system nets arrows different to 1 are not
considered in this section (i.e. Ŵ maps to {0, 1} instaed of IN).

5.1 Value Semantics of Object Nets: General Definition

In value semantics each object net instance has its own state (marking), which
is formalised by the following set ON m.

Definition 9. Given an elementary object system OS = (SN,ON m0 , &,R0) as
in Definition 1 with ON = {ON1, . . . , ONk}, we now define ON m :=
{(ON1,m1), . . . , (ONk,mk) | (m1, . . . ,mk) ∈ M}.

Then a marking of an elementary object system under value semantics is a
mapping

V : P̂ → IN ∪ Bag(ON m)

satisfying V(p̂) ∈ IN ⇔ p̂ ∈ Pbt. The initial marking V0 has to meet the condition
V0(p̂)(ONi,m

0
i ) = R0(p̂)(ONi), when p̂ is an object place and V0(p̂) = R0(p̂)

otherwise.

When an interaction occurs with a transition, where several marked object
nets are involved at the input side, some kind of unification of their current
state (marking) is to be constructed. This corresponds to the collection of partial
results (of concurrent computations) to a consistent state, unifying these partial
states. The definition of such a function unify is left unspecified in the following
definition, but made explicit in the subsequent subsections. In a symmetric way,
for the output-places a function distribute is introduced, which constructs from
the state (marking m) a tuple (mp̂1 , ...,mp̂q) of states (markings) for the object
nets to be created in the output places (p̂1, ..., p̂q) of the transition.

Definition 10. (interaction / value-semantics) Let V be a marking of an el-
ementary object system OS = (SN,ON m0 , &,R0), t̂ ∈ T̂ a transition of SN ,
t ∈ T a transition of an object net ON i = (Pi, Ti,Wi) ∈ ON such that (t̂, t) ∈ &.
Then (t̂, t) is activated in V if for each input place p̂ ∈ •t̂ ∩ Pob there is a
submultiset Vp̂ ⊆ V(p̂) such that

a) Ṽp̂ = Ŵ (p̂, t̂)′ONi for all p̂ ∈ •t̂ ∩ Pob for all p ∈ •t ∩ Pob,
b) V(p̂) ≥ W (p̂, t̂) for all p̂ ∈ • t̂ ∩ Pbt and
c) m = unify({m1 | (ONi,m1) ∈ Vp̂ ∧ p̂ ∈ •t̂ ∩ Pob}) is defined and t is

activated in m, where unify is a partial mapping from the set 22Pi of all
marking sets of ONi to the set 2Pi of markings of ONi.

This is denoted by V[t̂, t〉. Let be m[t〉m′ (w.r.t. ONi, see Appendix). In this case
the successor marking V′ of OS is defined by
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a) V′(p̂) = V(p̂) − Vp̂ + Ŵ (t̂, p̂)′(ONi,mp̂) for all p̂ ∈ Pob where mp̂ comes
from (mp̂1 , ...,mp̂q) ∈ distribute(m′) and {p̂1, ..., p̂q} = t̂•. Distribute is a
mapping from the set 2Pi of markings of ONi to the set (2Pi)q of all q-tuples
of markings of ONi, where q is the number of output-places of t̂.

b) V′(p̂) = V(p̂) −W (p̂, t̂) +W (t̂, p̂) for all p̂ ∈ Pbt.

This is denoted by V[t̂, t〉V′.

The definitions for transport and autonomous action are similar and omitted
here.

5.2 Distributed Tokens Semantics

In distributed tokens semantics the tokens of those object nets, whose copies are
distributed to the output-places of a transition are distributed as well, in such a
way that they form the original marking when taken all together. Hence instead
of Fig. 10 a successor marking like in Fig. 17 is appropriate.

Definition 11. (interaction / distributed tokens semantics) Distributed tokens
semantics is obtained by defining the (total) mappings unify and distribute of
Definition 10 as follows:

unify{m1, ...,ms} :=
s∑

i=1

mi

and distribute(m′) := {(m1, ...,mq) |
q∑

i=1

mi = m′}

(Recall that markings are multi-sets and the sum is the multi-set addition.)

In Fig. 18 successor markings of Fig. 17 are shown illustrating the application
“unify”of Definition 11. The figure contains two markings, namely before and
after the occurrence of the rightmost transition. The selection of tokens from the
image of the mapping distribute is nondeterministic. There are also selections
that are “wrong” in the sense that subsequent occurrences are different or im-
possible. This feature is much like nondeterministic firing of Petri net transitions
in general, where conflict solution is left out of consideration.

5.3 History Process Semantics

A different strategy of token distribution is followed by history process seman-
tics. Here all output transitions are supplied with the same information. Then by
the subsequent behaviour the appropriate selection is chosen. In order to check
whether concurrent executions are consistent instead of markings, processes (oc-
currence nets) are used as state information. There is a well-developed theory
of processes which is not repeated here (see [54] for instance). We mention that
there is a partial order on the set of all processes of a net and a well-defined
operation “least upper bound”, which is used in the following definition.

In Fig. 19 the place p̂ contains the initial process of the object net (which is
omitted in the place). After the occurrence of the interaction (â, a) the output-
places q̂ and r̂ are marked with the corresponding enlarged processes. Finally
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Fig. 17. Successor marking for Fig. 8 with respect to distributed tokens semantics
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r
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< i >

< j > < i >

< j >

Fig. 18. Successor markings for Fig.17 with respect to distributed tokens semantics

from the processes in ŝ and ŝ′ (see Fig. 20) the least upper bound is constructed
and then enlarged by the transition b and added to all output-places of ê.

Definition 12. (interaction / history process semantics) History process se-
mantics is obtained by defining the mappings unify and distribute of Defini-

tion 3 as follows: unify{proc1, ..., procs} :=
s⊔

i=1

proci and distribute(proc′) :=

{(proc′, ..., proc′)}, where
s⊔

i=1

proci is the least upper bound of all processes proci

and proc′ the least upper bound enlarged by the transition t 8.

8 Recall that the transition is not activated, if the least upper bound does not exists.
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Fig. 19. Initial and first successor markings with respect to history process semantics
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Fig. 20. Successor markings for Fig. 19 with respect to history process semantics

6 Agency under Reference and Value Semantics

In this section we will use a simple example (due to M. Köhler) to explain
differences between the introduced semantics. An agent or an agency is designed
to first get some money by visiting a bank (3 units of money in our case). Then
the agency has to buy flowers uptown (for 1 unit of money) and independently
to buy jewels downtown (for 2 units of money). Finally they return from up- and
downtown to meet together and deliver their shoppings. We consider 4 different
scenarios system 1 to system 4 in Fig. 21 to 24. In each of these cases we consider
the three introduced semantics reference semantics (ref-semantics), distributed
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tokens value semantics (dt-semantics) and history process value semantics (hp-
semantics). The behaviour is called correct if there is an occurrence sequence that
marks exactly the terminal places9 in system and object nets, when started with
the given initial marking. As discussed above, in particular with dt-semantics
there may be correct and incorrect behaviours from the same initial marking.

1. Object system 1 (Fig. 21)
a) ref-semantics: correct, b) dt-semantics: correct, c) hp-semantics: correct.

2. Object system 2 (Fig. 22)
a) ref-semantics: correct, b) dt-semantics: not correct (downtown agency
member has no money), c) hp-semantics: not correct (downtown agency
member has no money).

3. Object system 3 (Fig. 23)
a) ref-semantics: not correct (2 <visit bank>-actions are impossible), b)
dt-semantics: not correct (only one agency member has money.), c) hp-
semantics: correct.

4. Object system 4 (Fig. 24)
a) ref-semantics: not correct (2 <buy jewels>-actions are impossible), b)
dt-semantics: not correct (not enough money for both agency members: de-
tected by paying since at least one agency member has not enough money),
c) hp-semantics: not correct (not enough money for both agency members:
detected by joining since the unify-function is undefined).

Object system 3 (Fig. 23) is of particular interest as this case shows a differ-
ence between dt- and hp-semantics. The concept behind hp-semantics is similar
to transaction handling in distributed data base systems. Such a transaction
is considered consistent if it computes consistent results in all sites of the dis-
tributed data base system. The <visit-bank>-transition is executed uptown and
downtown, and latter tested on consistency by the last system net transition.

In Fig. 25 two distributed data base systems DB1 and DB2 are represented
by a simple system net. The object net reads the value of data x (either x = 0 or
x = 1) and terminates with transition end consistency check, which in fact
behaves like a consistency check under hp-semantics.

7 The Garbage Can Example

This section contains a larger example modelled with the Renew tool. Hence,
reference semantics is used. It represents a system of agents that behave partially
independent and interact in various ways. This example shows how the nets-
within-nets paradigm provides a transparent modelling concept for representing
objects of the real world by highly independent, but interacting net instances.

The example comes from a project of socionics [22], where knowledge from
social sciences and multi-agent systems are combined to profit from each other.

9 A place is called terminal if it has no output-transitions.
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Fig. 25. Consistent distributed reading

It refers to a subfield of organisational theories, where the laws of anarchic be-
haviour in academic organisations are studied [55]. Following this paper, such
organisations - or decision situations - are characterised by three general prop-
erties. The first is problematic preferences. In the organisation it is difficult to
impute a set of preferences to the decision situation that satisfies the standard
consistency requirements for a theory of choice. The organisation operates on the
basis of a variety of inconsistent and ill-defined preferences. It can be described
better as a loose collection of ideas than as a coherent structure; it discovers pref-
erences through action more than it acts on the basis of preferences. The second
property is unclear technology. Although the organisation manages to survive
and even produce, its own processes are not understood by its members. It op-
erates on the basis of simple trial-and-error procedures, the residue of learning
from accidents of past experience, and pragmatic inventions of necessity. The
third property is fluid participation. Participants vary in the amount of time
and effort they devote to different domains; involvement varies from one time
to another. As a result, the boundaries of the organisation are uncertain and
changing; the audiences and decision makers for any particular kind of choice
change capriciously.

The authors in [56] distinguish the three notions of problems, solutions, par-
ticipants and choice opportunities. Problems are the concern of people inside and
outside the organisation. A solution is somebody’s product. Despite the dictum
that you cannot find the answer until you have phrased the question well, you
often do not know what the question is in organisational problem solving until
you know the answer. Participants come and go. Substantial variation in partic-
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ipation stems from other demands on the participants’ time (rather than from
features of the decision under study). Choice opportunities are occasions when
an organisation is expected to produce behaviour that can be called a decision.
Opportunities arise regularly and every organisation has ways of declaring an
occasion for choice. Contracts must be signed; people hired, promoted, or fired;
money spent; and responsibilities allocated. The dynamic behaviour is the highly
concurrent composition of a stream of choices, a stream of problems, rate of flow
of solutions and stream of engaged participants. Where they meet and interact
in a unpredictable way is called a garbage can.

To get an approximate but more concrete impression of the model, the au-
thors of [56] reconsidered the finale of the James Bond movie, “A View to a
Kill”. Agent 007 poises on the main cable of the Golden Gate Bridge, a woman
in distress clinging to his arm, a blimp approaching for rescue: the blimp is a
solution, 007 a choice opportunity, and the woman a problem. In the movies’s
happy ending, the hero is finally picked up, together with the woman, and a
solution by resolution takes place; the problem is solved.

Now imagine numerous blimps, women, and heroes, all arriving out of the
blue in random sequence. Heroes take their positions on the main cable. Women
cling to heroes, blimps hover above the scene. Heroes are able to hold an un-
limited number of women, but the blimp’s carrying capacity is limited; heroes
with too many women cannot be rescued. Blimps retrieve rescuable, i.e., not-
too-heavy, heroes. Women in distress are aware of that and switch heroes op-
portunistically, choosing the hero closest to retrieval. (In our model, however,
women choose heroes nondeterministically.)

Since women, as well as blimps, make their choices simultaneously, but in-
dependently of each other, a light hero, on the verge of rescue, may suddenly
find himself overburdened. Heavy heroes, in turn, may become rescuable all of
a sudden as their women desert them. This mechanism, called “fluid participa-
tion”, creates the possibility of nonsensical solutions or non-solutions. Women
may switch heroes too swiftly and end up with an overburdened hero each time;
then, problems are not solved. Or heroes are rescued just as all women have
left; then, a “decision by flight” is made. Finally, heroes may be salvaged upon
arrival at the scene before any woman in distress has a chance to grab their
arm; then “decisions by oversight” are said to be made. Nevertheless, decisions
by resolution do occur. Fig. 26 shows the system net, called bridge, containing
the creation of the agents woman (by the annotation woman:new woman) and,
similarly of the agents hero and blimp. The modelling of different locations for
the heroes on the bridge is omitted, but could be easily added. The heroes
can move to the (common) place heroes on cable and are able to cling one or
more women. By the transition rescue they are picked up by a blimp, which may
continue its flight to the hangar by transition fly. As example of a runtime shot
in Fig. 26 the instances of agents woman[1], hero[3], hero[4] and blimp[1]
are shown. The instance blimp[1] is drawn from the pattern blimp, as shown
in Fig. 28. Within the place heroes on cable there are two instances hero[3]
and hero[4] of the class hero. Fig. 27 gives the classes of hero and woman.
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Fig. 26. The garbage can object system: bridge

Each hero counts the number of object net instances woman picked up by
him (see place counter in the net hero). If there are too many (≥ 3 in our case)
transition rescue cannot fire for this blimp (see leftmost transition of blimp
in Fig. 28). All down- and uplinks are given in the nets as declarations. This
allows for better reading and understanding, but is not supported by the tool.
As a modelling style a hierarchy is respected, such that downlinks refer to the
next lower level only. By this it is demonstrated how the object-relation to be
contained in is represented in our modelling style.
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Fig. 28. The garbage can object system: blimp

Note how the change of woman[4] from hero[3] to hero[4] works in this
example. woman[4] is restricted to communicate only via “her” hero[3], who
has to forward the procedure call. hero[3] has, in turn, also no direct access
to hero[4]. Instead, he uses the common level bridge by the transition swap.
This mimics reality, where a communication medium is always necessary (e.g.
by sight, by mobile phone, by Internet).

This example of garbage cans can be seen as a prototype to other applica-
tions of interacting agents, for instance workflow or flexible manufacturing. In
the latter case the bridge stands for the machine configuration, the blimps for
a conveyors, heroes and women parts to be processed. Furthermore a “produc-
tion plan” could be added as a further object net, which takes control over the
production order, assembly, disassembly etc.

8 Conclusion and Current Research

We have shown that object Petri nets provide a “natural” modelling method,
which is easy to understand and is supported by an appropriate tool. The nets-
within-nets concept reduces much of the complexity (e.g. readability, simpler
arc inscriptions, modular structure) that would result in modelling the same
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application by ordinary coloured nets. This is partially a result of the direct rep-
resentation of object relations like “belongs to” or “is in location”. Furthermore
these concepts lead to natural representations of typical properties in distributed
systems or mobile computation.

Due to space limitations, it was not possible to present formal results and
further modelling examples in application domains. We therefore we give some
references to related current research. More definitions, results and examples con-
cerning the concept of history process semantics are given in [6] and [9], whereas
distributed tokens semantics are studied in [20, 21, 57–60]. The latter group of
references contains results on unbounded marking recursion, concurrency notions
and decidability properties of object Petri nets. Modelling mobility and security
properties is investigated in [61] and [62]. The bucket-chain example is extended
to processor failure (fireman failure) and analysed using the MAUDE tool in
[63]. There are also results on pattern based workflow design using reference
semantics [64] and a proposal for structuring agent interaction protocols [65].
Model checking for object Petri nets via a translation into Prolog is introduced
in [66] while some foundations of dynamic Petri net structures can be found in
[67]. Fehling’s concept of hierarchical Petri nets [68] is extended to a class of
object Petri nets in [69]. The monograph [22] (in German) reports numerous
results on the use of object Petri nets in socionics (also see [70]). Applications
to flexible manufacturing systems can be found in [71] and [72].

Appendix: Basic Concepts

Multi-sets: Let A �= ∅ be a set. A multi-set s over A is a mapping s : A → IN,
which associates to each element a ∈ A a non-negative integer coefficient (or
multiplicity) s(a). We denote by Bag(A) the set of multi-sets over A. A multi-set
will be represented as the symbolic addition of its components: s =

∑
a∈A s(a)

′a.
Let s1 and s2 be two multi-sets defined over the same set A. The addition of
multi-sets is defined by s1 + s2 =

∑
a∈A(s1(a) + s2(a))′a. On the other hand,

s1 ≥ s2 when for each a ∈ A, s1(a) ≥ s2(a). The difference operation extends
the corresponding set-operation by (s1 − s2)(a) := max(s1(a) − s2(a), 0). For
short, ∅ will be used to denote the empty multi-set.

Place/Transition nets: A Place/Transition net (P/T net) N = (P, T,W ) is
defined as follows.

1. P and T are finite and disjoint sets of places and transitions, respectively,
and W : (P × T ) ∪ (T × P ) → IN is the set of weighted arrows.

2. Specifying a marking m : P → IN we obtain a marked P/T net (N,m0).
Markings are considered as multi-sets over P .

3. For each t ∈ T let be PRE(t) and POST (t) the multi-sets over P defined
by PRE(t)(p) := W (p, t) and POST (t)(p) := W (t, p), respectively. Then
t ∈ T is activated in a marking m if PRE(t) ≤ m (denoted m[t〉) and
the transition relation is defined by: m[t〉m′ :⇔ PRE(t) ≤ m ∧ m′ =
m− PRE(t) + POST (t). m′ is called successor marking of m (w.r.t. t).
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49. Köster, F., Schöf, S., Sonnenschein, M., Wieting, R.: Modelling of a library with
thorns. [73] 375–390

50. Han, Y.: Software Infrastructure for Configurable Workflow Systems; A Model-
Driven Approach Based on Higher-Order Object Nets and Corba. Wissenschaft
und Technik Verlag, Berlin (1997) Dissertation an der TU Berlin.

51. Lilius, J.: Ob(pn)2: An object based Petri net programming notation. [73] 247–275
52. Agarwal, R., Bruno, G., Pescarmona, M.: Object-oriented extensions for Petri nets.

Petri Net Newsletter 60 (2001) 26–41
53. Petri, C.: Introduction to general net theory. In Brauer, W., ed.: Net Theory and

Applications: Proceedings of the Advanced Course on General Net Theory of Pro-
cesses and Systems, Hamburg, 1979. Volume 84 of Lecture Notes in Computer
Science., Springer-Verlag (1979) 1–19

54. Best, E., Fernández, C.: Nonsequential Processes. A Petri Net View. Volume 13.
Springer Verlag EATCS Monographs on Theoretical Computer Science (1988)

55. Cohen, M., March, J., Olsen, J.: A garbage can model of organizational choice.
Administrative Science Quarterly 17 (1972) 1–25



Object Petri Nets 847

56. Masuch, M., LaPotin, P.: Beyond Garbage Cans: An AI Model of Organizational
Choice. Administrtive Science Quarterly 36 (1989) 38–67
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58. Köhler, M.: Mobile object net systems. In: 10. Workshop Algorithmen und
Werkzeuge für Petrinetze, Universität Eichstätt (2003) 51–60
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